1 //===--------------------- ResourceManager.h --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// The classes here represent processor resource units and their management
11 /// strategy.  These classes are managed by the Scheduler.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_MCA_HARDWAREUNITS_RESOURCEMANAGER_H
16 #define LLVM_MCA_HARDWAREUNITS_RESOURCEMANAGER_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/MC/MCSchedule.h"
21 #include "llvm/MCA/Instruction.h"
22 #include "llvm/MCA/Support.h"
23 
24 namespace llvm {
25 namespace mca {
26 
27 /// Used to notify the internal state of a processor resource.
28 ///
29 /// A processor resource is available if it is not reserved, and there are
30 /// available slots in the buffer.  A processor resource is unavailable if it
31 /// is either reserved, or the associated buffer is full. A processor resource
32 /// with a buffer size of -1 is always available if it is not reserved.
33 ///
34 /// Values of type ResourceStateEvent are returned by method
35 /// ResourceManager::canBeDispatched()
36 ///
37 /// The naming convention for resource state events is:
38 ///  * Event names start with prefix RS_
39 ///  * Prefix RS_ is followed by a string describing the actual resource state.
40 enum ResourceStateEvent {
41   RS_BUFFER_AVAILABLE,
42   RS_BUFFER_UNAVAILABLE,
43   RS_RESERVED
44 };
45 
46 /// Resource allocation strategy used by hardware scheduler resources.
47 class ResourceStrategy {
48   ResourceStrategy(const ResourceStrategy &) = delete;
49   ResourceStrategy &operator=(const ResourceStrategy &) = delete;
50 
51 public:
ResourceStrategy()52   ResourceStrategy() {}
53   virtual ~ResourceStrategy();
54 
55   /// Selects a processor resource unit from a ReadyMask.
56   virtual uint64_t select(uint64_t ReadyMask) = 0;
57 
58   /// Called by the ResourceManager when a processor resource group, or a
59   /// processor resource with multiple units has become unavailable.
60   ///
61   /// The default strategy uses this information to bias its selection logic.
used(uint64_t ResourceMask)62   virtual void used(uint64_t ResourceMask) {}
63 };
64 
65 /// Default resource allocation strategy used by processor resource groups and
66 /// processor resources with multiple units.
67 class DefaultResourceStrategy final : public ResourceStrategy {
68   /// A Mask of resource unit identifiers.
69   ///
70   /// There is one bit set for every available resource unit.
71   /// It defaults to the value of field ResourceSizeMask in ResourceState.
72   const uint64_t ResourceUnitMask;
73 
74   /// A simple round-robin selector for processor resource units.
75   /// Each bit of this mask identifies a sub resource within a group.
76   ///
77   /// As an example, lets assume that this is a default policy for a
78   /// processor resource group composed by the following three units:
79   ///   ResourceA -- 0b001
80   ///   ResourceB -- 0b010
81   ///   ResourceC -- 0b100
82   ///
83   /// Field NextInSequenceMask is used to select the next unit from the set of
84   /// resource units. It defaults to the value of field `ResourceUnitMasks` (in
85   /// this example, it defaults to mask '0b111').
86   ///
87   /// The round-robin selector would firstly select 'ResourceC', then
88   /// 'ResourceB', and eventually 'ResourceA'.  When a resource R is used, the
89   /// corresponding bit in NextInSequenceMask is cleared.  For example, if
90   /// 'ResourceC' is selected, then the new value of NextInSequenceMask becomes
91   /// 0xb011.
92   ///
93   /// When NextInSequenceMask becomes zero, it is automatically reset to the
94   /// default value (i.e. ResourceUnitMask).
95   uint64_t NextInSequenceMask;
96 
97   /// This field is used to track resource units that are used (i.e. selected)
98   /// by other groups other than the one associated with this strategy object.
99   ///
100   /// In LLVM processor resource groups are allowed to partially (or fully)
101   /// overlap. That means, a same unit may be visible to multiple groups.
102   /// This field keeps track of uses that have originated from outside of
103   /// this group. The idea is to bias the selection strategy, so that resources
104   /// that haven't been used by other groups get prioritized.
105   ///
106   /// The end goal is to (try to) keep the resource distribution as much uniform
107   /// as possible. By construction, this mask only tracks one-level of resource
108   /// usage. Therefore, this strategy is expected to be less accurate when same
109   /// units are used multiple times by other groups within a single round of
110   /// select.
111   ///
112   /// Note: an LRU selector would have a better accuracy at the cost of being
113   /// slightly more expensive (mostly in terms of runtime cost). Methods
114   /// 'select' and 'used', are always in the hot execution path of llvm-mca.
115   /// Therefore, a slow implementation of 'select' would have a negative impact
116   /// on the overall performance of the tool.
117   uint64_t RemovedFromNextInSequence;
118 
119 public:
DefaultResourceStrategy(uint64_t UnitMask)120   DefaultResourceStrategy(uint64_t UnitMask)
121       : ResourceStrategy(), ResourceUnitMask(UnitMask),
122         NextInSequenceMask(UnitMask), RemovedFromNextInSequence(0) {}
123   virtual ~DefaultResourceStrategy() = default;
124 
125   uint64_t select(uint64_t ReadyMask) override;
126   void used(uint64_t Mask) override;
127 };
128 
129 /// A processor resource descriptor.
130 ///
131 /// There is an instance of this class for every processor resource defined by
132 /// the machine scheduling model.
133 /// Objects of class ResourceState dynamically track the usage of processor
134 /// resource units.
135 class ResourceState {
136   /// An index to the MCProcResourceDesc entry in the processor model.
137   const unsigned ProcResourceDescIndex;
138   /// A resource mask. This is generated by the tool with the help of
139   /// function `mca::computeProcResourceMasks' (see Support.h).
140   ///
141   /// Field ResourceMask only has one bit set if this resource state describes a
142   /// processor resource unit (i.e. this is not a group). That means, we can
143   /// quickly check if a resource is a group by simply counting the number of
144   /// bits that are set in the mask.
145   ///
146   /// The most significant bit of a mask (MSB) uniquely identifies a resource.
147   /// Remaining bits are used to describe the composition of a group (Group).
148   ///
149   /// Example (little endian):
150   ///            Resource |  Mask      |  MSB       |  Group
151   ///            ---------+------------+------------+------------
152   ///            A        |  0b000001  |  0b000001  |  0b000000
153   ///                     |            |            |
154   ///            B        |  0b000010  |  0b000010  |  0b000000
155   ///                     |            |            |
156   ///            C        |  0b010000  |  0b010000  |  0b000000
157   ///                     |            |            |
158   ///            D        |  0b110010  |  0b100000  |  0b010010
159   ///
160   /// In this example, resources A, B and C are processor resource units.
161   /// Only resource D is a group resource, and it contains resources B and C.
162   /// That is because MSB(B) and MSB(C) are both contained within Group(D).
163   const uint64_t ResourceMask;
164 
165   /// A ProcResource can have multiple units.
166   ///
167   /// For processor resource groups this field is a mask of contained resource
168   /// units. It is obtained from ResourceMask by clearing the highest set bit.
169   /// The number of resource units in a group can be simply computed as the
170   /// population count of this field.
171   ///
172   /// For normal (i.e. non-group) resources, the number of bits set in this mask
173   /// is equivalent to the number of units declared by the processor model (see
174   /// field 'NumUnits' in 'ProcResourceUnits').
175   uint64_t ResourceSizeMask;
176 
177   /// A mask of ready units.
178   uint64_t ReadyMask;
179 
180   /// Buffered resources will have this field set to a positive number different
181   /// than zero. A buffered resource behaves like a reservation station
182   /// implementing its own buffer for out-of-order execution.
183   ///
184   /// A BufferSize of 1 is used by scheduler resources that force in-order
185   /// execution.
186   ///
187   /// A BufferSize of 0 is used to model in-order issue/dispatch resources.
188   /// Since in-order issue/dispatch resources don't implement buffers, dispatch
189   /// events coincide with issue events.
190   /// Also, no other instruction ca be dispatched/issue while this resource is
191   /// in use. Only when all the "resource cycles" are consumed (after the issue
192   /// event), a new instruction ca be dispatched.
193   const int BufferSize;
194 
195   /// Available slots in the buffer (zero, if this is not a buffered resource).
196   unsigned AvailableSlots;
197 
198   /// This field is set if this resource is currently reserved.
199   ///
200   /// Resources can be reserved for a number of cycles.
201   /// Instructions can still be dispatched to reserved resources. However,
202   /// istructions dispatched to a reserved resource cannot be issued to the
203   /// underlying units (i.e. pipelines) until the resource is released.
204   bool Unavailable;
205 
206   const bool IsAGroup;
207 
208   /// Checks for the availability of unit 'SubResMask' in the group.
isSubResourceReady(uint64_t SubResMask)209   bool isSubResourceReady(uint64_t SubResMask) const {
210     return ReadyMask & SubResMask;
211   }
212 
213 public:
214   ResourceState(const MCProcResourceDesc &Desc, unsigned Index, uint64_t Mask);
215 
getProcResourceID()216   unsigned getProcResourceID() const { return ProcResourceDescIndex; }
getResourceMask()217   uint64_t getResourceMask() const { return ResourceMask; }
getReadyMask()218   uint64_t getReadyMask() const { return ReadyMask; }
getBufferSize()219   int getBufferSize() const { return BufferSize; }
220 
isBuffered()221   bool isBuffered() const { return BufferSize > 0; }
isInOrder()222   bool isInOrder() const { return BufferSize == 1; }
223 
224   /// Returns true if this is an in-order dispatch/issue resource.
isADispatchHazard()225   bool isADispatchHazard() const { return BufferSize == 0; }
isReserved()226   bool isReserved() const { return Unavailable; }
227 
setReserved()228   void setReserved() { Unavailable = true; }
clearReserved()229   void clearReserved() { Unavailable = false; }
230 
231   /// Returs true if this resource is not reserved, and if there are at least
232   /// `NumUnits` available units.
233   bool isReady(unsigned NumUnits = 1) const;
234 
isAResourceGroup()235   bool isAResourceGroup() const { return IsAGroup; }
236 
containsResource(uint64_t ID)237   bool containsResource(uint64_t ID) const { return ResourceMask & ID; }
238 
markSubResourceAsUsed(uint64_t ID)239   void markSubResourceAsUsed(uint64_t ID) {
240     assert(isSubResourceReady(ID));
241     ReadyMask ^= ID;
242   }
243 
releaseSubResource(uint64_t ID)244   void releaseSubResource(uint64_t ID) {
245     assert(!isSubResourceReady(ID));
246     ReadyMask ^= ID;
247   }
248 
getNumUnits()249   unsigned getNumUnits() const {
250     return isAResourceGroup() ? 1U : countPopulation(ResourceSizeMask);
251   }
252 
253   /// Checks if there is an available slot in the resource buffer.
254   ///
255   /// Returns RS_BUFFER_AVAILABLE if this is not a buffered resource, or if
256   /// there is a slot available.
257   ///
258   /// Returns RS_RESERVED if this buffered resource is a dispatch hazard, and it
259   /// is reserved.
260   ///
261   /// Returns RS_BUFFER_UNAVAILABLE if there are no available slots.
262   ResourceStateEvent isBufferAvailable() const;
263 
264   /// Reserve a buffer slot.
265   ///
266   /// Returns true if the buffer is not full.
267   /// It always returns true if BufferSize is set to zero.
reserveBuffer()268   bool reserveBuffer() {
269     if (BufferSize <= 0)
270       return true;
271 
272     --AvailableSlots;
273     assert(AvailableSlots <= static_cast<unsigned>(BufferSize));
274     return AvailableSlots;
275   }
276 
277   /// Releases a slot in the buffer.
releaseBuffer()278   void releaseBuffer() {
279     // Ignore dispatch hazards or invalid buffer sizes.
280     if (BufferSize <= 0)
281       return;
282 
283     ++AvailableSlots;
284     assert(AvailableSlots <= static_cast<unsigned>(BufferSize));
285   }
286 
287 #ifndef NDEBUG
288   void dump() const;
289 #endif
290 };
291 
292 /// A resource unit identifier.
293 ///
294 /// This is used to identify a specific processor resource unit using a pair
295 /// of indices where the 'first' index is a processor resource mask, and the
296 /// 'second' index is an index for a "sub-resource" (i.e. unit).
297 typedef std::pair<uint64_t, uint64_t> ResourceRef;
298 
299 // First: a MCProcResourceDesc index identifying a buffered resource.
300 // Second: max number of buffer entries used in this resource.
301 typedef std::pair<unsigned, unsigned> BufferUsageEntry;
302 
303 /// A resource manager for processor resource units and groups.
304 ///
305 /// This class owns all the ResourceState objects, and it is responsible for
306 /// acting on requests from a Scheduler by updating the internal state of
307 /// ResourceState objects.
308 /// This class doesn't know about instruction itineraries and functional units.
309 /// In future, it can be extended to support itineraries too through the same
310 /// public interface.
311 class ResourceManager {
312   // Set of resources available on the subtarget.
313   //
314   // There is an instance of ResourceState for every resource declared by the
315   // target scheduling model.
316   //
317   // Elements of this vector are ordered by resource kind. In particular,
318   // resource units take precedence over resource groups.
319   //
320   // The index of a processor resource in this vector depends on the value of
321   // its mask (see the description of field ResourceState::ResourceMask).  In
322   // particular, it is computed as the position of the most significant bit set
323   // (MSB) in the mask plus one (since we want to ignore the invalid resource
324   // descriptor at index zero).
325   //
326   // Example (little endian):
327   //
328   //             Resource | Mask    |  MSB    | Index
329   //             ---------+---------+---------+-------
330   //                 A    | 0b00001 | 0b00001 |   1
331   //                      |         |         |
332   //                 B    | 0b00100 | 0b00100 |   3
333   //                      |         |         |
334   //                 C    | 0b10010 | 0b10000 |   5
335   //
336   //
337   // The same index is also used to address elements within vector `Strategies`
338   // and vector `Resource2Groups`.
339   std::vector<std::unique_ptr<ResourceState>> Resources;
340   std::vector<std::unique_ptr<ResourceStrategy>> Strategies;
341 
342   // Used to quickly identify groups that own a particular resource unit.
343   std::vector<uint64_t> Resource2Groups;
344 
345   // A table that maps processor resource IDs to processor resource masks.
346   SmallVector<uint64_t, 8> ProcResID2Mask;
347 
348   // A table that maps resource indices to actual processor resource IDs in the
349   // scheduling model.
350   SmallVector<unsigned, 8> ResIndex2ProcResID;
351 
352   // Keeps track of which resources are busy, and how many cycles are left
353   // before those become usable again.
354   SmallDenseMap<ResourceRef, unsigned> BusyResources;
355 
356   // Set of processor resource units available on the target.
357   uint64_t ProcResUnitMask;
358 
359   // Set of processor resource units that are available during this cycle.
360   uint64_t AvailableProcResUnits;
361 
362   // Set of processor resources that are currently reserved.
363   uint64_t ReservedResourceGroups;
364 
365   // Set of unavailable scheduler buffer resources. This is used internally to
366   // speedup `canBeDispatched()` queries.
367   uint64_t AvailableBuffers;
368 
369   // Set of dispatch hazard buffer resources that are currently unavailable.
370   uint64_t ReservedBuffers;
371 
372   // Returns the actual resource unit that will be used.
373   ResourceRef selectPipe(uint64_t ResourceID);
374 
375   void use(const ResourceRef &RR);
376   void release(const ResourceRef &RR);
377 
378   unsigned getNumUnits(uint64_t ResourceID) const;
379 
380   // Overrides the selection strategy for the processor resource with the given
381   // mask.
382   void setCustomStrategyImpl(std::unique_ptr<ResourceStrategy> S,
383                              uint64_t ResourceMask);
384 
385 public:
386   ResourceManager(const MCSchedModel &SM);
387   virtual ~ResourceManager() = default;
388 
389   // Overrides the selection strategy for the resource at index ResourceID in
390   // the MCProcResourceDesc table.
setCustomStrategy(std::unique_ptr<ResourceStrategy> S,unsigned ResourceID)391   void setCustomStrategy(std::unique_ptr<ResourceStrategy> S,
392                          unsigned ResourceID) {
393     assert(ResourceID < ProcResID2Mask.size() &&
394            "Invalid resource index in input!");
395     return setCustomStrategyImpl(std::move(S), ProcResID2Mask[ResourceID]);
396   }
397 
398   // Returns RS_BUFFER_AVAILABLE if buffered resources are not reserved, and if
399   // there are enough available slots in the buffers.
400   ResourceStateEvent canBeDispatched(uint64_t ConsumedBuffers) const;
401 
402   // Return the processor resource identifier associated to this Mask.
403   unsigned resolveResourceMask(uint64_t Mask) const;
404 
405   // Acquires a slot from every buffered resource in mask `ConsumedBuffers`.
406   // Units that are dispatch hazards (i.e. BufferSize=0) are marked as reserved.
407   void reserveBuffers(uint64_t ConsumedBuffers);
408 
409   // Releases a slot from every buffered resource in mask `ConsumedBuffers`.
410   // ConsumedBuffers is a bitmask of previously acquired buffers (using method
411   // `reserveBuffers`). Units that are dispatch hazards (i.e. BufferSize=0) are
412   // not automatically unreserved by this method.
413   void releaseBuffers(uint64_t ConsumedBuffers);
414 
415   // Reserve a processor resource. A reserved resource is not available for
416   // instruction issue until it is released.
417   void reserveResource(uint64_t ResourceID);
418 
419   // Release a previously reserved processor resource.
420   void releaseResource(uint64_t ResourceID);
421 
422   // Returns a zero mask if resources requested by Desc are all available during
423   // this cycle. It returns a non-zero mask value only if there are unavailable
424   // processor resources; each bit set in the mask represents a busy processor
425   // resource unit or a reserved processor resource group.
426   uint64_t checkAvailability(const InstrDesc &Desc) const;
427 
getProcResUnitMask()428   uint64_t getProcResUnitMask() const { return ProcResUnitMask; }
getAvailableProcResUnits()429   uint64_t getAvailableProcResUnits() const { return AvailableProcResUnits; }
430 
431   void issueInstruction(
432       const InstrDesc &Desc,
433       SmallVectorImpl<std::pair<ResourceRef, ResourceCycles>> &Pipes);
434 
435   void cycleEvent(SmallVectorImpl<ResourceRef> &ResourcesFreed);
436 
437 #ifndef NDEBUG
dump()438   void dump() const {
439     for (const std::unique_ptr<ResourceState> &Resource : Resources)
440       Resource->dump();
441   }
442 #endif
443 };
444 } // namespace mca
445 } // namespace llvm
446 
447 #endif // LLVM_MCA_HARDWAREUNITS_RESOURCEMANAGER_H
448