1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
55   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
56   CallocLike         = 1<<3, // allocates + bzero
57   ReallocLike        = 1<<4, // reallocates
58   StrDupLike         = 1<<5,
59   MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike,
60   AllocLike          = MallocOrCallocLike | StrDupLike,
61   AnyAlloc           = AllocLike | ReallocLike
62 };
63 
64 struct AllocFnsTy {
65   AllocType AllocTy;
66   unsigned NumParams;
67   // First and Second size parameters (or -1 if unused)
68   int FstParam, SndParam;
69 };
70 
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
74   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
75   {LibFunc_vec_malloc,          {MallocLike,  1, 0,  -1}},
76   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
77   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
78   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
79   {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t)
80   {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
81                                 {MallocLike,  3, 0,  -1}},
82   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
83   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
84   {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t)
85   {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
86                                 {MallocLike,  3, 0,  -1}},
87   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
88   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
89   {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t)
90   {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
91                                 {MallocLike,  3, 0,  -1}},
92   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
93   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
94   {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t)
95   {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
96                                  {MallocLike,  3, 0,  -1}},
97   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
98   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
99   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
100   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
101   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
102   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
103   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
104   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
105   {LibFunc_aligned_alloc,       {AlignedAllocLike, 2, 1,  -1}},
106   {LibFunc_memalign,            {AlignedAllocLike, 2, 1,  -1}},
107   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
108   {LibFunc_vec_calloc,          {CallocLike,  2, 0,   1}},
109   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
110   {LibFunc_vec_realloc,         {ReallocLike, 2, 1,  -1}},
111   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
112   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
113   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}},
114   {LibFunc___kmpc_alloc_shared, {MallocLike,  1, 0,  -1}},
115 
116   {LibFunc_rust_alloc,         {MallocLike,  2, 0,  -1}},
117   {LibFunc_rust_realloc,       {ReallocLike,  4, 3,  -1}},
118   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
119 };
120 
getCalledFunction(const Value * V,bool LookThroughBitCast,bool & IsNoBuiltin)121 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
122                                          bool &IsNoBuiltin) {
123   // Don't care about intrinsics in this case.
124   if (isa<IntrinsicInst>(V))
125     return nullptr;
126 
127   if (LookThroughBitCast)
128     V = V->stripPointerCasts();
129 
130   const auto *CB = dyn_cast<CallBase>(V);
131   if (!CB)
132     return nullptr;
133 
134   IsNoBuiltin = CB->isNoBuiltin();
135 
136   if (const Function *Callee = CB->getCalledFunction())
137     return Callee;
138   return nullptr;
139 }
140 
141 /// Returns the allocation data for the given value if it's either a call to a
142 /// known allocation function, or a call to a function with the allocsize
143 /// attribute.
144 static Optional<AllocFnsTy>
getAllocationDataForFunction(const Function * Callee,AllocType AllocTy,const TargetLibraryInfo * TLI)145 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
146                              const TargetLibraryInfo *TLI) {
147   // Make sure that the function is available.
148   LibFunc TLIFn;
149   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
150     return None;
151 
152   const auto *Iter = find_if(
153       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
154         return P.first == TLIFn;
155       });
156 
157   if (Iter == std::end(AllocationFnData))
158     return None;
159 
160   const AllocFnsTy *FnData = &Iter->second;
161   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
162     return None;
163 
164   // Check function prototype.
165   int FstParam = FnData->FstParam;
166   int SndParam = FnData->SndParam;
167   FunctionType *FTy = Callee->getFunctionType();
168 
169   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
170       FTy->getNumParams() == FnData->NumParams &&
171       (FstParam < 0 ||
172        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
173         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
174       (SndParam < 0 ||
175        FTy->getParamType(SndParam)->isIntegerTy(32) ||
176        FTy->getParamType(SndParam)->isIntegerTy(64)))
177     return *FnData;
178   return None;
179 }
180 
getAllocationData(const Value * V,AllocType AllocTy,const TargetLibraryInfo * TLI,bool LookThroughBitCast=false)181 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
182                                               const TargetLibraryInfo *TLI,
183                                               bool LookThroughBitCast = false) {
184   bool IsNoBuiltinCall;
185   if (const Function *Callee =
186           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
187     if (!IsNoBuiltinCall)
188       return getAllocationDataForFunction(Callee, AllocTy, TLI);
189   return None;
190 }
191 
192 static Optional<AllocFnsTy>
getAllocationData(const Value * V,AllocType AllocTy,function_ref<const TargetLibraryInfo & (Function &)> GetTLI,bool LookThroughBitCast=false)193 getAllocationData(const Value *V, AllocType AllocTy,
194                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
195                   bool LookThroughBitCast = false) {
196   bool IsNoBuiltinCall;
197   if (const Function *Callee =
198           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
199     if (!IsNoBuiltinCall)
200       return getAllocationDataForFunction(
201           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
202   return None;
203 }
204 
getAllocationSize(const Value * V,const TargetLibraryInfo * TLI)205 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
206                                               const TargetLibraryInfo *TLI) {
207   bool IsNoBuiltinCall;
208   const Function *Callee =
209       getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
210   if (!Callee)
211     return None;
212 
213   // Prefer to use existing information over allocsize. This will give us an
214   // accurate AllocTy.
215   if (!IsNoBuiltinCall)
216     if (Optional<AllocFnsTy> Data =
217             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
218       return Data;
219 
220   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
221   if (Attr == Attribute())
222     return None;
223 
224   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
225 
226   AllocFnsTy Result;
227   // Because allocsize only tells us how many bytes are allocated, we're not
228   // really allowed to assume anything, so we use MallocLike.
229   Result.AllocTy = MallocLike;
230   Result.NumParams = Callee->getNumOperands();
231   Result.FstParam = Args.first;
232   Result.SndParam = Args.second.getValueOr(-1);
233   return Result;
234 }
235 
hasNoAliasAttr(const Value * V,bool LookThroughBitCast)236 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
237   const auto *CB =
238       dyn_cast<CallBase>(LookThroughBitCast ? V->stripPointerCasts() : V);
239   return CB && CB->hasRetAttr(Attribute::NoAlias);
240 }
241 
242 /// Tests if a value is a call or invoke to a library function that
243 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
244 /// like).
isAllocationFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)245 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
246                           bool LookThroughBitCast) {
247   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
248 }
isAllocationFn(const Value * V,function_ref<const TargetLibraryInfo & (Function &)> GetTLI,bool LookThroughBitCast)249 bool llvm::isAllocationFn(
250     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
251     bool LookThroughBitCast) {
252   return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue();
253 }
254 
255 /// Tests if a value is a call or invoke to a function that returns a
256 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
isNoAliasFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)257 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
258                        bool LookThroughBitCast) {
259   // it's safe to consider realloc as noalias since accessing the original
260   // pointer is undefined behavior
261   return isAllocationFn(V, TLI, LookThroughBitCast) ||
262          hasNoAliasAttr(V, LookThroughBitCast);
263 }
264 
265 /// Tests if a value is a call or invoke to a library function that
266 /// allocates uninitialized memory (such as malloc).
isMallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)267 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
268                           bool LookThroughBitCast) {
269   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
270 }
isMallocLikeFn(const Value * V,function_ref<const TargetLibraryInfo & (Function &)> GetTLI,bool LookThroughBitCast)271 bool llvm::isMallocLikeFn(
272     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
273     bool LookThroughBitCast) {
274   return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast)
275       .hasValue();
276 }
277 
278 /// Tests if a value is a call or invoke to a library function that
279 /// allocates uninitialized memory with alignment (such as aligned_alloc).
isAlignedAllocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)280 bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
281                                 bool LookThroughBitCast) {
282   return getAllocationData(V, AlignedAllocLike, TLI, LookThroughBitCast)
283       .hasValue();
284 }
isAlignedAllocLikeFn(const Value * V,function_ref<const TargetLibraryInfo & (Function &)> GetTLI,bool LookThroughBitCast)285 bool llvm::isAlignedAllocLikeFn(
286     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
287     bool LookThroughBitCast) {
288   return getAllocationData(V, AlignedAllocLike, GetTLI, LookThroughBitCast)
289       .hasValue();
290 }
291 
292 /// Tests if a value is a call or invoke to a library function that
293 /// allocates zero-filled memory (such as calloc).
isCallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)294 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
295                           bool LookThroughBitCast) {
296   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
297 }
298 
299 /// Tests if a value is a call or invoke to a library function that
300 /// allocates memory similar to malloc or calloc.
isMallocOrCallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)301 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
302                                   bool LookThroughBitCast) {
303   return getAllocationData(V, MallocOrCallocLike, TLI,
304                            LookThroughBitCast).hasValue();
305 }
306 
307 /// Tests if a value is a call or invoke to a library function that
308 /// allocates memory (either malloc, calloc, or strdup like).
isAllocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)309 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
310                          bool LookThroughBitCast) {
311   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
312 }
313 
314 /// Tests if a value is a call or invoke to a library function that
315 /// reallocates memory (e.g., realloc).
isReallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)316 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
317                      bool LookThroughBitCast) {
318   return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue();
319 }
320 
321 /// Tests if a functions is a call or invoke to a library function that
322 /// reallocates memory (e.g., realloc).
isReallocLikeFn(const Function * F,const TargetLibraryInfo * TLI)323 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
324   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
325 }
326 
327 /// Tests if a value is a call or invoke to a library function that
328 /// allocates memory and throws if an allocation failed (e.g., new).
isOpNewLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)329 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
330                      bool LookThroughBitCast) {
331   return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue();
332 }
333 
334 /// Tests if a value is a call or invoke to a library function that
335 /// allocates memory (strdup, strndup).
isStrdupLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)336 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI,
337                           bool LookThroughBitCast) {
338   return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue();
339 }
340 
341 /// extractMallocCall - Returns the corresponding CallInst if the instruction
342 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
343 /// ignore InvokeInst here.
extractMallocCall(const Value * I,function_ref<const TargetLibraryInfo & (Function &)> GetTLI)344 const CallInst *llvm::extractMallocCall(
345     const Value *I,
346     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
347   return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr;
348 }
349 
computeArraySize(const CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt=false)350 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
351                                const TargetLibraryInfo *TLI,
352                                bool LookThroughSExt = false) {
353   if (!CI)
354     return nullptr;
355 
356   // The size of the malloc's result type must be known to determine array size.
357   Type *T = getMallocAllocatedType(CI, TLI);
358   if (!T || !T->isSized())
359     return nullptr;
360 
361   unsigned ElementSize = DL.getTypeAllocSize(T);
362   if (StructType *ST = dyn_cast<StructType>(T))
363     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
364 
365   // If malloc call's arg can be determined to be a multiple of ElementSize,
366   // return the multiple.  Otherwise, return NULL.
367   Value *MallocArg = CI->getArgOperand(0);
368   Value *Multiple = nullptr;
369   if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
370     return Multiple;
371 
372   return nullptr;
373 }
374 
375 /// getMallocType - Returns the PointerType resulting from the malloc call.
376 /// The PointerType depends on the number of bitcast uses of the malloc call:
377 ///   0: PointerType is the calls' return type.
378 ///   1: PointerType is the bitcast's result type.
379 ///  >1: Unique PointerType cannot be determined, return NULL.
getMallocType(const CallInst * CI,const TargetLibraryInfo * TLI)380 PointerType *llvm::getMallocType(const CallInst *CI,
381                                  const TargetLibraryInfo *TLI) {
382   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
383 
384   PointerType *MallocType = nullptr;
385   unsigned NumOfBitCastUses = 0;
386 
387   // Determine if CallInst has a bitcast use.
388   for (const User *U : CI->users())
389     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
390       MallocType = cast<PointerType>(BCI->getDestTy());
391       NumOfBitCastUses++;
392     }
393 
394   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
395   if (NumOfBitCastUses == 1)
396     return MallocType;
397 
398   // Malloc call was not bitcast, so type is the malloc function's return type.
399   if (NumOfBitCastUses == 0)
400     return cast<PointerType>(CI->getType());
401 
402   // Type could not be determined.
403   return nullptr;
404 }
405 
406 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
407 /// The Type depends on the number of bitcast uses of the malloc call:
408 ///   0: PointerType is the malloc calls' return type.
409 ///   1: PointerType is the bitcast's result type.
410 ///  >1: Unique PointerType cannot be determined, return NULL.
getMallocAllocatedType(const CallInst * CI,const TargetLibraryInfo * TLI)411 Type *llvm::getMallocAllocatedType(const CallInst *CI,
412                                    const TargetLibraryInfo *TLI) {
413   PointerType *PT = getMallocType(CI, TLI);
414   return PT ? PT->getElementType() : nullptr;
415 }
416 
417 /// getMallocArraySize - Returns the array size of a malloc call.  If the
418 /// argument passed to malloc is a multiple of the size of the malloced type,
419 /// then return that multiple.  For non-array mallocs, the multiple is
420 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
421 /// determined.
getMallocArraySize(CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt)422 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
423                                 const TargetLibraryInfo *TLI,
424                                 bool LookThroughSExt) {
425   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
426   return computeArraySize(CI, DL, TLI, LookThroughSExt);
427 }
428 
429 /// extractCallocCall - Returns the corresponding CallInst if the instruction
430 /// is a calloc call.
extractCallocCall(const Value * I,const TargetLibraryInfo * TLI)431 const CallInst *llvm::extractCallocCall(const Value *I,
432                                         const TargetLibraryInfo *TLI) {
433   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
434 }
435 
436 /// isLibFreeFunction - Returns true if the function is a builtin free()
isLibFreeFunction(const Function * F,const LibFunc TLIFn)437 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
438   unsigned ExpectedNumParams;
439   if (TLIFn == LibFunc_free ||
440       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
441       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
442       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
443       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
444       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
445       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
446     ExpectedNumParams = 1;
447   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
448            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
449            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
450            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
451            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
452            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
453            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
454            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
455            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
456            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
457            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
458            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
459            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
460            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
461            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
462            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow || // delete[](void*, nothrow)
463            TLIFn == LibFunc___kmpc_free_shared) // OpenMP Offloading RTL free
464     ExpectedNumParams = 2;
465   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
466            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
467            TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
468            TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
469            TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
470            TLIFn == LibFunc_ZdaPvmSt11align_val_t || // delete[](void*, unsigned long, align_val_t)
471            TLIFn == LibFunc_rust_dealloc)
472     ExpectedNumParams = 3;
473   else
474     return false;
475 
476   // Check free prototype.
477   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
478   // attribute will exist.
479   FunctionType *FTy = F->getFunctionType();
480   if (!FTy->getReturnType()->isVoidTy())
481     return false;
482   if (FTy->getNumParams() != ExpectedNumParams)
483     return false;
484   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
485     return false;
486 
487   return true;
488 }
489 
490 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
isFreeCall(const Value * I,const TargetLibraryInfo * TLI)491 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
492   bool IsNoBuiltinCall;
493   const Function *Callee =
494       getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
495   if (Callee == nullptr || IsNoBuiltinCall)
496     return nullptr;
497 
498   LibFunc TLIFn;
499   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
500     return nullptr;
501 
502   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
503 }
504 
505 
506 //===----------------------------------------------------------------------===//
507 //  Utility functions to compute size of objects.
508 //
getSizeWithOverflow(const SizeOffsetType & Data)509 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
510   if (Data.second.isNegative() || Data.first.ult(Data.second))
511     return APInt(Data.first.getBitWidth(), 0);
512   return Data.first - Data.second;
513 }
514 
515 /// Compute the size of the object pointed by Ptr. Returns true and the
516 /// object size in Size if successful, and false otherwise.
517 /// If RoundToAlign is true, then Size is rounded up to the alignment of
518 /// allocas, byval arguments, and global variables.
getObjectSize(const Value * Ptr,uint64_t & Size,const DataLayout & DL,const TargetLibraryInfo * TLI,ObjectSizeOpts Opts)519 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
520                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
521   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
522   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
523   if (!Visitor.bothKnown(Data))
524     return false;
525 
526   Size = getSizeWithOverflow(Data).getZExtValue();
527   return true;
528 }
529 
lowerObjectSizeCall(IntrinsicInst * ObjectSize,const DataLayout & DL,const TargetLibraryInfo * TLI,bool MustSucceed)530 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
531                                  const DataLayout &DL,
532                                  const TargetLibraryInfo *TLI,
533                                  bool MustSucceed) {
534   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
535          "ObjectSize must be a call to llvm.objectsize!");
536 
537   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
538   ObjectSizeOpts EvalOptions;
539   // Unless we have to fold this to something, try to be as accurate as
540   // possible.
541   if (MustSucceed)
542     EvalOptions.EvalMode =
543         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
544   else
545     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
546 
547   EvalOptions.NullIsUnknownSize =
548       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
549 
550   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
551   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
552   if (StaticOnly) {
553     // FIXME: Does it make sense to just return a failure value if the size won't
554     // fit in the output and `!MustSucceed`?
555     uint64_t Size;
556     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
557         isUIntN(ResultType->getBitWidth(), Size))
558       return ConstantInt::get(ResultType, Size);
559   } else {
560     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
561     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
562     SizeOffsetEvalType SizeOffsetPair =
563         Eval.compute(ObjectSize->getArgOperand(0));
564 
565     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
566       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
567       Builder.SetInsertPoint(ObjectSize);
568 
569       // If we've outside the end of the object, then we can always access
570       // exactly 0 bytes.
571       Value *ResultSize =
572           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
573       Value *UseZero =
574           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
575       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
576       Value *Ret = Builder.CreateSelect(
577           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
578 
579       // The non-constant size expression cannot evaluate to -1.
580       if (!isa<Constant>(SizeOffsetPair.first) ||
581           !isa<Constant>(SizeOffsetPair.second))
582         Builder.CreateAssumption(
583             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
584 
585       return Ret;
586     }
587   }
588 
589   if (!MustSucceed)
590     return nullptr;
591 
592   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
593 }
594 
595 STATISTIC(ObjectVisitorArgument,
596           "Number of arguments with unsolved size and offset");
597 STATISTIC(ObjectVisitorLoad,
598           "Number of load instructions with unsolved size and offset");
599 
align(APInt Size,uint64_t Alignment)600 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) {
601   if (Options.RoundToAlign && Alignment)
602     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment)));
603   return Size;
604 }
605 
ObjectSizeOffsetVisitor(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,ObjectSizeOpts Options)606 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
607                                                  const TargetLibraryInfo *TLI,
608                                                  LLVMContext &Context,
609                                                  ObjectSizeOpts Options)
610     : DL(DL), TLI(TLI), Options(Options) {
611   // Pointer size must be rechecked for each object visited since it could have
612   // a different address space.
613 }
614 
compute(Value * V)615 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
616   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
617   Zero = APInt::getNullValue(IntTyBits);
618 
619   V = V->stripPointerCasts();
620   if (Instruction *I = dyn_cast<Instruction>(V)) {
621     // If we have already seen this instruction, bail out. Cycles can happen in
622     // unreachable code after constant propagation.
623     if (!SeenInsts.insert(I).second)
624       return unknown();
625 
626     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
627       return visitGEPOperator(*GEP);
628     return visit(*I);
629   }
630   if (Argument *A = dyn_cast<Argument>(V))
631     return visitArgument(*A);
632   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
633     return visitConstantPointerNull(*P);
634   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
635     return visitGlobalAlias(*GA);
636   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
637     return visitGlobalVariable(*GV);
638   if (UndefValue *UV = dyn_cast<UndefValue>(V))
639     return visitUndefValue(*UV);
640   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
641     if (CE->getOpcode() == Instruction::IntToPtr)
642       return unknown(); // clueless
643     if (CE->getOpcode() == Instruction::GetElementPtr)
644       return visitGEPOperator(cast<GEPOperator>(*CE));
645   }
646 
647   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
648                     << *V << '\n');
649   return unknown();
650 }
651 
652 /// When we're compiling N-bit code, and the user uses parameters that are
653 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
654 /// trouble with APInt size issues. This function handles resizing + overflow
655 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
656 /// I's value.
CheckedZextOrTrunc(APInt & I)657 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
658   // More bits than we can handle. Checking the bit width isn't necessary, but
659   // it's faster than checking active bits, and should give `false` in the
660   // vast majority of cases.
661   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
662     return false;
663   if (I.getBitWidth() != IntTyBits)
664     I = I.zextOrTrunc(IntTyBits);
665   return true;
666 }
667 
visitAllocaInst(AllocaInst & I)668 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
669   if (!I.getAllocatedType()->isSized())
670     return unknown();
671 
672   if (isa<ScalableVectorType>(I.getAllocatedType()))
673     return unknown();
674 
675   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
676   if (!I.isArrayAllocation())
677     return std::make_pair(align(Size, I.getAlignment()), Zero);
678 
679   Value *ArraySize = I.getArraySize();
680   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
681     APInt NumElems = C->getValue();
682     if (!CheckedZextOrTrunc(NumElems))
683       return unknown();
684 
685     bool Overflow;
686     Size = Size.umul_ov(NumElems, Overflow);
687     return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
688                                                  Zero);
689   }
690   return unknown();
691 }
692 
visitArgument(Argument & A)693 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
694   Type *MemoryTy = A.getPointeeInMemoryValueType();
695   // No interprocedural analysis is done at the moment.
696   if (!MemoryTy|| !MemoryTy->isSized()) {
697     ++ObjectVisitorArgument;
698     return unknown();
699   }
700 
701   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
702   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
703 }
704 
visitCallBase(CallBase & CB)705 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
706   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
707   if (!FnData)
708     return unknown();
709 
710   // Handle strdup-like functions separately.
711   if (FnData->AllocTy == StrDupLike) {
712     APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0)));
713     if (!Size)
714       return unknown();
715 
716     // Strndup limits strlen.
717     if (FnData->FstParam > 0) {
718       ConstantInt *Arg =
719           dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
720       if (!Arg)
721         return unknown();
722 
723       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
724       if (Size.ugt(MaxSize))
725         Size = MaxSize + 1;
726     }
727     return std::make_pair(Size, Zero);
728   }
729 
730   ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
731   if (!Arg)
732     return unknown();
733 
734   APInt Size = Arg->getValue();
735   if (!CheckedZextOrTrunc(Size))
736     return unknown();
737 
738   // Size is determined by just 1 parameter.
739   if (FnData->SndParam < 0)
740     return std::make_pair(Size, Zero);
741 
742   Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam));
743   if (!Arg)
744     return unknown();
745 
746   APInt NumElems = Arg->getValue();
747   if (!CheckedZextOrTrunc(NumElems))
748     return unknown();
749 
750   bool Overflow;
751   Size = Size.umul_ov(NumElems, Overflow);
752   return Overflow ? unknown() : std::make_pair(Size, Zero);
753 
754   // TODO: handle more standard functions (+ wchar cousins):
755   // - strdup / strndup
756   // - strcpy / strncpy
757   // - strcat / strncat
758   // - memcpy / memmove
759   // - strcat / strncat
760   // - memset
761 }
762 
763 SizeOffsetType
visitConstantPointerNull(ConstantPointerNull & CPN)764 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
765   // If null is unknown, there's nothing we can do. Additionally, non-zero
766   // address spaces can make use of null, so we don't presume to know anything
767   // about that.
768   //
769   // TODO: How should this work with address space casts? We currently just drop
770   // them on the floor, but it's unclear what we should do when a NULL from
771   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
772   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
773     return unknown();
774   return std::make_pair(Zero, Zero);
775 }
776 
777 SizeOffsetType
visitExtractElementInst(ExtractElementInst &)778 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
779   return unknown();
780 }
781 
782 SizeOffsetType
visitExtractValueInst(ExtractValueInst &)783 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
784   // Easy cases were already folded by previous passes.
785   return unknown();
786 }
787 
visitGEPOperator(GEPOperator & GEP)788 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
789   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
790   APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
791   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
792     return unknown();
793 
794   return std::make_pair(PtrData.first, PtrData.second + Offset);
795 }
796 
visitGlobalAlias(GlobalAlias & GA)797 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
798   if (GA.isInterposable())
799     return unknown();
800   return compute(GA.getAliasee());
801 }
802 
visitGlobalVariable(GlobalVariable & GV)803 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
804   if (!GV.hasDefinitiveInitializer())
805     return unknown();
806 
807   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
808   return std::make_pair(align(Size, GV.getAlignment()), Zero);
809 }
810 
visitIntToPtrInst(IntToPtrInst &)811 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
812   // clueless
813   return unknown();
814 }
815 
visitLoadInst(LoadInst &)816 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
817   ++ObjectVisitorLoad;
818   return unknown();
819 }
820 
visitPHINode(PHINode &)821 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
822   // too complex to analyze statically.
823   return unknown();
824 }
825 
visitSelectInst(SelectInst & I)826 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
827   SizeOffsetType TrueSide  = compute(I.getTrueValue());
828   SizeOffsetType FalseSide = compute(I.getFalseValue());
829   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
830     if (TrueSide == FalseSide) {
831         return TrueSide;
832     }
833 
834     APInt TrueResult = getSizeWithOverflow(TrueSide);
835     APInt FalseResult = getSizeWithOverflow(FalseSide);
836 
837     if (TrueResult == FalseResult) {
838       return TrueSide;
839     }
840     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
841       if (TrueResult.slt(FalseResult))
842         return TrueSide;
843       return FalseSide;
844     }
845     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
846       if (TrueResult.sgt(FalseResult))
847         return TrueSide;
848       return FalseSide;
849     }
850   }
851   return unknown();
852 }
853 
visitUndefValue(UndefValue &)854 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
855   return std::make_pair(Zero, Zero);
856 }
857 
visitInstruction(Instruction & I)858 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
859   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
860                     << '\n');
861   return unknown();
862 }
863 
ObjectSizeOffsetEvaluator(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,ObjectSizeOpts EvalOpts)864 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
865     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
866     ObjectSizeOpts EvalOpts)
867     : DL(DL), TLI(TLI), Context(Context),
868       Builder(Context, TargetFolder(DL),
869               IRBuilderCallbackInserter(
870                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
871       EvalOpts(EvalOpts) {
872   // IntTy and Zero must be set for each compute() since the address space may
873   // be different for later objects.
874 }
875 
compute(Value * V)876 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
877   // XXX - Are vectors of pointers possible here?
878   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
879   Zero = ConstantInt::get(IntTy, 0);
880 
881   SizeOffsetEvalType Result = compute_(V);
882 
883   if (!bothKnown(Result)) {
884     // Erase everything that was computed in this iteration from the cache, so
885     // that no dangling references are left behind. We could be a bit smarter if
886     // we kept a dependency graph. It's probably not worth the complexity.
887     for (const Value *SeenVal : SeenVals) {
888       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
889       // non-computable results can be safely cached
890       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
891         CacheMap.erase(CacheIt);
892     }
893 
894     // Erase any instructions we inserted as part of the traversal.
895     for (Instruction *I : InsertedInstructions) {
896       I->replaceAllUsesWith(UndefValue::get(I->getType()));
897       I->eraseFromParent();
898     }
899   }
900 
901   SeenVals.clear();
902   InsertedInstructions.clear();
903   return Result;
904 }
905 
compute_(Value * V)906 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
907   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
908   SizeOffsetType Const = Visitor.compute(V);
909   if (Visitor.bothKnown(Const))
910     return std::make_pair(ConstantInt::get(Context, Const.first),
911                           ConstantInt::get(Context, Const.second));
912 
913   V = V->stripPointerCasts();
914 
915   // Check cache.
916   CacheMapTy::iterator CacheIt = CacheMap.find(V);
917   if (CacheIt != CacheMap.end())
918     return CacheIt->second;
919 
920   // Always generate code immediately before the instruction being
921   // processed, so that the generated code dominates the same BBs.
922   BuilderTy::InsertPointGuard Guard(Builder);
923   if (Instruction *I = dyn_cast<Instruction>(V))
924     Builder.SetInsertPoint(I);
925 
926   // Now compute the size and offset.
927   SizeOffsetEvalType Result;
928 
929   // Record the pointers that were handled in this run, so that they can be
930   // cleaned later if something fails. We also use this set to break cycles that
931   // can occur in dead code.
932   if (!SeenVals.insert(V).second) {
933     Result = unknown();
934   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
935     Result = visitGEPOperator(*GEP);
936   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
937     Result = visit(*I);
938   } else if (isa<Argument>(V) ||
939              (isa<ConstantExpr>(V) &&
940               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
941              isa<GlobalAlias>(V) ||
942              isa<GlobalVariable>(V)) {
943     // Ignore values where we cannot do more than ObjectSizeVisitor.
944     Result = unknown();
945   } else {
946     LLVM_DEBUG(
947         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
948                << '\n');
949     Result = unknown();
950   }
951 
952   // Don't reuse CacheIt since it may be invalid at this point.
953   CacheMap[V] = Result;
954   return Result;
955 }
956 
visitAllocaInst(AllocaInst & I)957 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
958   if (!I.getAllocatedType()->isSized())
959     return unknown();
960 
961   // must be a VLA
962   assert(I.isArrayAllocation());
963 
964   // If needed, adjust the alloca's operand size to match the pointer size.
965   // Subsequent math operations expect the types to match.
966   Value *ArraySize = Builder.CreateZExtOrTrunc(
967       I.getArraySize(), DL.getIntPtrType(I.getContext()));
968   assert(ArraySize->getType() == Zero->getType() &&
969          "Expected zero constant to have pointer type");
970 
971   Value *Size = ConstantInt::get(ArraySize->getType(),
972                                  DL.getTypeAllocSize(I.getAllocatedType()));
973   Size = Builder.CreateMul(Size, ArraySize);
974   return std::make_pair(Size, Zero);
975 }
976 
visitCallBase(CallBase & CB)977 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
978   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
979   if (!FnData)
980     return unknown();
981 
982   // Handle strdup-like functions separately.
983   if (FnData->AllocTy == StrDupLike) {
984     // TODO
985     return unknown();
986   }
987 
988   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
989   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
990   if (FnData->SndParam < 0)
991     return std::make_pair(FirstArg, Zero);
992 
993   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
994   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
995   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
996   return std::make_pair(Size, Zero);
997 
998   // TODO: handle more standard functions (+ wchar cousins):
999   // - strdup / strndup
1000   // - strcpy / strncpy
1001   // - strcat / strncat
1002   // - memcpy / memmove
1003   // - strcat / strncat
1004   // - memset
1005 }
1006 
1007 SizeOffsetEvalType
visitExtractElementInst(ExtractElementInst &)1008 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
1009   return unknown();
1010 }
1011 
1012 SizeOffsetEvalType
visitExtractValueInst(ExtractValueInst &)1013 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
1014   return unknown();
1015 }
1016 
1017 SizeOffsetEvalType
visitGEPOperator(GEPOperator & GEP)1018 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
1019   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
1020   if (!bothKnown(PtrData))
1021     return unknown();
1022 
1023   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
1024   Offset = Builder.CreateAdd(PtrData.second, Offset);
1025   return std::make_pair(PtrData.first, Offset);
1026 }
1027 
visitIntToPtrInst(IntToPtrInst &)1028 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
1029   // clueless
1030   return unknown();
1031 }
1032 
visitLoadInst(LoadInst &)1033 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
1034   return unknown();
1035 }
1036 
visitPHINode(PHINode & PHI)1037 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
1038   // Create 2 PHIs: one for size and another for offset.
1039   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1040   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1041 
1042   // Insert right away in the cache to handle recursive PHIs.
1043   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
1044 
1045   // Compute offset/size for each PHI incoming pointer.
1046   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1047     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
1048     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
1049 
1050     if (!bothKnown(EdgeData)) {
1051       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
1052       OffsetPHI->eraseFromParent();
1053       InsertedInstructions.erase(OffsetPHI);
1054       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
1055       SizePHI->eraseFromParent();
1056       InsertedInstructions.erase(SizePHI);
1057       return unknown();
1058     }
1059     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
1060     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
1061   }
1062 
1063   Value *Size = SizePHI, *Offset = OffsetPHI;
1064   if (Value *Tmp = SizePHI->hasConstantValue()) {
1065     Size = Tmp;
1066     SizePHI->replaceAllUsesWith(Size);
1067     SizePHI->eraseFromParent();
1068     InsertedInstructions.erase(SizePHI);
1069   }
1070   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1071     Offset = Tmp;
1072     OffsetPHI->replaceAllUsesWith(Offset);
1073     OffsetPHI->eraseFromParent();
1074     InsertedInstructions.erase(OffsetPHI);
1075   }
1076   return std::make_pair(Size, Offset);
1077 }
1078 
visitSelectInst(SelectInst & I)1079 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1080   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
1081   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
1082 
1083   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
1084     return unknown();
1085   if (TrueSide == FalseSide)
1086     return TrueSide;
1087 
1088   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
1089                                      FalseSide.first);
1090   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
1091                                        FalseSide.second);
1092   return std::make_pair(Size, Offset);
1093 }
1094 
visitInstruction(Instruction & I)1095 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1096   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1097                     << '\n');
1098   return unknown();
1099 }
1100