1 ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file provides the interface for the sampled PGO profile loader base
11 /// implementation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
16 #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/ProfileData/SampleProf.h"
37 #include "llvm/ProfileData/SampleProfReader.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/GenericDomTree.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h"
42 
43 namespace llvm {
44 using namespace sampleprof;
45 using namespace sampleprofutil;
46 using ProfileCount = Function::ProfileCount;
47 
48 #define DEBUG_TYPE "sample-profile-impl"
49 
50 namespace afdo_detail {
51 
52 template <typename BlockT> struct IRTraits;
53 template <> struct IRTraits<BasicBlock> {
54   using InstructionT = Instruction;
55   using BasicBlockT = BasicBlock;
56   using FunctionT = Function;
57   using BlockFrequencyInfoT = BlockFrequencyInfo;
58   using LoopT = Loop;
59   using LoopInfoT = LoopInfo;
60   using OptRemarkEmitterT = OptimizationRemarkEmitter;
61   using OptRemarkAnalysisT = OptimizationRemarkAnalysis;
62   using DominatorTreeT = DominatorTree;
63   using PostDominatorTreeT = PostDominatorTree;
64   static Function &getFunction(Function &F) { return F; }
65   static const BasicBlock *getEntryBB(const Function *F) {
66     return &F->getEntryBlock();
67   }
68 };
69 
70 } // end namespace afdo_detail
71 
72 extern cl::opt<unsigned> SampleProfileMaxPropagateIterations;
73 extern cl::opt<unsigned> SampleProfileRecordCoverage;
74 extern cl::opt<unsigned> SampleProfileSampleCoverage;
75 extern cl::opt<bool> NoWarnSampleUnused;
76 
77 template <typename BT> class SampleProfileLoaderBaseImpl {
78 public:
79   SampleProfileLoaderBaseImpl(std::string Name) : Filename(Name) {}
80   void dump() { Reader->dump(); }
81 
82   using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT;
83   using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT;
84   using BlockFrequencyInfoT =
85       typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT;
86   using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT;
87   using LoopT = typename afdo_detail::IRTraits<BT>::LoopT;
88   using LoopInfoT = typename afdo_detail::IRTraits<BT>::LoopInfoT;
89   using OptRemarkEmitterT =
90       typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT;
91   using OptRemarkAnalysisT =
92       typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT;
93   using DominatorTreeT = typename afdo_detail::IRTraits<BT>::DominatorTreeT;
94   using PostDominatorTreeT =
95       typename afdo_detail::IRTraits<BT>::PostDominatorTreeT;
96 
97   using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>;
98   using EquivalenceClassMap =
99       DenseMap<const BasicBlockT *, const BasicBlockT *>;
100   using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>;
101   using EdgeWeightMap = DenseMap<Edge, uint64_t>;
102   using BlockEdgeMap =
103       DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>;
104 
105 protected:
106   ~SampleProfileLoaderBaseImpl() = default;
107   friend class SampleCoverageTracker;
108 
109   Function &getFunction(FunctionT &F) {
110     return afdo_detail::IRTraits<BT>::getFunction(F);
111   }
112   const BasicBlockT *getEntryBB(const FunctionT *F) {
113     return afdo_detail::IRTraits<BT>::getEntryBB(F);
114   }
115 
116   unsigned getFunctionLoc(FunctionT &Func);
117   virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst);
118   ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst);
119   ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB);
120   mutable DenseMap<const DILocation *, const FunctionSamples *>
121       DILocation2SampleMap;
122   virtual const FunctionSamples *
123   findFunctionSamples(const InstructionT &I) const;
124   void printEdgeWeight(raw_ostream &OS, Edge E);
125   void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const;
126   void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB);
127   bool computeBlockWeights(FunctionT &F);
128   void findEquivalenceClasses(FunctionT &F);
129   void findEquivalencesFor(BasicBlockT *BB1,
130                            ArrayRef<BasicBlockT *> Descendants,
131                            PostDominatorTreeT *DomTree);
132 
133   void propagateWeights(FunctionT &F);
134   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
135   void buildEdges(FunctionT &F);
136   bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount);
137   void clearFunctionData();
138   void computeDominanceAndLoopInfo(FunctionT &F);
139   bool
140   computeAndPropagateWeights(FunctionT &F,
141                              const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
142   void emitCoverageRemarks(FunctionT &F);
143 
144   /// Map basic blocks to their computed weights.
145   ///
146   /// The weight of a basic block is defined to be the maximum
147   /// of all the instruction weights in that block.
148   BlockWeightMap BlockWeights;
149 
150   /// Map edges to their computed weights.
151   ///
152   /// Edge weights are computed by propagating basic block weights in
153   /// SampleProfile::propagateWeights.
154   EdgeWeightMap EdgeWeights;
155 
156   /// Set of visited blocks during propagation.
157   SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks;
158 
159   /// Set of visited edges during propagation.
160   SmallSet<Edge, 32> VisitedEdges;
161 
162   /// Equivalence classes for block weights.
163   ///
164   /// Two blocks BB1 and BB2 are in the same equivalence class if they
165   /// dominate and post-dominate each other, and they are in the same loop
166   /// nest. When this happens, the two blocks are guaranteed to execute
167   /// the same number of times.
168   EquivalenceClassMap EquivalenceClass;
169 
170   /// Dominance, post-dominance and loop information.
171   std::unique_ptr<DominatorTreeT> DT;
172   std::unique_ptr<PostDominatorTreeT> PDT;
173   std::unique_ptr<LoopInfoT> LI;
174 
175   /// Predecessors for each basic block in the CFG.
176   BlockEdgeMap Predecessors;
177 
178   /// Successors for each basic block in the CFG.
179   BlockEdgeMap Successors;
180 
181   /// Profile coverage tracker.
182   SampleCoverageTracker CoverageTracker;
183 
184   /// Profile reader object.
185   std::unique_ptr<SampleProfileReader> Reader;
186 
187   /// Samples collected for the body of this function.
188   FunctionSamples *Samples = nullptr;
189 
190   /// Name of the profile file to load.
191   std::string Filename;
192 
193   /// Profile Summary Info computed from sample profile.
194   ProfileSummaryInfo *PSI = nullptr;
195 
196   /// Optimization Remark Emitter used to emit diagnostic remarks.
197   OptRemarkEmitterT *ORE = nullptr;
198 };
199 
200 /// Clear all the per-function data used to load samples and propagate weights.
201 template <typename BT>
202 void SampleProfileLoaderBaseImpl<BT>::clearFunctionData() {
203   BlockWeights.clear();
204   EdgeWeights.clear();
205   VisitedBlocks.clear();
206   VisitedEdges.clear();
207   EquivalenceClass.clear();
208   DT = nullptr;
209   PDT = nullptr;
210   LI = nullptr;
211   Predecessors.clear();
212   Successors.clear();
213   CoverageTracker.clear();
214 }
215 
216 #ifndef NDEBUG
217 /// Print the weight of edge \p E on stream \p OS.
218 ///
219 /// \param OS  Stream to emit the output to.
220 /// \param E  Edge to print.
221 template <typename BT>
222 void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) {
223   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
224      << "]: " << EdgeWeights[E] << "\n";
225 }
226 
227 /// Print the equivalence class of block \p BB on stream \p OS.
228 ///
229 /// \param OS  Stream to emit the output to.
230 /// \param BB  Block to print.
231 template <typename BT>
232 void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence(
233     raw_ostream &OS, const BasicBlockT *BB) {
234   const BasicBlockT *Equiv = EquivalenceClass[BB];
235   OS << "equivalence[" << BB->getName()
236      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
237 }
238 
239 /// Print the weight of block \p BB on stream \p OS.
240 ///
241 /// \param OS  Stream to emit the output to.
242 /// \param BB  Block to print.
243 template <typename BT>
244 void SampleProfileLoaderBaseImpl<BT>::printBlockWeight(
245     raw_ostream &OS, const BasicBlockT *BB) const {
246   const auto &I = BlockWeights.find(BB);
247   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
248   OS << "weight[" << BB->getName() << "]: " << W << "\n";
249 }
250 #endif
251 
252 /// Get the weight for an instruction.
253 ///
254 /// The "weight" of an instruction \p Inst is the number of samples
255 /// collected on that instruction at runtime. To retrieve it, we
256 /// need to compute the line number of \p Inst relative to the start of its
257 /// function. We use HeaderLineno to compute the offset. We then
258 /// look up the samples collected for \p Inst using BodySamples.
259 ///
260 /// \param Inst Instruction to query.
261 ///
262 /// \returns the weight of \p Inst.
263 template <typename BT>
264 ErrorOr<uint64_t>
265 SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) {
266   return getInstWeightImpl(Inst);
267 }
268 
269 template <typename BT>
270 ErrorOr<uint64_t>
271 SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) {
272   const FunctionSamples *FS = findFunctionSamples(Inst);
273   if (!FS)
274     return std::error_code();
275 
276   const DebugLoc &DLoc = Inst.getDebugLoc();
277   if (!DLoc)
278     return std::error_code();
279 
280   const DILocation *DIL = DLoc;
281   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
282   uint32_t Discriminator;
283   if (EnableFSDiscriminator)
284     Discriminator = DIL->getDiscriminator();
285   else
286     Discriminator = DIL->getBaseDiscriminator();
287 
288   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
289   if (R) {
290     bool FirstMark =
291         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
292     if (FirstMark) {
293       ORE->emit([&]() {
294         OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
295         Remark << "Applied " << ore::NV("NumSamples", *R);
296         Remark << " samples from profile (offset: ";
297         Remark << ore::NV("LineOffset", LineOffset);
298         if (Discriminator) {
299           Remark << ".";
300           Remark << ore::NV("Discriminator", Discriminator);
301         }
302         Remark << ")";
303         return Remark;
304       });
305     }
306     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "." << Discriminator << ":"
307                       << Inst << " (line offset: " << LineOffset << "."
308                       << Discriminator << " - weight: " << R.get() << ")\n");
309   }
310   return R;
311 }
312 
313 /// Compute the weight of a basic block.
314 ///
315 /// The weight of basic block \p BB is the maximum weight of all the
316 /// instructions in BB.
317 ///
318 /// \param BB The basic block to query.
319 ///
320 /// \returns the weight for \p BB.
321 template <typename BT>
322 ErrorOr<uint64_t>
323 SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) {
324   uint64_t Max = 0;
325   bool HasWeight = false;
326   for (auto &I : *BB) {
327     const ErrorOr<uint64_t> &R = getInstWeight(I);
328     if (R) {
329       Max = std::max(Max, R.get());
330       HasWeight = true;
331     }
332   }
333   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
334 }
335 
336 /// Compute and store the weights of every basic block.
337 ///
338 /// This populates the BlockWeights map by computing
339 /// the weights of every basic block in the CFG.
340 ///
341 /// \param F The function to query.
342 template <typename BT>
343 bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) {
344   bool Changed = false;
345   LLVM_DEBUG(dbgs() << "Block weights\n");
346   for (const auto &BB : F) {
347     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
348     if (Weight) {
349       BlockWeights[&BB] = Weight.get();
350       VisitedBlocks.insert(&BB);
351       Changed = true;
352     }
353     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
354   }
355 
356   return Changed;
357 }
358 
359 /// Get the FunctionSamples for an instruction.
360 ///
361 /// The FunctionSamples of an instruction \p Inst is the inlined instance
362 /// in which that instruction is coming from. We traverse the inline stack
363 /// of that instruction, and match it with the tree nodes in the profile.
364 ///
365 /// \param Inst Instruction to query.
366 ///
367 /// \returns the FunctionSamples pointer to the inlined instance.
368 template <typename BT>
369 const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples(
370     const InstructionT &Inst) const {
371   const DILocation *DIL = Inst.getDebugLoc();
372   if (!DIL)
373     return Samples;
374 
375   auto it = DILocation2SampleMap.try_emplace(DIL, nullptr);
376   if (it.second) {
377     it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper());
378   }
379   return it.first->second;
380 }
381 
382 /// Find equivalence classes for the given block.
383 ///
384 /// This finds all the blocks that are guaranteed to execute the same
385 /// number of times as \p BB1. To do this, it traverses all the
386 /// descendants of \p BB1 in the dominator or post-dominator tree.
387 ///
388 /// A block BB2 will be in the same equivalence class as \p BB1 if
389 /// the following holds:
390 ///
391 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
392 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
393 ///    dominate BB1 in the post-dominator tree.
394 ///
395 /// 2- Both BB2 and \p BB1 must be in the same loop.
396 ///
397 /// For every block BB2 that meets those two requirements, we set BB2's
398 /// equivalence class to \p BB1.
399 ///
400 /// \param BB1  Block to check.
401 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
402 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
403 ///                 with blocks from \p BB1's dominator tree, then
404 ///                 this is the post-dominator tree, and vice versa.
405 template <typename BT>
406 void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor(
407     BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants,
408     PostDominatorTreeT *DomTree) {
409   const BasicBlockT *EC = EquivalenceClass[BB1];
410   uint64_t Weight = BlockWeights[EC];
411   for (const auto *BB2 : Descendants) {
412     bool IsDomParent = DomTree->dominates(BB2, BB1);
413     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
414     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
415       EquivalenceClass[BB2] = EC;
416       // If BB2 is visited, then the entire EC should be marked as visited.
417       if (VisitedBlocks.count(BB2)) {
418         VisitedBlocks.insert(EC);
419       }
420 
421       // If BB2 is heavier than BB1, make BB2 have the same weight
422       // as BB1.
423       //
424       // Note that we don't worry about the opposite situation here
425       // (when BB2 is lighter than BB1). We will deal with this
426       // during the propagation phase. Right now, we just want to
427       // make sure that BB1 has the largest weight of all the
428       // members of its equivalence set.
429       Weight = std::max(Weight, BlockWeights[BB2]);
430     }
431   }
432   const BasicBlockT *EntryBB = getEntryBB(EC->getParent());
433   if (EC == EntryBB) {
434     BlockWeights[EC] = Samples->getHeadSamples() + 1;
435   } else {
436     BlockWeights[EC] = Weight;
437   }
438 }
439 
440 /// Find equivalence classes.
441 ///
442 /// Since samples may be missing from blocks, we can fill in the gaps by setting
443 /// the weights of all the blocks in the same equivalence class to the same
444 /// weight. To compute the concept of equivalence, we use dominance and loop
445 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
446 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
447 ///
448 /// \param F The function to query.
449 template <typename BT>
450 void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) {
451   SmallVector<BasicBlockT *, 8> DominatedBBs;
452   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
453   // Find equivalence sets based on dominance and post-dominance information.
454   for (auto &BB : F) {
455     BasicBlockT *BB1 = &BB;
456 
457     // Compute BB1's equivalence class once.
458     if (EquivalenceClass.count(BB1)) {
459       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
460       continue;
461     }
462 
463     // By default, blocks are in their own equivalence class.
464     EquivalenceClass[BB1] = BB1;
465 
466     // Traverse all the blocks dominated by BB1. We are looking for
467     // every basic block BB2 such that:
468     //
469     // 1- BB1 dominates BB2.
470     // 2- BB2 post-dominates BB1.
471     // 3- BB1 and BB2 are in the same loop nest.
472     //
473     // If all those conditions hold, it means that BB2 is executed
474     // as many times as BB1, so they are placed in the same equivalence
475     // class by making BB2's equivalence class be BB1.
476     DominatedBBs.clear();
477     DT->getDescendants(BB1, DominatedBBs);
478     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
479 
480     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
481   }
482 
483   // Assign weights to equivalence classes.
484   //
485   // All the basic blocks in the same equivalence class will execute
486   // the same number of times. Since we know that the head block in
487   // each equivalence class has the largest weight, assign that weight
488   // to all the blocks in that equivalence class.
489   LLVM_DEBUG(
490       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
491   for (auto &BI : F) {
492     const BasicBlockT *BB = &BI;
493     const BasicBlockT *EquivBB = EquivalenceClass[BB];
494     if (BB != EquivBB)
495       BlockWeights[BB] = BlockWeights[EquivBB];
496     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
497   }
498 }
499 
500 /// Visit the given edge to decide if it has a valid weight.
501 ///
502 /// If \p E has not been visited before, we copy to \p UnknownEdge
503 /// and increment the count of unknown edges.
504 ///
505 /// \param E  Edge to visit.
506 /// \param NumUnknownEdges  Current number of unknown edges.
507 /// \param UnknownEdge  Set if E has not been visited before.
508 ///
509 /// \returns E's weight, if known. Otherwise, return 0.
510 template <typename BT>
511 uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E,
512                                                     unsigned *NumUnknownEdges,
513                                                     Edge *UnknownEdge) {
514   if (!VisitedEdges.count(E)) {
515     (*NumUnknownEdges)++;
516     *UnknownEdge = E;
517     return 0;
518   }
519 
520   return EdgeWeights[E];
521 }
522 
523 /// Propagate weights through incoming/outgoing edges.
524 ///
525 /// If the weight of a basic block is known, and there is only one edge
526 /// with an unknown weight, we can calculate the weight of that edge.
527 ///
528 /// Similarly, if all the edges have a known count, we can calculate the
529 /// count of the basic block, if needed.
530 ///
531 /// \param F  Function to process.
532 /// \param UpdateBlockCount  Whether we should update basic block counts that
533 ///                          has already been annotated.
534 ///
535 /// \returns  True if new weights were assigned to edges or blocks.
536 template <typename BT>
537 bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges(
538     FunctionT &F, bool UpdateBlockCount) {
539   bool Changed = false;
540   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
541   for (const auto &BI : F) {
542     const BasicBlockT *BB = &BI;
543     const BasicBlockT *EC = EquivalenceClass[BB];
544 
545     // Visit all the predecessor and successor edges to determine
546     // which ones have a weight assigned already. Note that it doesn't
547     // matter that we only keep track of a single unknown edge. The
548     // only case we are interested in handling is when only a single
549     // edge is unknown (see setEdgeOrBlockWeight).
550     for (unsigned i = 0; i < 2; i++) {
551       uint64_t TotalWeight = 0;
552       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
553       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
554 
555       if (i == 0) {
556         // First, visit all predecessor edges.
557         NumTotalEdges = Predecessors[BB].size();
558         for (auto *Pred : Predecessors[BB]) {
559           Edge E = std::make_pair(Pred, BB);
560           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
561           if (E.first == E.second)
562             SelfReferentialEdge = E;
563         }
564         if (NumTotalEdges == 1) {
565           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
566         }
567       } else {
568         // On the second round, visit all successor edges.
569         NumTotalEdges = Successors[BB].size();
570         for (auto *Succ : Successors[BB]) {
571           Edge E = std::make_pair(BB, Succ);
572           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
573         }
574         if (NumTotalEdges == 1) {
575           SingleEdge = std::make_pair(BB, Successors[BB][0]);
576         }
577       }
578 
579       // After visiting all the edges, there are three cases that we
580       // can handle immediately:
581       //
582       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
583       //   In this case, we simply check that the sum of all the edges
584       //   is the same as BB's weight. If not, we change BB's weight
585       //   to match. Additionally, if BB had not been visited before,
586       //   we mark it visited.
587       //
588       // - Only one edge is unknown and BB has already been visited.
589       //   In this case, we can compute the weight of the edge by
590       //   subtracting the total block weight from all the known
591       //   edge weights. If the edges weight more than BB, then the
592       //   edge of the last remaining edge is set to zero.
593       //
594       // - There exists a self-referential edge and the weight of BB is
595       //   known. In this case, this edge can be based on BB's weight.
596       //   We add up all the other known edges and set the weight on
597       //   the self-referential edge as we did in the previous case.
598       //
599       // In any other case, we must continue iterating. Eventually,
600       // all edges will get a weight, or iteration will stop when
601       // it reaches SampleProfileMaxPropagateIterations.
602       if (NumUnknownEdges <= 1) {
603         uint64_t &BBWeight = BlockWeights[EC];
604         if (NumUnknownEdges == 0) {
605           if (!VisitedBlocks.count(EC)) {
606             // If we already know the weight of all edges, the weight of the
607             // basic block can be computed. It should be no larger than the sum
608             // of all edge weights.
609             if (TotalWeight > BBWeight) {
610               BBWeight = TotalWeight;
611               Changed = true;
612               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
613                                 << " known. Set weight for block: ";
614                          printBlockWeight(dbgs(), BB););
615             }
616           } else if (NumTotalEdges == 1 &&
617                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
618             // If there is only one edge for the visited basic block, use the
619             // block weight to adjust edge weight if edge weight is smaller.
620             EdgeWeights[SingleEdge] = BlockWeights[EC];
621             Changed = true;
622           }
623         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
624           // If there is a single unknown edge and the block has been
625           // visited, then we can compute E's weight.
626           if (BBWeight >= TotalWeight)
627             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
628           else
629             EdgeWeights[UnknownEdge] = 0;
630           const BasicBlockT *OtherEC;
631           if (i == 0)
632             OtherEC = EquivalenceClass[UnknownEdge.first];
633           else
634             OtherEC = EquivalenceClass[UnknownEdge.second];
635           // Edge weights should never exceed the BB weights it connects.
636           if (VisitedBlocks.count(OtherEC) &&
637               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
638             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
639           VisitedEdges.insert(UnknownEdge);
640           Changed = true;
641           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
642                      printEdgeWeight(dbgs(), UnknownEdge));
643         }
644       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
645         // If a block Weights 0, all its in/out edges should weight 0.
646         if (i == 0) {
647           for (auto *Pred : Predecessors[BB]) {
648             Edge E = std::make_pair(Pred, BB);
649             EdgeWeights[E] = 0;
650             VisitedEdges.insert(E);
651           }
652         } else {
653           for (auto *Succ : Successors[BB]) {
654             Edge E = std::make_pair(BB, Succ);
655             EdgeWeights[E] = 0;
656             VisitedEdges.insert(E);
657           }
658         }
659       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
660         uint64_t &BBWeight = BlockWeights[BB];
661         // We have a self-referential edge and the weight of BB is known.
662         if (BBWeight >= TotalWeight)
663           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
664         else
665           EdgeWeights[SelfReferentialEdge] = 0;
666         VisitedEdges.insert(SelfReferentialEdge);
667         Changed = true;
668         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
669                    printEdgeWeight(dbgs(), SelfReferentialEdge));
670       }
671       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
672         BlockWeights[EC] = TotalWeight;
673         VisitedBlocks.insert(EC);
674         Changed = true;
675       }
676     }
677   }
678 
679   return Changed;
680 }
681 
682 /// Build in/out edge lists for each basic block in the CFG.
683 ///
684 /// We are interested in unique edges. If a block B1 has multiple
685 /// edges to another block B2, we only add a single B1->B2 edge.
686 template <typename BT>
687 void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) {
688   for (auto &BI : F) {
689     BasicBlockT *B1 = &BI;
690 
691     // Add predecessors for B1.
692     SmallPtrSet<BasicBlockT *, 16> Visited;
693     if (!Predecessors[B1].empty())
694       llvm_unreachable("Found a stale predecessors list in a basic block.");
695     for (BasicBlockT *B2 : predecessors(B1))
696       if (Visited.insert(B2).second)
697         Predecessors[B1].push_back(B2);
698 
699     // Add successors for B1.
700     Visited.clear();
701     if (!Successors[B1].empty())
702       llvm_unreachable("Found a stale successors list in a basic block.");
703     for (BasicBlockT *B2 : successors(B1))
704       if (Visited.insert(B2).second)
705         Successors[B1].push_back(B2);
706   }
707 }
708 
709 /// Propagate weights into edges
710 ///
711 /// The following rules are applied to every block BB in the CFG:
712 ///
713 /// - If BB has a single predecessor/successor, then the weight
714 ///   of that edge is the weight of the block.
715 ///
716 /// - If all incoming or outgoing edges are known except one, and the
717 ///   weight of the block is already known, the weight of the unknown
718 ///   edge will be the weight of the block minus the sum of all the known
719 ///   edges. If the sum of all the known edges is larger than BB's weight,
720 ///   we set the unknown edge weight to zero.
721 ///
722 /// - If there is a self-referential edge, and the weight of the block is
723 ///   known, the weight for that edge is set to the weight of the block
724 ///   minus the weight of the other incoming edges to that block (if
725 ///   known).
726 template <typename BT>
727 void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) {
728   bool Changed = true;
729   unsigned I = 0;
730 
731   // If BB weight is larger than its corresponding loop's header BB weight,
732   // use the BB weight to replace the loop header BB weight.
733   for (auto &BI : F) {
734     BasicBlockT *BB = &BI;
735     LoopT *L = LI->getLoopFor(BB);
736     if (!L) {
737       continue;
738     }
739     BasicBlockT *Header = L->getHeader();
740     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
741       BlockWeights[Header] = BlockWeights[BB];
742     }
743   }
744 
745   // Before propagation starts, build, for each block, a list of
746   // unique predecessors and successors. This is necessary to handle
747   // identical edges in multiway branches. Since we visit all blocks and all
748   // edges of the CFG, it is cleaner to build these lists once at the start
749   // of the pass.
750   buildEdges(F);
751 
752   // Propagate until we converge or we go past the iteration limit.
753   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
754     Changed = propagateThroughEdges(F, false);
755   }
756 
757   // The first propagation propagates BB counts from annotated BBs to unknown
758   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
759   // to propagate edge weights.
760   VisitedEdges.clear();
761   Changed = true;
762   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
763     Changed = propagateThroughEdges(F, false);
764   }
765 
766   // The 3rd propagation pass allows adjust annotated BB weights that are
767   // obviously wrong.
768   Changed = true;
769   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
770     Changed = propagateThroughEdges(F, true);
771   }
772 }
773 
774 /// Generate branch weight metadata for all branches in \p F.
775 ///
776 /// Branch weights are computed out of instruction samples using a
777 /// propagation heuristic. Propagation proceeds in 3 phases:
778 ///
779 /// 1- Assignment of block weights. All the basic blocks in the function
780 ///    are initial assigned the same weight as their most frequently
781 ///    executed instruction.
782 ///
783 /// 2- Creation of equivalence classes. Since samples may be missing from
784 ///    blocks, we can fill in the gaps by setting the weights of all the
785 ///    blocks in the same equivalence class to the same weight. To compute
786 ///    the concept of equivalence, we use dominance and loop information.
787 ///    Two blocks B1 and B2 are in the same equivalence class if B1
788 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
789 ///
790 /// 3- Propagation of block weights into edges. This uses a simple
791 ///    propagation heuristic. The following rules are applied to every
792 ///    block BB in the CFG:
793 ///
794 ///    - If BB has a single predecessor/successor, then the weight
795 ///      of that edge is the weight of the block.
796 ///
797 ///    - If all the edges are known except one, and the weight of the
798 ///      block is already known, the weight of the unknown edge will
799 ///      be the weight of the block minus the sum of all the known
800 ///      edges. If the sum of all the known edges is larger than BB's weight,
801 ///      we set the unknown edge weight to zero.
802 ///
803 ///    - If there is a self-referential edge, and the weight of the block is
804 ///      known, the weight for that edge is set to the weight of the block
805 ///      minus the weight of the other incoming edges to that block (if
806 ///      known).
807 ///
808 /// Since this propagation is not guaranteed to finalize for every CFG, we
809 /// only allow it to proceed for a limited number of iterations (controlled
810 /// by -sample-profile-max-propagate-iterations).
811 ///
812 /// FIXME: Try to replace this propagation heuristic with a scheme
813 /// that is guaranteed to finalize. A work-list approach similar to
814 /// the standard value propagation algorithm used by SSA-CCP might
815 /// work here.
816 ///
817 /// \param F The function to query.
818 ///
819 /// \returns true if \p F was modified. Returns false, otherwise.
820 template <typename BT>
821 bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights(
822     FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
823   bool Changed = (InlinedGUIDs.size() != 0);
824 
825   // Compute basic block weights.
826   Changed |= computeBlockWeights(F);
827 
828   if (Changed) {
829     // Add an entry count to the function using the samples gathered at the
830     // function entry.
831     // Sets the GUIDs that are inlined in the profiled binary. This is used
832     // for ThinLink to make correct liveness analysis, and also make the IR
833     // match the profiled binary before annotation.
834     getFunction(F).setEntryCount(
835         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
836         &InlinedGUIDs);
837 
838     // Compute dominance and loop info needed for propagation.
839     computeDominanceAndLoopInfo(F);
840 
841     // Find equivalence classes.
842     findEquivalenceClasses(F);
843 
844     // Propagate weights to all edges.
845     propagateWeights(F);
846   }
847 
848   return Changed;
849 }
850 
851 template <typename BT>
852 void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) {
853   // If coverage checking was requested, compute it now.
854   const Function &Func = getFunction(F);
855   if (SampleProfileRecordCoverage) {
856     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
857     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
858     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
859     if (Coverage < SampleProfileRecordCoverage) {
860       Func.getContext().diagnose(DiagnosticInfoSampleProfile(
861           Func.getSubprogram()->getFilename(), getFunctionLoc(F),
862           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
863               Twine(Coverage) + "%) were applied",
864           DS_Warning));
865     }
866   }
867 
868   if (SampleProfileSampleCoverage) {
869     uint64_t Used = CoverageTracker.getTotalUsedSamples();
870     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
871     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
872     if (Coverage < SampleProfileSampleCoverage) {
873       Func.getContext().diagnose(DiagnosticInfoSampleProfile(
874           Func.getSubprogram()->getFilename(), getFunctionLoc(F),
875           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
876               Twine(Coverage) + "%) were applied",
877           DS_Warning));
878     }
879   }
880 }
881 
882 /// Get the line number for the function header.
883 ///
884 /// This looks up function \p F in the current compilation unit and
885 /// retrieves the line number where the function is defined. This is
886 /// line 0 for all the samples read from the profile file. Every line
887 /// number is relative to this line.
888 ///
889 /// \param F  Function object to query.
890 ///
891 /// \returns the line number where \p F is defined. If it returns 0,
892 ///          it means that there is no debug information available for \p F.
893 template <typename BT>
894 unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) {
895   const Function &Func = getFunction(F);
896   if (DISubprogram *S = Func.getSubprogram())
897     return S->getLine();
898 
899   if (NoWarnSampleUnused)
900     return 0;
901 
902   // If the start of \p F is missing, emit a diagnostic to inform the user
903   // about the missed opportunity.
904   Func.getContext().diagnose(DiagnosticInfoSampleProfile(
905       "No debug information found in function " + Func.getName() +
906           ": Function profile not used",
907       DS_Warning));
908   return 0;
909 }
910 
911 template <typename BT>
912 void SampleProfileLoaderBaseImpl<BT>::computeDominanceAndLoopInfo(
913     FunctionT &F) {
914   DT.reset(new DominatorTreeT);
915   DT->recalculate(F);
916 
917   PDT.reset(new PostDominatorTree(F));
918 
919   LI.reset(new LoopInfoT);
920   LI->analyze(*DT);
921 }
922 
923 #undef DEBUG_TYPE
924 
925 } // namespace llvm
926 #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
927