1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <climits>
28 #include <cmath>
29 #include <cstdlib>
30 #include <cstring>
31 using namespace llvm;
32
33 #define DEBUG_TYPE "apint"
34
35 /// A utility function for allocating memory, checking for allocation failures,
36 /// and ensuring the contents are zeroed.
getClearedMemory(unsigned numWords)37 inline static uint64_t* getClearedMemory(unsigned numWords) {
38 uint64_t *result = new uint64_t[numWords];
39 memset(result, 0, numWords * sizeof(uint64_t));
40 return result;
41 }
42
43 /// A utility function for allocating memory and checking for allocation
44 /// failure. The content is not zeroed.
getMemory(unsigned numWords)45 inline static uint64_t* getMemory(unsigned numWords) {
46 return new uint64_t[numWords];
47 }
48
49 /// A utility function that converts a character to a digit.
getDigit(char cdigit,uint8_t radix)50 inline static unsigned getDigit(char cdigit, uint8_t radix) {
51 unsigned r;
52
53 if (radix == 16 || radix == 36) {
54 r = cdigit - '0';
55 if (r <= 9)
56 return r;
57
58 r = cdigit - 'A';
59 if (r <= radix - 11U)
60 return r + 10;
61
62 r = cdigit - 'a';
63 if (r <= radix - 11U)
64 return r + 10;
65
66 radix = 10;
67 }
68
69 r = cdigit - '0';
70 if (r < radix)
71 return r;
72
73 return -1U;
74 }
75
76
initSlowCase(uint64_t val,bool isSigned)77 void APInt::initSlowCase(uint64_t val, bool isSigned) {
78 U.pVal = getClearedMemory(getNumWords());
79 U.pVal[0] = val;
80 if (isSigned && int64_t(val) < 0)
81 for (unsigned i = 1; i < getNumWords(); ++i)
82 U.pVal[i] = WORDTYPE_MAX;
83 clearUnusedBits();
84 }
85
initSlowCase(const APInt & that)86 void APInt::initSlowCase(const APInt& that) {
87 U.pVal = getMemory(getNumWords());
88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
89 }
90
initFromArray(ArrayRef<uint64_t> bigVal)91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92 assert(BitWidth && "Bitwidth too small");
93 assert(bigVal.data() && "Null pointer detected!");
94 if (isSingleWord())
95 U.VAL = bigVal[0];
96 else {
97 // Get memory, cleared to 0
98 U.pVal = getClearedMemory(getNumWords());
99 // Calculate the number of words to copy
100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
101 // Copy the words from bigVal to pVal
102 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
103 }
104 // Make sure unused high bits are cleared
105 clearUnusedBits();
106 }
107
APInt(unsigned numBits,ArrayRef<uint64_t> bigVal)108 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
109 : BitWidth(numBits) {
110 initFromArray(bigVal);
111 }
112
APInt(unsigned numBits,unsigned numWords,const uint64_t bigVal[])113 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
114 : BitWidth(numBits) {
115 initFromArray(makeArrayRef(bigVal, numWords));
116 }
117
APInt(unsigned numbits,StringRef Str,uint8_t radix)118 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
119 : BitWidth(numbits) {
120 assert(BitWidth && "Bitwidth too small");
121 fromString(numbits, Str, radix);
122 }
123
reallocate(unsigned NewBitWidth)124 void APInt::reallocate(unsigned NewBitWidth) {
125 // If the number of words is the same we can just change the width and stop.
126 if (getNumWords() == getNumWords(NewBitWidth)) {
127 BitWidth = NewBitWidth;
128 return;
129 }
130
131 // If we have an allocation, delete it.
132 if (!isSingleWord())
133 delete [] U.pVal;
134
135 // Update BitWidth.
136 BitWidth = NewBitWidth;
137
138 // If we are supposed to have an allocation, create it.
139 if (!isSingleWord())
140 U.pVal = getMemory(getNumWords());
141 }
142
AssignSlowCase(const APInt & RHS)143 void APInt::AssignSlowCase(const APInt& RHS) {
144 // Don't do anything for X = X
145 if (this == &RHS)
146 return;
147
148 // Adjust the bit width and handle allocations as necessary.
149 reallocate(RHS.getBitWidth());
150
151 // Copy the data.
152 if (isSingleWord())
153 U.VAL = RHS.U.VAL;
154 else
155 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
156 }
157
158 /// This method 'profiles' an APInt for use with FoldingSet.
Profile(FoldingSetNodeID & ID) const159 void APInt::Profile(FoldingSetNodeID& ID) const {
160 ID.AddInteger(BitWidth);
161
162 if (isSingleWord()) {
163 ID.AddInteger(U.VAL);
164 return;
165 }
166
167 unsigned NumWords = getNumWords();
168 for (unsigned i = 0; i < NumWords; ++i)
169 ID.AddInteger(U.pVal[i]);
170 }
171
172 /// Prefix increment operator. Increments the APInt by one.
operator ++()173 APInt& APInt::operator++() {
174 if (isSingleWord())
175 ++U.VAL;
176 else
177 tcIncrement(U.pVal, getNumWords());
178 return clearUnusedBits();
179 }
180
181 /// Prefix decrement operator. Decrements the APInt by one.
operator --()182 APInt& APInt::operator--() {
183 if (isSingleWord())
184 --U.VAL;
185 else
186 tcDecrement(U.pVal, getNumWords());
187 return clearUnusedBits();
188 }
189
190 /// Adds the RHS APInt to this APInt.
191 /// @returns this, after addition of RHS.
192 /// Addition assignment operator.
operator +=(const APInt & RHS)193 APInt& APInt::operator+=(const APInt& RHS) {
194 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
195 if (isSingleWord())
196 U.VAL += RHS.U.VAL;
197 else
198 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
199 return clearUnusedBits();
200 }
201
operator +=(uint64_t RHS)202 APInt& APInt::operator+=(uint64_t RHS) {
203 if (isSingleWord())
204 U.VAL += RHS;
205 else
206 tcAddPart(U.pVal, RHS, getNumWords());
207 return clearUnusedBits();
208 }
209
210 /// Subtracts the RHS APInt from this APInt
211 /// @returns this, after subtraction
212 /// Subtraction assignment operator.
operator -=(const APInt & RHS)213 APInt& APInt::operator-=(const APInt& RHS) {
214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215 if (isSingleWord())
216 U.VAL -= RHS.U.VAL;
217 else
218 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
219 return clearUnusedBits();
220 }
221
operator -=(uint64_t RHS)222 APInt& APInt::operator-=(uint64_t RHS) {
223 if (isSingleWord())
224 U.VAL -= RHS;
225 else
226 tcSubtractPart(U.pVal, RHS, getNumWords());
227 return clearUnusedBits();
228 }
229
operator *(const APInt & RHS) const230 APInt APInt::operator*(const APInt& RHS) const {
231 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
232 if (isSingleWord())
233 return APInt(BitWidth, U.VAL * RHS.U.VAL);
234
235 APInt Result(getMemory(getNumWords()), getBitWidth());
236
237 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
238
239 Result.clearUnusedBits();
240 return Result;
241 }
242
AndAssignSlowCase(const APInt & RHS)243 void APInt::AndAssignSlowCase(const APInt& RHS) {
244 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
245 }
246
OrAssignSlowCase(const APInt & RHS)247 void APInt::OrAssignSlowCase(const APInt& RHS) {
248 tcOr(U.pVal, RHS.U.pVal, getNumWords());
249 }
250
XorAssignSlowCase(const APInt & RHS)251 void APInt::XorAssignSlowCase(const APInt& RHS) {
252 tcXor(U.pVal, RHS.U.pVal, getNumWords());
253 }
254
operator *=(const APInt & RHS)255 APInt& APInt::operator*=(const APInt& RHS) {
256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
257 *this = *this * RHS;
258 return *this;
259 }
260
operator *=(uint64_t RHS)261 APInt& APInt::operator*=(uint64_t RHS) {
262 if (isSingleWord()) {
263 U.VAL *= RHS;
264 } else {
265 unsigned NumWords = getNumWords();
266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
267 }
268 return clearUnusedBits();
269 }
270
EqualSlowCase(const APInt & RHS) const271 bool APInt::EqualSlowCase(const APInt& RHS) const {
272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
273 }
274
compare(const APInt & RHS) const275 int APInt::compare(const APInt& RHS) const {
276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
277 if (isSingleWord())
278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
279
280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
281 }
282
compareSigned(const APInt & RHS) const283 int APInt::compareSigned(const APInt& RHS) const {
284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
285 if (isSingleWord()) {
286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
289 }
290
291 bool lhsNeg = isNegative();
292 bool rhsNeg = RHS.isNegative();
293
294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295 if (lhsNeg != rhsNeg)
296 return lhsNeg ? -1 : 1;
297
298 // Otherwise we can just use an unsigned comparison, because even negative
299 // numbers compare correctly this way if both have the same signed-ness.
300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
301 }
302
setBitsSlowCase(unsigned loBit,unsigned hiBit)303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304 unsigned loWord = whichWord(loBit);
305 unsigned hiWord = whichWord(hiBit);
306
307 // Create an initial mask for the low word with zeros below loBit.
308 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
309
310 // If hiBit is not aligned, we need a high mask.
311 unsigned hiShiftAmt = whichBit(hiBit);
312 if (hiShiftAmt != 0) {
313 // Create a high mask with zeros above hiBit.
314 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
315 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316 // set the bits in hiWord.
317 if (hiWord == loWord)
318 loMask &= hiMask;
319 else
320 U.pVal[hiWord] |= hiMask;
321 }
322 // Apply the mask to the low word.
323 U.pVal[loWord] |= loMask;
324
325 // Fill any words between loWord and hiWord with all ones.
326 for (unsigned word = loWord + 1; word < hiWord; ++word)
327 U.pVal[word] = WORDTYPE_MAX;
328 }
329
330 /// Toggle every bit to its opposite value.
flipAllBitsSlowCase()331 void APInt::flipAllBitsSlowCase() {
332 tcComplement(U.pVal, getNumWords());
333 clearUnusedBits();
334 }
335
336 /// Toggle a given bit to its opposite value whose position is given
337 /// as "bitPosition".
338 /// Toggles a given bit to its opposite value.
flipBit(unsigned bitPosition)339 void APInt::flipBit(unsigned bitPosition) {
340 assert(bitPosition < BitWidth && "Out of the bit-width range!");
341 setBitVal(bitPosition, !(*this)[bitPosition]);
342 }
343
insertBits(const APInt & subBits,unsigned bitPosition)344 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
345 unsigned subBitWidth = subBits.getBitWidth();
346 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
347 "Illegal bit insertion");
348
349 // Insertion is a direct copy.
350 if (subBitWidth == BitWidth) {
351 *this = subBits;
352 return;
353 }
354
355 // Single word result can be done as a direct bitmask.
356 if (isSingleWord()) {
357 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
358 U.VAL &= ~(mask << bitPosition);
359 U.VAL |= (subBits.U.VAL << bitPosition);
360 return;
361 }
362
363 unsigned loBit = whichBit(bitPosition);
364 unsigned loWord = whichWord(bitPosition);
365 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
366
367 // Insertion within a single word can be done as a direct bitmask.
368 if (loWord == hi1Word) {
369 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
370 U.pVal[loWord] &= ~(mask << loBit);
371 U.pVal[loWord] |= (subBits.U.VAL << loBit);
372 return;
373 }
374
375 // Insert on word boundaries.
376 if (loBit == 0) {
377 // Direct copy whole words.
378 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
379 memcpy(U.pVal + loWord, subBits.getRawData(),
380 numWholeSubWords * APINT_WORD_SIZE);
381
382 // Mask+insert remaining bits.
383 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
384 if (remainingBits != 0) {
385 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
386 U.pVal[hi1Word] &= ~mask;
387 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
388 }
389 return;
390 }
391
392 // General case - set/clear individual bits in dst based on src.
393 // TODO - there is scope for optimization here, but at the moment this code
394 // path is barely used so prefer readability over performance.
395 for (unsigned i = 0; i != subBitWidth; ++i)
396 setBitVal(bitPosition + i, subBits[i]);
397 }
398
insertBits(uint64_t subBits,unsigned bitPosition,unsigned numBits)399 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
400 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
401 subBits &= maskBits;
402 if (isSingleWord()) {
403 U.VAL &= ~(maskBits << bitPosition);
404 U.VAL |= subBits << bitPosition;
405 return;
406 }
407
408 unsigned loBit = whichBit(bitPosition);
409 unsigned loWord = whichWord(bitPosition);
410 unsigned hiWord = whichWord(bitPosition + numBits - 1);
411 if (loWord == hiWord) {
412 U.pVal[loWord] &= ~(maskBits << loBit);
413 U.pVal[loWord] |= subBits << loBit;
414 return;
415 }
416
417 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
418 unsigned wordBits = 8 * sizeof(WordType);
419 U.pVal[loWord] &= ~(maskBits << loBit);
420 U.pVal[loWord] |= subBits << loBit;
421
422 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
423 U.pVal[hiWord] |= subBits >> (wordBits - loBit);
424 }
425
extractBits(unsigned numBits,unsigned bitPosition) const426 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
427 assert(numBits > 0 && "Can't extract zero bits");
428 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
429 "Illegal bit extraction");
430
431 if (isSingleWord())
432 return APInt(numBits, U.VAL >> bitPosition);
433
434 unsigned loBit = whichBit(bitPosition);
435 unsigned loWord = whichWord(bitPosition);
436 unsigned hiWord = whichWord(bitPosition + numBits - 1);
437
438 // Single word result extracting bits from a single word source.
439 if (loWord == hiWord)
440 return APInt(numBits, U.pVal[loWord] >> loBit);
441
442 // Extracting bits that start on a source word boundary can be done
443 // as a fast memory copy.
444 if (loBit == 0)
445 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
446
447 // General case - shift + copy source words directly into place.
448 APInt Result(numBits, 0);
449 unsigned NumSrcWords = getNumWords();
450 unsigned NumDstWords = Result.getNumWords();
451
452 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
453 for (unsigned word = 0; word < NumDstWords; ++word) {
454 uint64_t w0 = U.pVal[loWord + word];
455 uint64_t w1 =
456 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
457 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
458 }
459
460 return Result.clearUnusedBits();
461 }
462
extractBitsAsZExtValue(unsigned numBits,unsigned bitPosition) const463 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
464 unsigned bitPosition) const {
465 assert(numBits > 0 && "Can't extract zero bits");
466 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
467 "Illegal bit extraction");
468 assert(numBits <= 64 && "Illegal bit extraction");
469
470 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
471 if (isSingleWord())
472 return (U.VAL >> bitPosition) & maskBits;
473
474 unsigned loBit = whichBit(bitPosition);
475 unsigned loWord = whichWord(bitPosition);
476 unsigned hiWord = whichWord(bitPosition + numBits - 1);
477 if (loWord == hiWord)
478 return (U.pVal[loWord] >> loBit) & maskBits;
479
480 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
481 unsigned wordBits = 8 * sizeof(WordType);
482 uint64_t retBits = U.pVal[loWord] >> loBit;
483 retBits |= U.pVal[hiWord] << (wordBits - loBit);
484 retBits &= maskBits;
485 return retBits;
486 }
487
getBitsNeeded(StringRef str,uint8_t radix)488 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
489 assert(!str.empty() && "Invalid string length");
490 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
491 radix == 36) &&
492 "Radix should be 2, 8, 10, 16, or 36!");
493
494 size_t slen = str.size();
495
496 // Each computation below needs to know if it's negative.
497 StringRef::iterator p = str.begin();
498 unsigned isNegative = *p == '-';
499 if (*p == '-' || *p == '+') {
500 p++;
501 slen--;
502 assert(slen && "String is only a sign, needs a value.");
503 }
504
505 // For radixes of power-of-two values, the bits required is accurately and
506 // easily computed
507 if (radix == 2)
508 return slen + isNegative;
509 if (radix == 8)
510 return slen * 3 + isNegative;
511 if (radix == 16)
512 return slen * 4 + isNegative;
513
514 // FIXME: base 36
515
516 // This is grossly inefficient but accurate. We could probably do something
517 // with a computation of roughly slen*64/20 and then adjust by the value of
518 // the first few digits. But, I'm not sure how accurate that could be.
519
520 // Compute a sufficient number of bits that is always large enough but might
521 // be too large. This avoids the assertion in the constructor. This
522 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
523 // bits in that case.
524 unsigned sufficient
525 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
526 : (slen == 1 ? 7 : slen * 16/3);
527
528 // Convert to the actual binary value.
529 APInt tmp(sufficient, StringRef(p, slen), radix);
530
531 // Compute how many bits are required. If the log is infinite, assume we need
532 // just bit. If the log is exact and value is negative, then the value is
533 // MinSignedValue with (log + 1) bits.
534 unsigned log = tmp.logBase2();
535 if (log == (unsigned)-1) {
536 return isNegative + 1;
537 } else if (isNegative && tmp.isPowerOf2()) {
538 return isNegative + log;
539 } else {
540 return isNegative + log + 1;
541 }
542 }
543
hash_value(const APInt & Arg)544 hash_code llvm::hash_value(const APInt &Arg) {
545 if (Arg.isSingleWord())
546 return hash_combine(Arg.BitWidth, Arg.U.VAL);
547
548 return hash_combine(
549 Arg.BitWidth,
550 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
551 }
552
getHashValue(const APInt & Key)553 unsigned DenseMapInfo<APInt>::getHashValue(const APInt &Key) {
554 return static_cast<unsigned>(hash_value(Key));
555 }
556
isSplat(unsigned SplatSizeInBits) const557 bool APInt::isSplat(unsigned SplatSizeInBits) const {
558 assert(getBitWidth() % SplatSizeInBits == 0 &&
559 "SplatSizeInBits must divide width!");
560 // We can check that all parts of an integer are equal by making use of a
561 // little trick: rotate and check if it's still the same value.
562 return *this == rotl(SplatSizeInBits);
563 }
564
565 /// This function returns the high "numBits" bits of this APInt.
getHiBits(unsigned numBits) const566 APInt APInt::getHiBits(unsigned numBits) const {
567 return this->lshr(BitWidth - numBits);
568 }
569
570 /// This function returns the low "numBits" bits of this APInt.
getLoBits(unsigned numBits) const571 APInt APInt::getLoBits(unsigned numBits) const {
572 APInt Result(getLowBitsSet(BitWidth, numBits));
573 Result &= *this;
574 return Result;
575 }
576
577 /// Return a value containing V broadcasted over NewLen bits.
getSplat(unsigned NewLen,const APInt & V)578 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
579 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
580
581 APInt Val = V.zextOrSelf(NewLen);
582 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
583 Val |= Val << I;
584
585 return Val;
586 }
587
countLeadingZerosSlowCase() const588 unsigned APInt::countLeadingZerosSlowCase() const {
589 unsigned Count = 0;
590 for (int i = getNumWords()-1; i >= 0; --i) {
591 uint64_t V = U.pVal[i];
592 if (V == 0)
593 Count += APINT_BITS_PER_WORD;
594 else {
595 Count += llvm::countLeadingZeros(V);
596 break;
597 }
598 }
599 // Adjust for unused bits in the most significant word (they are zero).
600 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
601 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
602 return Count;
603 }
604
countLeadingOnesSlowCase() const605 unsigned APInt::countLeadingOnesSlowCase() const {
606 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
607 unsigned shift;
608 if (!highWordBits) {
609 highWordBits = APINT_BITS_PER_WORD;
610 shift = 0;
611 } else {
612 shift = APINT_BITS_PER_WORD - highWordBits;
613 }
614 int i = getNumWords() - 1;
615 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
616 if (Count == highWordBits) {
617 for (i--; i >= 0; --i) {
618 if (U.pVal[i] == WORDTYPE_MAX)
619 Count += APINT_BITS_PER_WORD;
620 else {
621 Count += llvm::countLeadingOnes(U.pVal[i]);
622 break;
623 }
624 }
625 }
626 return Count;
627 }
628
countTrailingZerosSlowCase() const629 unsigned APInt::countTrailingZerosSlowCase() const {
630 unsigned Count = 0;
631 unsigned i = 0;
632 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
633 Count += APINT_BITS_PER_WORD;
634 if (i < getNumWords())
635 Count += llvm::countTrailingZeros(U.pVal[i]);
636 return std::min(Count, BitWidth);
637 }
638
countTrailingOnesSlowCase() const639 unsigned APInt::countTrailingOnesSlowCase() const {
640 unsigned Count = 0;
641 unsigned i = 0;
642 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
643 Count += APINT_BITS_PER_WORD;
644 if (i < getNumWords())
645 Count += llvm::countTrailingOnes(U.pVal[i]);
646 assert(Count <= BitWidth);
647 return Count;
648 }
649
countPopulationSlowCase() const650 unsigned APInt::countPopulationSlowCase() const {
651 unsigned Count = 0;
652 for (unsigned i = 0; i < getNumWords(); ++i)
653 Count += llvm::countPopulation(U.pVal[i]);
654 return Count;
655 }
656
intersectsSlowCase(const APInt & RHS) const657 bool APInt::intersectsSlowCase(const APInt &RHS) const {
658 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
659 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
660 return true;
661
662 return false;
663 }
664
isSubsetOfSlowCase(const APInt & RHS) const665 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
666 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
667 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
668 return false;
669
670 return true;
671 }
672
byteSwap() const673 APInt APInt::byteSwap() const {
674 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
675 if (BitWidth == 16)
676 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
677 if (BitWidth == 32)
678 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
679 if (BitWidth <= 64) {
680 uint64_t Tmp1 = ByteSwap_64(U.VAL);
681 Tmp1 >>= (64 - BitWidth);
682 return APInt(BitWidth, Tmp1);
683 }
684
685 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
686 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
687 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
688 if (Result.BitWidth != BitWidth) {
689 Result.lshrInPlace(Result.BitWidth - BitWidth);
690 Result.BitWidth = BitWidth;
691 }
692 return Result;
693 }
694
reverseBits() const695 APInt APInt::reverseBits() const {
696 switch (BitWidth) {
697 case 64:
698 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
699 case 32:
700 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
701 case 16:
702 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
703 case 8:
704 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
705 default:
706 break;
707 }
708
709 APInt Val(*this);
710 APInt Reversed(BitWidth, 0);
711 unsigned S = BitWidth;
712
713 for (; Val != 0; Val.lshrInPlace(1)) {
714 Reversed <<= 1;
715 Reversed |= Val[0];
716 --S;
717 }
718
719 Reversed <<= S;
720 return Reversed;
721 }
722
GreatestCommonDivisor(APInt A,APInt B)723 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
724 // Fast-path a common case.
725 if (A == B) return A;
726
727 // Corner cases: if either operand is zero, the other is the gcd.
728 if (!A) return B;
729 if (!B) return A;
730
731 // Count common powers of 2 and remove all other powers of 2.
732 unsigned Pow2;
733 {
734 unsigned Pow2_A = A.countTrailingZeros();
735 unsigned Pow2_B = B.countTrailingZeros();
736 if (Pow2_A > Pow2_B) {
737 A.lshrInPlace(Pow2_A - Pow2_B);
738 Pow2 = Pow2_B;
739 } else if (Pow2_B > Pow2_A) {
740 B.lshrInPlace(Pow2_B - Pow2_A);
741 Pow2 = Pow2_A;
742 } else {
743 Pow2 = Pow2_A;
744 }
745 }
746
747 // Both operands are odd multiples of 2^Pow_2:
748 //
749 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
750 //
751 // This is a modified version of Stein's algorithm, taking advantage of
752 // efficient countTrailingZeros().
753 while (A != B) {
754 if (A.ugt(B)) {
755 A -= B;
756 A.lshrInPlace(A.countTrailingZeros() - Pow2);
757 } else {
758 B -= A;
759 B.lshrInPlace(B.countTrailingZeros() - Pow2);
760 }
761 }
762
763 return A;
764 }
765
RoundDoubleToAPInt(double Double,unsigned width)766 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
767 uint64_t I = bit_cast<uint64_t>(Double);
768
769 // Get the sign bit from the highest order bit
770 bool isNeg = I >> 63;
771
772 // Get the 11-bit exponent and adjust for the 1023 bit bias
773 int64_t exp = ((I >> 52) & 0x7ff) - 1023;
774
775 // If the exponent is negative, the value is < 0 so just return 0.
776 if (exp < 0)
777 return APInt(width, 0u);
778
779 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
780 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
781
782 // If the exponent doesn't shift all bits out of the mantissa
783 if (exp < 52)
784 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
785 APInt(width, mantissa >> (52 - exp));
786
787 // If the client didn't provide enough bits for us to shift the mantissa into
788 // then the result is undefined, just return 0
789 if (width <= exp - 52)
790 return APInt(width, 0);
791
792 // Otherwise, we have to shift the mantissa bits up to the right location
793 APInt Tmp(width, mantissa);
794 Tmp <<= (unsigned)exp - 52;
795 return isNeg ? -Tmp : Tmp;
796 }
797
798 /// This function converts this APInt to a double.
799 /// The layout for double is as following (IEEE Standard 754):
800 /// --------------------------------------
801 /// | Sign Exponent Fraction Bias |
802 /// |-------------------------------------- |
803 /// | 1[63] 11[62-52] 52[51-00] 1023 |
804 /// --------------------------------------
roundToDouble(bool isSigned) const805 double APInt::roundToDouble(bool isSigned) const {
806
807 // Handle the simple case where the value is contained in one uint64_t.
808 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
809 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
810 if (isSigned) {
811 int64_t sext = SignExtend64(getWord(0), BitWidth);
812 return double(sext);
813 } else
814 return double(getWord(0));
815 }
816
817 // Determine if the value is negative.
818 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
819
820 // Construct the absolute value if we're negative.
821 APInt Tmp(isNeg ? -(*this) : (*this));
822
823 // Figure out how many bits we're using.
824 unsigned n = Tmp.getActiveBits();
825
826 // The exponent (without bias normalization) is just the number of bits
827 // we are using. Note that the sign bit is gone since we constructed the
828 // absolute value.
829 uint64_t exp = n;
830
831 // Return infinity for exponent overflow
832 if (exp > 1023) {
833 if (!isSigned || !isNeg)
834 return std::numeric_limits<double>::infinity();
835 else
836 return -std::numeric_limits<double>::infinity();
837 }
838 exp += 1023; // Increment for 1023 bias
839
840 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
841 // extract the high 52 bits from the correct words in pVal.
842 uint64_t mantissa;
843 unsigned hiWord = whichWord(n-1);
844 if (hiWord == 0) {
845 mantissa = Tmp.U.pVal[0];
846 if (n > 52)
847 mantissa >>= n - 52; // shift down, we want the top 52 bits.
848 } else {
849 assert(hiWord > 0 && "huh?");
850 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
851 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
852 mantissa = hibits | lobits;
853 }
854
855 // The leading bit of mantissa is implicit, so get rid of it.
856 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
857 uint64_t I = sign | (exp << 52) | mantissa;
858 return bit_cast<double>(I);
859 }
860
861 // Truncate to new width.
trunc(unsigned width) const862 APInt APInt::trunc(unsigned width) const {
863 assert(width < BitWidth && "Invalid APInt Truncate request");
864 assert(width && "Can't truncate to 0 bits");
865
866 if (width <= APINT_BITS_PER_WORD)
867 return APInt(width, getRawData()[0]);
868
869 APInt Result(getMemory(getNumWords(width)), width);
870
871 // Copy full words.
872 unsigned i;
873 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
874 Result.U.pVal[i] = U.pVal[i];
875
876 // Truncate and copy any partial word.
877 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
878 if (bits != 0)
879 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
880
881 return Result;
882 }
883
884 // Truncate to new width with unsigned saturation.
truncUSat(unsigned width) const885 APInt APInt::truncUSat(unsigned width) const {
886 assert(width < BitWidth && "Invalid APInt Truncate request");
887 assert(width && "Can't truncate to 0 bits");
888
889 // Can we just losslessly truncate it?
890 if (isIntN(width))
891 return trunc(width);
892 // If not, then just return the new limit.
893 return APInt::getMaxValue(width);
894 }
895
896 // Truncate to new width with signed saturation.
truncSSat(unsigned width) const897 APInt APInt::truncSSat(unsigned width) const {
898 assert(width < BitWidth && "Invalid APInt Truncate request");
899 assert(width && "Can't truncate to 0 bits");
900
901 // Can we just losslessly truncate it?
902 if (isSignedIntN(width))
903 return trunc(width);
904 // If not, then just return the new limits.
905 return isNegative() ? APInt::getSignedMinValue(width)
906 : APInt::getSignedMaxValue(width);
907 }
908
909 // Sign extend to a new width.
sext(unsigned Width) const910 APInt APInt::sext(unsigned Width) const {
911 assert(Width > BitWidth && "Invalid APInt SignExtend request");
912
913 if (Width <= APINT_BITS_PER_WORD)
914 return APInt(Width, SignExtend64(U.VAL, BitWidth));
915
916 APInt Result(getMemory(getNumWords(Width)), Width);
917
918 // Copy words.
919 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
920
921 // Sign extend the last word since there may be unused bits in the input.
922 Result.U.pVal[getNumWords() - 1] =
923 SignExtend64(Result.U.pVal[getNumWords() - 1],
924 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
925
926 // Fill with sign bits.
927 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
928 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
929 Result.clearUnusedBits();
930 return Result;
931 }
932
933 // Zero extend to a new width.
zext(unsigned width) const934 APInt APInt::zext(unsigned width) const {
935 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
936
937 if (width <= APINT_BITS_PER_WORD)
938 return APInt(width, U.VAL);
939
940 APInt Result(getMemory(getNumWords(width)), width);
941
942 // Copy words.
943 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
944
945 // Zero remaining words.
946 std::memset(Result.U.pVal + getNumWords(), 0,
947 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
948
949 return Result;
950 }
951
zextOrTrunc(unsigned width) const952 APInt APInt::zextOrTrunc(unsigned width) const {
953 if (BitWidth < width)
954 return zext(width);
955 if (BitWidth > width)
956 return trunc(width);
957 return *this;
958 }
959
sextOrTrunc(unsigned width) const960 APInt APInt::sextOrTrunc(unsigned width) const {
961 if (BitWidth < width)
962 return sext(width);
963 if (BitWidth > width)
964 return trunc(width);
965 return *this;
966 }
967
truncOrSelf(unsigned width) const968 APInt APInt::truncOrSelf(unsigned width) const {
969 if (BitWidth > width)
970 return trunc(width);
971 return *this;
972 }
973
zextOrSelf(unsigned width) const974 APInt APInt::zextOrSelf(unsigned width) const {
975 if (BitWidth < width)
976 return zext(width);
977 return *this;
978 }
979
sextOrSelf(unsigned width) const980 APInt APInt::sextOrSelf(unsigned width) const {
981 if (BitWidth < width)
982 return sext(width);
983 return *this;
984 }
985
986 /// Arithmetic right-shift this APInt by shiftAmt.
987 /// Arithmetic right-shift function.
ashrInPlace(const APInt & shiftAmt)988 void APInt::ashrInPlace(const APInt &shiftAmt) {
989 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
990 }
991
992 /// Arithmetic right-shift this APInt by shiftAmt.
993 /// Arithmetic right-shift function.
ashrSlowCase(unsigned ShiftAmt)994 void APInt::ashrSlowCase(unsigned ShiftAmt) {
995 // Don't bother performing a no-op shift.
996 if (!ShiftAmt)
997 return;
998
999 // Save the original sign bit for later.
1000 bool Negative = isNegative();
1001
1002 // WordShift is the inter-part shift; BitShift is intra-part shift.
1003 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1004 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1005
1006 unsigned WordsToMove = getNumWords() - WordShift;
1007 if (WordsToMove != 0) {
1008 // Sign extend the last word to fill in the unused bits.
1009 U.pVal[getNumWords() - 1] = SignExtend64(
1010 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1011
1012 // Fastpath for moving by whole words.
1013 if (BitShift == 0) {
1014 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1015 } else {
1016 // Move the words containing significant bits.
1017 for (unsigned i = 0; i != WordsToMove - 1; ++i)
1018 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1019 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1020
1021 // Handle the last word which has no high bits to copy.
1022 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1023 // Sign extend one more time.
1024 U.pVal[WordsToMove - 1] =
1025 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1026 }
1027 }
1028
1029 // Fill in the remainder based on the original sign.
1030 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1031 WordShift * APINT_WORD_SIZE);
1032 clearUnusedBits();
1033 }
1034
1035 /// Logical right-shift this APInt by shiftAmt.
1036 /// Logical right-shift function.
lshrInPlace(const APInt & shiftAmt)1037 void APInt::lshrInPlace(const APInt &shiftAmt) {
1038 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1039 }
1040
1041 /// Logical right-shift this APInt by shiftAmt.
1042 /// Logical right-shift function.
lshrSlowCase(unsigned ShiftAmt)1043 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1044 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1045 }
1046
1047 /// Left-shift this APInt by shiftAmt.
1048 /// Left-shift function.
operator <<=(const APInt & shiftAmt)1049 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1050 // It's undefined behavior in C to shift by BitWidth or greater.
1051 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1052 return *this;
1053 }
1054
shlSlowCase(unsigned ShiftAmt)1055 void APInt::shlSlowCase(unsigned ShiftAmt) {
1056 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1057 clearUnusedBits();
1058 }
1059
1060 // Calculate the rotate amount modulo the bit width.
rotateModulo(unsigned BitWidth,const APInt & rotateAmt)1061 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1062 unsigned rotBitWidth = rotateAmt.getBitWidth();
1063 APInt rot = rotateAmt;
1064 if (rotBitWidth < BitWidth) {
1065 // Extend the rotate APInt, so that the urem doesn't divide by 0.
1066 // e.g. APInt(1, 32) would give APInt(1, 0).
1067 rot = rotateAmt.zext(BitWidth);
1068 }
1069 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1070 return rot.getLimitedValue(BitWidth);
1071 }
1072
rotl(const APInt & rotateAmt) const1073 APInt APInt::rotl(const APInt &rotateAmt) const {
1074 return rotl(rotateModulo(BitWidth, rotateAmt));
1075 }
1076
rotl(unsigned rotateAmt) const1077 APInt APInt::rotl(unsigned rotateAmt) const {
1078 rotateAmt %= BitWidth;
1079 if (rotateAmt == 0)
1080 return *this;
1081 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1082 }
1083
rotr(const APInt & rotateAmt) const1084 APInt APInt::rotr(const APInt &rotateAmt) const {
1085 return rotr(rotateModulo(BitWidth, rotateAmt));
1086 }
1087
rotr(unsigned rotateAmt) const1088 APInt APInt::rotr(unsigned rotateAmt) const {
1089 rotateAmt %= BitWidth;
1090 if (rotateAmt == 0)
1091 return *this;
1092 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1093 }
1094
1095 // Square Root - this method computes and returns the square root of "this".
1096 // Three mechanisms are used for computation. For small values (<= 5 bits),
1097 // a table lookup is done. This gets some performance for common cases. For
1098 // values using less than 52 bits, the value is converted to double and then
1099 // the libc sqrt function is called. The result is rounded and then converted
1100 // back to a uint64_t which is then used to construct the result. Finally,
1101 // the Babylonian method for computing square roots is used.
sqrt() const1102 APInt APInt::sqrt() const {
1103
1104 // Determine the magnitude of the value.
1105 unsigned magnitude = getActiveBits();
1106
1107 // Use a fast table for some small values. This also gets rid of some
1108 // rounding errors in libc sqrt for small values.
1109 if (magnitude <= 5) {
1110 static const uint8_t results[32] = {
1111 /* 0 */ 0,
1112 /* 1- 2 */ 1, 1,
1113 /* 3- 6 */ 2, 2, 2, 2,
1114 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1115 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1116 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1117 /* 31 */ 6
1118 };
1119 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1120 }
1121
1122 // If the magnitude of the value fits in less than 52 bits (the precision of
1123 // an IEEE double precision floating point value), then we can use the
1124 // libc sqrt function which will probably use a hardware sqrt computation.
1125 // This should be faster than the algorithm below.
1126 if (magnitude < 52) {
1127 return APInt(BitWidth,
1128 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1129 : U.pVal[0])))));
1130 }
1131
1132 // Okay, all the short cuts are exhausted. We must compute it. The following
1133 // is a classical Babylonian method for computing the square root. This code
1134 // was adapted to APInt from a wikipedia article on such computations.
1135 // See http://www.wikipedia.org/ and go to the page named
1136 // Calculate_an_integer_square_root.
1137 unsigned nbits = BitWidth, i = 4;
1138 APInt testy(BitWidth, 16);
1139 APInt x_old(BitWidth, 1);
1140 APInt x_new(BitWidth, 0);
1141 APInt two(BitWidth, 2);
1142
1143 // Select a good starting value using binary logarithms.
1144 for (;; i += 2, testy = testy.shl(2))
1145 if (i >= nbits || this->ule(testy)) {
1146 x_old = x_old.shl(i / 2);
1147 break;
1148 }
1149
1150 // Use the Babylonian method to arrive at the integer square root:
1151 for (;;) {
1152 x_new = (this->udiv(x_old) + x_old).udiv(two);
1153 if (x_old.ule(x_new))
1154 break;
1155 x_old = x_new;
1156 }
1157
1158 // Make sure we return the closest approximation
1159 // NOTE: The rounding calculation below is correct. It will produce an
1160 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1161 // determined to be a rounding issue with pari/gp as it begins to use a
1162 // floating point representation after 192 bits. There are no discrepancies
1163 // between this algorithm and pari/gp for bit widths < 192 bits.
1164 APInt square(x_old * x_old);
1165 APInt nextSquare((x_old + 1) * (x_old +1));
1166 if (this->ult(square))
1167 return x_old;
1168 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1169 APInt midpoint((nextSquare - square).udiv(two));
1170 APInt offset(*this - square);
1171 if (offset.ult(midpoint))
1172 return x_old;
1173 return x_old + 1;
1174 }
1175
1176 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1177 /// iterative extended Euclidean algorithm is used to solve for this value,
1178 /// however we simplify it to speed up calculating only the inverse, and take
1179 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1180 /// (potentially large) APInts around.
1181 /// WARNING: a value of '0' may be returned,
1182 /// signifying that no multiplicative inverse exists!
multiplicativeInverse(const APInt & modulo) const1183 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1184 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1185
1186 // Using the properties listed at the following web page (accessed 06/21/08):
1187 // http://www.numbertheory.org/php/euclid.html
1188 // (especially the properties numbered 3, 4 and 9) it can be proved that
1189 // BitWidth bits suffice for all the computations in the algorithm implemented
1190 // below. More precisely, this number of bits suffice if the multiplicative
1191 // inverse exists, but may not suffice for the general extended Euclidean
1192 // algorithm.
1193
1194 APInt r[2] = { modulo, *this };
1195 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1196 APInt q(BitWidth, 0);
1197
1198 unsigned i;
1199 for (i = 0; r[i^1] != 0; i ^= 1) {
1200 // An overview of the math without the confusing bit-flipping:
1201 // q = r[i-2] / r[i-1]
1202 // r[i] = r[i-2] % r[i-1]
1203 // t[i] = t[i-2] - t[i-1] * q
1204 udivrem(r[i], r[i^1], q, r[i]);
1205 t[i] -= t[i^1] * q;
1206 }
1207
1208 // If this APInt and the modulo are not coprime, there is no multiplicative
1209 // inverse, so return 0. We check this by looking at the next-to-last
1210 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1211 // algorithm.
1212 if (r[i] != 1)
1213 return APInt(BitWidth, 0);
1214
1215 // The next-to-last t is the multiplicative inverse. However, we are
1216 // interested in a positive inverse. Calculate a positive one from a negative
1217 // one if necessary. A simple addition of the modulo suffices because
1218 // abs(t[i]) is known to be less than *this/2 (see the link above).
1219 if (t[i].isNegative())
1220 t[i] += modulo;
1221
1222 return std::move(t[i]);
1223 }
1224
1225 /// Calculate the magic numbers required to implement a signed integer division
1226 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1227 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1228 /// Warren, Jr., chapter 10.
magic() const1229 APInt::ms APInt::magic() const {
1230 const APInt& d = *this;
1231 unsigned p;
1232 APInt ad, anc, delta, q1, r1, q2, r2, t;
1233 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1234 struct ms mag;
1235
1236 ad = d.abs();
1237 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1238 anc = t - 1 - t.urem(ad); // absolute value of nc
1239 p = d.getBitWidth() - 1; // initialize p
1240 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1241 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1242 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1243 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1244 do {
1245 p = p + 1;
1246 q1 = q1<<1; // update q1 = 2p/abs(nc)
1247 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1248 if (r1.uge(anc)) { // must be unsigned comparison
1249 q1 = q1 + 1;
1250 r1 = r1 - anc;
1251 }
1252 q2 = q2<<1; // update q2 = 2p/abs(d)
1253 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1254 if (r2.uge(ad)) { // must be unsigned comparison
1255 q2 = q2 + 1;
1256 r2 = r2 - ad;
1257 }
1258 delta = ad - r2;
1259 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1260
1261 mag.m = q2 + 1;
1262 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1263 mag.s = p - d.getBitWidth(); // resulting shift
1264 return mag;
1265 }
1266
1267 /// Calculate the magic numbers required to implement an unsigned integer
1268 /// division by a constant as a sequence of multiplies, adds and shifts.
1269 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1270 /// S. Warren, Jr., chapter 10.
1271 /// LeadingZeros can be used to simplify the calculation if the upper bits
1272 /// of the divided value are known zero.
magicu(unsigned LeadingZeros) const1273 APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1274 const APInt& d = *this;
1275 unsigned p;
1276 APInt nc, delta, q1, r1, q2, r2;
1277 struct mu magu;
1278 magu.a = 0; // initialize "add" indicator
1279 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1280 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1281 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1282
1283 nc = allOnes - (allOnes - d).urem(d);
1284 p = d.getBitWidth() - 1; // initialize p
1285 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1286 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1287 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1288 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1289 do {
1290 p = p + 1;
1291 if (r1.uge(nc - r1)) {
1292 q1 = q1 + q1 + 1; // update q1
1293 r1 = r1 + r1 - nc; // update r1
1294 }
1295 else {
1296 q1 = q1+q1; // update q1
1297 r1 = r1+r1; // update r1
1298 }
1299 if ((r2 + 1).uge(d - r2)) {
1300 if (q2.uge(signedMax)) magu.a = 1;
1301 q2 = q2+q2 + 1; // update q2
1302 r2 = r2+r2 + 1 - d; // update r2
1303 }
1304 else {
1305 if (q2.uge(signedMin)) magu.a = 1;
1306 q2 = q2+q2; // update q2
1307 r2 = r2+r2 + 1; // update r2
1308 }
1309 delta = d - 1 - r2;
1310 } while (p < d.getBitWidth()*2 &&
1311 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1312 magu.m = q2 + 1; // resulting magic number
1313 magu.s = p - d.getBitWidth(); // resulting shift
1314 return magu;
1315 }
1316
1317 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1318 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1319 /// variables here have the same names as in the algorithm. Comments explain
1320 /// the algorithm and any deviation from it.
KnuthDiv(uint32_t * u,uint32_t * v,uint32_t * q,uint32_t * r,unsigned m,unsigned n)1321 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1322 unsigned m, unsigned n) {
1323 assert(u && "Must provide dividend");
1324 assert(v && "Must provide divisor");
1325 assert(q && "Must provide quotient");
1326 assert(u != v && u != q && v != q && "Must use different memory");
1327 assert(n>1 && "n must be > 1");
1328
1329 // b denotes the base of the number system. In our case b is 2^32.
1330 const uint64_t b = uint64_t(1) << 32;
1331
1332 // The DEBUG macros here tend to be spam in the debug output if you're not
1333 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1334 #ifdef KNUTH_DEBUG
1335 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1336 #else
1337 #define DEBUG_KNUTH(X) do {} while(false)
1338 #endif
1339
1340 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1341 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1342 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1343 DEBUG_KNUTH(dbgs() << " by");
1344 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1345 DEBUG_KNUTH(dbgs() << '\n');
1346 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1347 // u and v by d. Note that we have taken Knuth's advice here to use a power
1348 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1349 // 2 allows us to shift instead of multiply and it is easy to determine the
1350 // shift amount from the leading zeros. We are basically normalizing the u
1351 // and v so that its high bits are shifted to the top of v's range without
1352 // overflow. Note that this can require an extra word in u so that u must
1353 // be of length m+n+1.
1354 unsigned shift = countLeadingZeros(v[n-1]);
1355 uint32_t v_carry = 0;
1356 uint32_t u_carry = 0;
1357 if (shift) {
1358 for (unsigned i = 0; i < m+n; ++i) {
1359 uint32_t u_tmp = u[i] >> (32 - shift);
1360 u[i] = (u[i] << shift) | u_carry;
1361 u_carry = u_tmp;
1362 }
1363 for (unsigned i = 0; i < n; ++i) {
1364 uint32_t v_tmp = v[i] >> (32 - shift);
1365 v[i] = (v[i] << shift) | v_carry;
1366 v_carry = v_tmp;
1367 }
1368 }
1369 u[m+n] = u_carry;
1370
1371 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:");
1372 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1373 DEBUG_KNUTH(dbgs() << " by");
1374 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1375 DEBUG_KNUTH(dbgs() << '\n');
1376
1377 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1378 int j = m;
1379 do {
1380 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1381 // D3. [Calculate q'.].
1382 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1383 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1384 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1385 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1386 // on v[n-2] determines at high speed most of the cases in which the trial
1387 // value qp is one too large, and it eliminates all cases where qp is two
1388 // too large.
1389 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1390 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1391 uint64_t qp = dividend / v[n-1];
1392 uint64_t rp = dividend % v[n-1];
1393 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1394 qp--;
1395 rp += v[n-1];
1396 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1397 qp--;
1398 }
1399 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1400
1401 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1402 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1403 // consists of a simple multiplication by a one-place number, combined with
1404 // a subtraction.
1405 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1406 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1407 // true value plus b**(n+1), namely as the b's complement of
1408 // the true value, and a "borrow" to the left should be remembered.
1409 int64_t borrow = 0;
1410 for (unsigned i = 0; i < n; ++i) {
1411 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1412 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1413 u[j+i] = Lo_32(subres);
1414 borrow = Hi_32(p) - Hi_32(subres);
1415 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1416 << ", borrow = " << borrow << '\n');
1417 }
1418 bool isNeg = u[j+n] < borrow;
1419 u[j+n] -= Lo_32(borrow);
1420
1421 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1422 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1423 DEBUG_KNUTH(dbgs() << '\n');
1424
1425 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1426 // negative, go to step D6; otherwise go on to step D7.
1427 q[j] = Lo_32(qp);
1428 if (isNeg) {
1429 // D6. [Add back]. The probability that this step is necessary is very
1430 // small, on the order of only 2/b. Make sure that test data accounts for
1431 // this possibility. Decrease q[j] by 1
1432 q[j]--;
1433 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1434 // A carry will occur to the left of u[j+n], and it should be ignored
1435 // since it cancels with the borrow that occurred in D4.
1436 bool carry = false;
1437 for (unsigned i = 0; i < n; i++) {
1438 uint32_t limit = std::min(u[j+i],v[i]);
1439 u[j+i] += v[i] + carry;
1440 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1441 }
1442 u[j+n] += carry;
1443 }
1444 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1445 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1446 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1447
1448 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1449 } while (--j >= 0);
1450
1451 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1452 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1453 DEBUG_KNUTH(dbgs() << '\n');
1454
1455 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1456 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1457 // compute the remainder (urem uses this).
1458 if (r) {
1459 // The value d is expressed by the "shift" value above since we avoided
1460 // multiplication by d by using a shift left. So, all we have to do is
1461 // shift right here.
1462 if (shift) {
1463 uint32_t carry = 0;
1464 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1465 for (int i = n-1; i >= 0; i--) {
1466 r[i] = (u[i] >> shift) | carry;
1467 carry = u[i] << (32 - shift);
1468 DEBUG_KNUTH(dbgs() << " " << r[i]);
1469 }
1470 } else {
1471 for (int i = n-1; i >= 0; i--) {
1472 r[i] = u[i];
1473 DEBUG_KNUTH(dbgs() << " " << r[i]);
1474 }
1475 }
1476 DEBUG_KNUTH(dbgs() << '\n');
1477 }
1478 DEBUG_KNUTH(dbgs() << '\n');
1479 }
1480
divide(const WordType * LHS,unsigned lhsWords,const WordType * RHS,unsigned rhsWords,WordType * Quotient,WordType * Remainder)1481 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1482 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1483 assert(lhsWords >= rhsWords && "Fractional result");
1484
1485 // First, compose the values into an array of 32-bit words instead of
1486 // 64-bit words. This is a necessity of both the "short division" algorithm
1487 // and the Knuth "classical algorithm" which requires there to be native
1488 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1489 // can't use 64-bit operands here because we don't have native results of
1490 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1491 // work on large-endian machines.
1492 unsigned n = rhsWords * 2;
1493 unsigned m = (lhsWords * 2) - n;
1494
1495 // Allocate space for the temporary values we need either on the stack, if
1496 // it will fit, or on the heap if it won't.
1497 uint32_t SPACE[128];
1498 uint32_t *U = nullptr;
1499 uint32_t *V = nullptr;
1500 uint32_t *Q = nullptr;
1501 uint32_t *R = nullptr;
1502 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1503 U = &SPACE[0];
1504 V = &SPACE[m+n+1];
1505 Q = &SPACE[(m+n+1) + n];
1506 if (Remainder)
1507 R = &SPACE[(m+n+1) + n + (m+n)];
1508 } else {
1509 U = new uint32_t[m + n + 1];
1510 V = new uint32_t[n];
1511 Q = new uint32_t[m+n];
1512 if (Remainder)
1513 R = new uint32_t[n];
1514 }
1515
1516 // Initialize the dividend
1517 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1518 for (unsigned i = 0; i < lhsWords; ++i) {
1519 uint64_t tmp = LHS[i];
1520 U[i * 2] = Lo_32(tmp);
1521 U[i * 2 + 1] = Hi_32(tmp);
1522 }
1523 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1524
1525 // Initialize the divisor
1526 memset(V, 0, (n)*sizeof(uint32_t));
1527 for (unsigned i = 0; i < rhsWords; ++i) {
1528 uint64_t tmp = RHS[i];
1529 V[i * 2] = Lo_32(tmp);
1530 V[i * 2 + 1] = Hi_32(tmp);
1531 }
1532
1533 // initialize the quotient and remainder
1534 memset(Q, 0, (m+n) * sizeof(uint32_t));
1535 if (Remainder)
1536 memset(R, 0, n * sizeof(uint32_t));
1537
1538 // Now, adjust m and n for the Knuth division. n is the number of words in
1539 // the divisor. m is the number of words by which the dividend exceeds the
1540 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1541 // contain any zero words or the Knuth algorithm fails.
1542 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1543 n--;
1544 m++;
1545 }
1546 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1547 m--;
1548
1549 // If we're left with only a single word for the divisor, Knuth doesn't work
1550 // so we implement the short division algorithm here. This is much simpler
1551 // and faster because we are certain that we can divide a 64-bit quantity
1552 // by a 32-bit quantity at hardware speed and short division is simply a
1553 // series of such operations. This is just like doing short division but we
1554 // are using base 2^32 instead of base 10.
1555 assert(n != 0 && "Divide by zero?");
1556 if (n == 1) {
1557 uint32_t divisor = V[0];
1558 uint32_t remainder = 0;
1559 for (int i = m; i >= 0; i--) {
1560 uint64_t partial_dividend = Make_64(remainder, U[i]);
1561 if (partial_dividend == 0) {
1562 Q[i] = 0;
1563 remainder = 0;
1564 } else if (partial_dividend < divisor) {
1565 Q[i] = 0;
1566 remainder = Lo_32(partial_dividend);
1567 } else if (partial_dividend == divisor) {
1568 Q[i] = 1;
1569 remainder = 0;
1570 } else {
1571 Q[i] = Lo_32(partial_dividend / divisor);
1572 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1573 }
1574 }
1575 if (R)
1576 R[0] = remainder;
1577 } else {
1578 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1579 // case n > 1.
1580 KnuthDiv(U, V, Q, R, m, n);
1581 }
1582
1583 // If the caller wants the quotient
1584 if (Quotient) {
1585 for (unsigned i = 0; i < lhsWords; ++i)
1586 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1587 }
1588
1589 // If the caller wants the remainder
1590 if (Remainder) {
1591 for (unsigned i = 0; i < rhsWords; ++i)
1592 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1593 }
1594
1595 // Clean up the memory we allocated.
1596 if (U != &SPACE[0]) {
1597 delete [] U;
1598 delete [] V;
1599 delete [] Q;
1600 delete [] R;
1601 }
1602 }
1603
udiv(const APInt & RHS) const1604 APInt APInt::udiv(const APInt &RHS) const {
1605 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1606
1607 // First, deal with the easy case
1608 if (isSingleWord()) {
1609 assert(RHS.U.VAL != 0 && "Divide by zero?");
1610 return APInt(BitWidth, U.VAL / RHS.U.VAL);
1611 }
1612
1613 // Get some facts about the LHS and RHS number of bits and words
1614 unsigned lhsWords = getNumWords(getActiveBits());
1615 unsigned rhsBits = RHS.getActiveBits();
1616 unsigned rhsWords = getNumWords(rhsBits);
1617 assert(rhsWords && "Divided by zero???");
1618
1619 // Deal with some degenerate cases
1620 if (!lhsWords)
1621 // 0 / X ===> 0
1622 return APInt(BitWidth, 0);
1623 if (rhsBits == 1)
1624 // X / 1 ===> X
1625 return *this;
1626 if (lhsWords < rhsWords || this->ult(RHS))
1627 // X / Y ===> 0, iff X < Y
1628 return APInt(BitWidth, 0);
1629 if (*this == RHS)
1630 // X / X ===> 1
1631 return APInt(BitWidth, 1);
1632 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1633 // All high words are zero, just use native divide
1634 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1635
1636 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1637 APInt Quotient(BitWidth, 0); // to hold result.
1638 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1639 return Quotient;
1640 }
1641
udiv(uint64_t RHS) const1642 APInt APInt::udiv(uint64_t RHS) const {
1643 assert(RHS != 0 && "Divide by zero?");
1644
1645 // First, deal with the easy case
1646 if (isSingleWord())
1647 return APInt(BitWidth, U.VAL / RHS);
1648
1649 // Get some facts about the LHS words.
1650 unsigned lhsWords = getNumWords(getActiveBits());
1651
1652 // Deal with some degenerate cases
1653 if (!lhsWords)
1654 // 0 / X ===> 0
1655 return APInt(BitWidth, 0);
1656 if (RHS == 1)
1657 // X / 1 ===> X
1658 return *this;
1659 if (this->ult(RHS))
1660 // X / Y ===> 0, iff X < Y
1661 return APInt(BitWidth, 0);
1662 if (*this == RHS)
1663 // X / X ===> 1
1664 return APInt(BitWidth, 1);
1665 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1666 // All high words are zero, just use native divide
1667 return APInt(BitWidth, this->U.pVal[0] / RHS);
1668
1669 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1670 APInt Quotient(BitWidth, 0); // to hold result.
1671 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1672 return Quotient;
1673 }
1674
sdiv(const APInt & RHS) const1675 APInt APInt::sdiv(const APInt &RHS) const {
1676 if (isNegative()) {
1677 if (RHS.isNegative())
1678 return (-(*this)).udiv(-RHS);
1679 return -((-(*this)).udiv(RHS));
1680 }
1681 if (RHS.isNegative())
1682 return -(this->udiv(-RHS));
1683 return this->udiv(RHS);
1684 }
1685
sdiv(int64_t RHS) const1686 APInt APInt::sdiv(int64_t RHS) const {
1687 if (isNegative()) {
1688 if (RHS < 0)
1689 return (-(*this)).udiv(-RHS);
1690 return -((-(*this)).udiv(RHS));
1691 }
1692 if (RHS < 0)
1693 return -(this->udiv(-RHS));
1694 return this->udiv(RHS);
1695 }
1696
urem(const APInt & RHS) const1697 APInt APInt::urem(const APInt &RHS) const {
1698 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1699 if (isSingleWord()) {
1700 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1701 return APInt(BitWidth, U.VAL % RHS.U.VAL);
1702 }
1703
1704 // Get some facts about the LHS
1705 unsigned lhsWords = getNumWords(getActiveBits());
1706
1707 // Get some facts about the RHS
1708 unsigned rhsBits = RHS.getActiveBits();
1709 unsigned rhsWords = getNumWords(rhsBits);
1710 assert(rhsWords && "Performing remainder operation by zero ???");
1711
1712 // Check the degenerate cases
1713 if (lhsWords == 0)
1714 // 0 % Y ===> 0
1715 return APInt(BitWidth, 0);
1716 if (rhsBits == 1)
1717 // X % 1 ===> 0
1718 return APInt(BitWidth, 0);
1719 if (lhsWords < rhsWords || this->ult(RHS))
1720 // X % Y ===> X, iff X < Y
1721 return *this;
1722 if (*this == RHS)
1723 // X % X == 0;
1724 return APInt(BitWidth, 0);
1725 if (lhsWords == 1)
1726 // All high words are zero, just use native remainder
1727 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1728
1729 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1730 APInt Remainder(BitWidth, 0);
1731 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1732 return Remainder;
1733 }
1734
urem(uint64_t RHS) const1735 uint64_t APInt::urem(uint64_t RHS) const {
1736 assert(RHS != 0 && "Remainder by zero?");
1737
1738 if (isSingleWord())
1739 return U.VAL % RHS;
1740
1741 // Get some facts about the LHS
1742 unsigned lhsWords = getNumWords(getActiveBits());
1743
1744 // Check the degenerate cases
1745 if (lhsWords == 0)
1746 // 0 % Y ===> 0
1747 return 0;
1748 if (RHS == 1)
1749 // X % 1 ===> 0
1750 return 0;
1751 if (this->ult(RHS))
1752 // X % Y ===> X, iff X < Y
1753 return getZExtValue();
1754 if (*this == RHS)
1755 // X % X == 0;
1756 return 0;
1757 if (lhsWords == 1)
1758 // All high words are zero, just use native remainder
1759 return U.pVal[0] % RHS;
1760
1761 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1762 uint64_t Remainder;
1763 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1764 return Remainder;
1765 }
1766
srem(const APInt & RHS) const1767 APInt APInt::srem(const APInt &RHS) const {
1768 if (isNegative()) {
1769 if (RHS.isNegative())
1770 return -((-(*this)).urem(-RHS));
1771 return -((-(*this)).urem(RHS));
1772 }
1773 if (RHS.isNegative())
1774 return this->urem(-RHS);
1775 return this->urem(RHS);
1776 }
1777
srem(int64_t RHS) const1778 int64_t APInt::srem(int64_t RHS) const {
1779 if (isNegative()) {
1780 if (RHS < 0)
1781 return -((-(*this)).urem(-RHS));
1782 return -((-(*this)).urem(RHS));
1783 }
1784 if (RHS < 0)
1785 return this->urem(-RHS);
1786 return this->urem(RHS);
1787 }
1788
udivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)1789 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1790 APInt &Quotient, APInt &Remainder) {
1791 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1792 unsigned BitWidth = LHS.BitWidth;
1793
1794 // First, deal with the easy case
1795 if (LHS.isSingleWord()) {
1796 assert(RHS.U.VAL != 0 && "Divide by zero?");
1797 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1798 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1799 Quotient = APInt(BitWidth, QuotVal);
1800 Remainder = APInt(BitWidth, RemVal);
1801 return;
1802 }
1803
1804 // Get some size facts about the dividend and divisor
1805 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1806 unsigned rhsBits = RHS.getActiveBits();
1807 unsigned rhsWords = getNumWords(rhsBits);
1808 assert(rhsWords && "Performing divrem operation by zero ???");
1809
1810 // Check the degenerate cases
1811 if (lhsWords == 0) {
1812 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1813 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
1814 return;
1815 }
1816
1817 if (rhsBits == 1) {
1818 Quotient = LHS; // X / 1 ===> X
1819 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
1820 }
1821
1822 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1823 Remainder = LHS; // X % Y ===> X, iff X < Y
1824 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1825 return;
1826 }
1827
1828 if (LHS == RHS) {
1829 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1830 Remainder = APInt(BitWidth, 0); // X % X ===> 0;
1831 return;
1832 }
1833
1834 // Make sure there is enough space to hold the results.
1835 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1836 // change the size. This is necessary if Quotient or Remainder is aliased
1837 // with LHS or RHS.
1838 Quotient.reallocate(BitWidth);
1839 Remainder.reallocate(BitWidth);
1840
1841 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1842 // There is only one word to consider so use the native versions.
1843 uint64_t lhsValue = LHS.U.pVal[0];
1844 uint64_t rhsValue = RHS.U.pVal[0];
1845 Quotient = lhsValue / rhsValue;
1846 Remainder = lhsValue % rhsValue;
1847 return;
1848 }
1849
1850 // Okay, lets do it the long way
1851 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1852 Remainder.U.pVal);
1853 // Clear the rest of the Quotient and Remainder.
1854 std::memset(Quotient.U.pVal + lhsWords, 0,
1855 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1856 std::memset(Remainder.U.pVal + rhsWords, 0,
1857 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1858 }
1859
udivrem(const APInt & LHS,uint64_t RHS,APInt & Quotient,uint64_t & Remainder)1860 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1861 uint64_t &Remainder) {
1862 assert(RHS != 0 && "Divide by zero?");
1863 unsigned BitWidth = LHS.BitWidth;
1864
1865 // First, deal with the easy case
1866 if (LHS.isSingleWord()) {
1867 uint64_t QuotVal = LHS.U.VAL / RHS;
1868 Remainder = LHS.U.VAL % RHS;
1869 Quotient = APInt(BitWidth, QuotVal);
1870 return;
1871 }
1872
1873 // Get some size facts about the dividend and divisor
1874 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1875
1876 // Check the degenerate cases
1877 if (lhsWords == 0) {
1878 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1879 Remainder = 0; // 0 % Y ===> 0
1880 return;
1881 }
1882
1883 if (RHS == 1) {
1884 Quotient = LHS; // X / 1 ===> X
1885 Remainder = 0; // X % 1 ===> 0
1886 return;
1887 }
1888
1889 if (LHS.ult(RHS)) {
1890 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1891 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1892 return;
1893 }
1894
1895 if (LHS == RHS) {
1896 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1897 Remainder = 0; // X % X ===> 0;
1898 return;
1899 }
1900
1901 // Make sure there is enough space to hold the results.
1902 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1903 // change the size. This is necessary if Quotient is aliased with LHS.
1904 Quotient.reallocate(BitWidth);
1905
1906 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1907 // There is only one word to consider so use the native versions.
1908 uint64_t lhsValue = LHS.U.pVal[0];
1909 Quotient = lhsValue / RHS;
1910 Remainder = lhsValue % RHS;
1911 return;
1912 }
1913
1914 // Okay, lets do it the long way
1915 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1916 // Clear the rest of the Quotient.
1917 std::memset(Quotient.U.pVal + lhsWords, 0,
1918 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1919 }
1920
sdivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)1921 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1922 APInt &Quotient, APInt &Remainder) {
1923 if (LHS.isNegative()) {
1924 if (RHS.isNegative())
1925 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1926 else {
1927 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1928 Quotient.negate();
1929 }
1930 Remainder.negate();
1931 } else if (RHS.isNegative()) {
1932 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1933 Quotient.negate();
1934 } else {
1935 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1936 }
1937 }
1938
sdivrem(const APInt & LHS,int64_t RHS,APInt & Quotient,int64_t & Remainder)1939 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1940 APInt &Quotient, int64_t &Remainder) {
1941 uint64_t R = Remainder;
1942 if (LHS.isNegative()) {
1943 if (RHS < 0)
1944 APInt::udivrem(-LHS, -RHS, Quotient, R);
1945 else {
1946 APInt::udivrem(-LHS, RHS, Quotient, R);
1947 Quotient.negate();
1948 }
1949 R = -R;
1950 } else if (RHS < 0) {
1951 APInt::udivrem(LHS, -RHS, Quotient, R);
1952 Quotient.negate();
1953 } else {
1954 APInt::udivrem(LHS, RHS, Quotient, R);
1955 }
1956 Remainder = R;
1957 }
1958
sadd_ov(const APInt & RHS,bool & Overflow) const1959 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1960 APInt Res = *this+RHS;
1961 Overflow = isNonNegative() == RHS.isNonNegative() &&
1962 Res.isNonNegative() != isNonNegative();
1963 return Res;
1964 }
1965
uadd_ov(const APInt & RHS,bool & Overflow) const1966 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1967 APInt Res = *this+RHS;
1968 Overflow = Res.ult(RHS);
1969 return Res;
1970 }
1971
ssub_ov(const APInt & RHS,bool & Overflow) const1972 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1973 APInt Res = *this - RHS;
1974 Overflow = isNonNegative() != RHS.isNonNegative() &&
1975 Res.isNonNegative() != isNonNegative();
1976 return Res;
1977 }
1978
usub_ov(const APInt & RHS,bool & Overflow) const1979 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1980 APInt Res = *this-RHS;
1981 Overflow = Res.ugt(*this);
1982 return Res;
1983 }
1984
sdiv_ov(const APInt & RHS,bool & Overflow) const1985 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1986 // MININT/-1 --> overflow.
1987 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1988 return sdiv(RHS);
1989 }
1990
smul_ov(const APInt & RHS,bool & Overflow) const1991 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1992 APInt Res = *this * RHS;
1993
1994 if (*this != 0 && RHS != 0)
1995 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1996 else
1997 Overflow = false;
1998 return Res;
1999 }
2000
umul_ov(const APInt & RHS,bool & Overflow) const2001 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2002 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
2003 Overflow = true;
2004 return *this * RHS;
2005 }
2006
2007 APInt Res = lshr(1) * RHS;
2008 Overflow = Res.isNegative();
2009 Res <<= 1;
2010 if ((*this)[0]) {
2011 Res += RHS;
2012 if (Res.ult(RHS))
2013 Overflow = true;
2014 }
2015 return Res;
2016 }
2017
sshl_ov(const APInt & ShAmt,bool & Overflow) const2018 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2019 Overflow = ShAmt.uge(getBitWidth());
2020 if (Overflow)
2021 return APInt(BitWidth, 0);
2022
2023 if (isNonNegative()) // Don't allow sign change.
2024 Overflow = ShAmt.uge(countLeadingZeros());
2025 else
2026 Overflow = ShAmt.uge(countLeadingOnes());
2027
2028 return *this << ShAmt;
2029 }
2030
ushl_ov(const APInt & ShAmt,bool & Overflow) const2031 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2032 Overflow = ShAmt.uge(getBitWidth());
2033 if (Overflow)
2034 return APInt(BitWidth, 0);
2035
2036 Overflow = ShAmt.ugt(countLeadingZeros());
2037
2038 return *this << ShAmt;
2039 }
2040
sadd_sat(const APInt & RHS) const2041 APInt APInt::sadd_sat(const APInt &RHS) const {
2042 bool Overflow;
2043 APInt Res = sadd_ov(RHS, Overflow);
2044 if (!Overflow)
2045 return Res;
2046
2047 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2048 : APInt::getSignedMaxValue(BitWidth);
2049 }
2050
uadd_sat(const APInt & RHS) const2051 APInt APInt::uadd_sat(const APInt &RHS) const {
2052 bool Overflow;
2053 APInt Res = uadd_ov(RHS, Overflow);
2054 if (!Overflow)
2055 return Res;
2056
2057 return APInt::getMaxValue(BitWidth);
2058 }
2059
ssub_sat(const APInt & RHS) const2060 APInt APInt::ssub_sat(const APInt &RHS) const {
2061 bool Overflow;
2062 APInt Res = ssub_ov(RHS, Overflow);
2063 if (!Overflow)
2064 return Res;
2065
2066 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2067 : APInt::getSignedMaxValue(BitWidth);
2068 }
2069
usub_sat(const APInt & RHS) const2070 APInt APInt::usub_sat(const APInt &RHS) const {
2071 bool Overflow;
2072 APInt Res = usub_ov(RHS, Overflow);
2073 if (!Overflow)
2074 return Res;
2075
2076 return APInt(BitWidth, 0);
2077 }
2078
smul_sat(const APInt & RHS) const2079 APInt APInt::smul_sat(const APInt &RHS) const {
2080 bool Overflow;
2081 APInt Res = smul_ov(RHS, Overflow);
2082 if (!Overflow)
2083 return Res;
2084
2085 // The result is negative if one and only one of inputs is negative.
2086 bool ResIsNegative = isNegative() ^ RHS.isNegative();
2087
2088 return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2089 : APInt::getSignedMaxValue(BitWidth);
2090 }
2091
umul_sat(const APInt & RHS) const2092 APInt APInt::umul_sat(const APInt &RHS) const {
2093 bool Overflow;
2094 APInt Res = umul_ov(RHS, Overflow);
2095 if (!Overflow)
2096 return Res;
2097
2098 return APInt::getMaxValue(BitWidth);
2099 }
2100
sshl_sat(const APInt & RHS) const2101 APInt APInt::sshl_sat(const APInt &RHS) const {
2102 bool Overflow;
2103 APInt Res = sshl_ov(RHS, Overflow);
2104 if (!Overflow)
2105 return Res;
2106
2107 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2108 : APInt::getSignedMaxValue(BitWidth);
2109 }
2110
ushl_sat(const APInt & RHS) const2111 APInt APInt::ushl_sat(const APInt &RHS) const {
2112 bool Overflow;
2113 APInt Res = ushl_ov(RHS, Overflow);
2114 if (!Overflow)
2115 return Res;
2116
2117 return APInt::getMaxValue(BitWidth);
2118 }
2119
fromString(unsigned numbits,StringRef str,uint8_t radix)2120 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2121 // Check our assumptions here
2122 assert(!str.empty() && "Invalid string length");
2123 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2124 radix == 36) &&
2125 "Radix should be 2, 8, 10, 16, or 36!");
2126
2127 StringRef::iterator p = str.begin();
2128 size_t slen = str.size();
2129 bool isNeg = *p == '-';
2130 if (*p == '-' || *p == '+') {
2131 p++;
2132 slen--;
2133 assert(slen && "String is only a sign, needs a value.");
2134 }
2135 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2136 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2137 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2138 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2139 "Insufficient bit width");
2140
2141 // Allocate memory if needed
2142 if (isSingleWord())
2143 U.VAL = 0;
2144 else
2145 U.pVal = getClearedMemory(getNumWords());
2146
2147 // Figure out if we can shift instead of multiply
2148 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2149
2150 // Enter digit traversal loop
2151 for (StringRef::iterator e = str.end(); p != e; ++p) {
2152 unsigned digit = getDigit(*p, radix);
2153 assert(digit < radix && "Invalid character in digit string");
2154
2155 // Shift or multiply the value by the radix
2156 if (slen > 1) {
2157 if (shift)
2158 *this <<= shift;
2159 else
2160 *this *= radix;
2161 }
2162
2163 // Add in the digit we just interpreted
2164 *this += digit;
2165 }
2166 // If its negative, put it in two's complement form
2167 if (isNeg)
2168 this->negate();
2169 }
2170
toString(SmallVectorImpl<char> & Str,unsigned Radix,bool Signed,bool formatAsCLiteral) const2171 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2172 bool Signed, bool formatAsCLiteral) const {
2173 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2174 Radix == 36) &&
2175 "Radix should be 2, 8, 10, 16, or 36!");
2176
2177 const char *Prefix = "";
2178 if (formatAsCLiteral) {
2179 switch (Radix) {
2180 case 2:
2181 // Binary literals are a non-standard extension added in gcc 4.3:
2182 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2183 Prefix = "0b";
2184 break;
2185 case 8:
2186 Prefix = "0";
2187 break;
2188 case 10:
2189 break; // No prefix
2190 case 16:
2191 Prefix = "0x";
2192 break;
2193 default:
2194 llvm_unreachable("Invalid radix!");
2195 }
2196 }
2197
2198 // First, check for a zero value and just short circuit the logic below.
2199 if (*this == 0) {
2200 while (*Prefix) {
2201 Str.push_back(*Prefix);
2202 ++Prefix;
2203 };
2204 Str.push_back('0');
2205 return;
2206 }
2207
2208 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2209
2210 if (isSingleWord()) {
2211 char Buffer[65];
2212 char *BufPtr = std::end(Buffer);
2213
2214 uint64_t N;
2215 if (!Signed) {
2216 N = getZExtValue();
2217 } else {
2218 int64_t I = getSExtValue();
2219 if (I >= 0) {
2220 N = I;
2221 } else {
2222 Str.push_back('-');
2223 N = -(uint64_t)I;
2224 }
2225 }
2226
2227 while (*Prefix) {
2228 Str.push_back(*Prefix);
2229 ++Prefix;
2230 };
2231
2232 while (N) {
2233 *--BufPtr = Digits[N % Radix];
2234 N /= Radix;
2235 }
2236 Str.append(BufPtr, std::end(Buffer));
2237 return;
2238 }
2239
2240 APInt Tmp(*this);
2241
2242 if (Signed && isNegative()) {
2243 // They want to print the signed version and it is a negative value
2244 // Flip the bits and add one to turn it into the equivalent positive
2245 // value and put a '-' in the result.
2246 Tmp.negate();
2247 Str.push_back('-');
2248 }
2249
2250 while (*Prefix) {
2251 Str.push_back(*Prefix);
2252 ++Prefix;
2253 };
2254
2255 // We insert the digits backward, then reverse them to get the right order.
2256 unsigned StartDig = Str.size();
2257
2258 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2259 // because the number of bits per digit (1, 3 and 4 respectively) divides
2260 // equally. We just shift until the value is zero.
2261 if (Radix == 2 || Radix == 8 || Radix == 16) {
2262 // Just shift tmp right for each digit width until it becomes zero
2263 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2264 unsigned MaskAmt = Radix - 1;
2265
2266 while (Tmp.getBoolValue()) {
2267 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2268 Str.push_back(Digits[Digit]);
2269 Tmp.lshrInPlace(ShiftAmt);
2270 }
2271 } else {
2272 while (Tmp.getBoolValue()) {
2273 uint64_t Digit;
2274 udivrem(Tmp, Radix, Tmp, Digit);
2275 assert(Digit < Radix && "divide failed");
2276 Str.push_back(Digits[Digit]);
2277 }
2278 }
2279
2280 // Reverse the digits before returning.
2281 std::reverse(Str.begin()+StartDig, Str.end());
2282 }
2283
2284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const2285 LLVM_DUMP_METHOD void APInt::dump() const {
2286 SmallString<40> S, U;
2287 this->toStringUnsigned(U);
2288 this->toStringSigned(S);
2289 dbgs() << "APInt(" << BitWidth << "b, "
2290 << U << "u " << S << "s)\n";
2291 }
2292 #endif
2293
print(raw_ostream & OS,bool isSigned) const2294 void APInt::print(raw_ostream &OS, bool isSigned) const {
2295 SmallString<40> S;
2296 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2297 OS << S;
2298 }
2299
2300 // This implements a variety of operations on a representation of
2301 // arbitrary precision, two's-complement, bignum integer values.
2302
2303 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2304 // and unrestricting assumption.
2305 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2306 "Part width must be divisible by 2!");
2307
2308 /* Some handy functions local to this file. */
2309
2310 /* Returns the integer part with the least significant BITS set.
2311 BITS cannot be zero. */
lowBitMask(unsigned bits)2312 static inline APInt::WordType lowBitMask(unsigned bits) {
2313 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2314
2315 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2316 }
2317
2318 /* Returns the value of the lower half of PART. */
lowHalf(APInt::WordType part)2319 static inline APInt::WordType lowHalf(APInt::WordType part) {
2320 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2321 }
2322
2323 /* Returns the value of the upper half of PART. */
highHalf(APInt::WordType part)2324 static inline APInt::WordType highHalf(APInt::WordType part) {
2325 return part >> (APInt::APINT_BITS_PER_WORD / 2);
2326 }
2327
2328 /* Returns the bit number of the most significant set bit of a part.
2329 If the input number has no bits set -1U is returned. */
partMSB(APInt::WordType value)2330 static unsigned partMSB(APInt::WordType value) {
2331 return findLastSet(value, ZB_Max);
2332 }
2333
2334 /* Returns the bit number of the least significant set bit of a
2335 part. If the input number has no bits set -1U is returned. */
partLSB(APInt::WordType value)2336 static unsigned partLSB(APInt::WordType value) {
2337 return findFirstSet(value, ZB_Max);
2338 }
2339
2340 /* Sets the least significant part of a bignum to the input value, and
2341 zeroes out higher parts. */
tcSet(WordType * dst,WordType part,unsigned parts)2342 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2343 assert(parts > 0);
2344
2345 dst[0] = part;
2346 for (unsigned i = 1; i < parts; i++)
2347 dst[i] = 0;
2348 }
2349
2350 /* Assign one bignum to another. */
tcAssign(WordType * dst,const WordType * src,unsigned parts)2351 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2352 for (unsigned i = 0; i < parts; i++)
2353 dst[i] = src[i];
2354 }
2355
2356 /* Returns true if a bignum is zero, false otherwise. */
tcIsZero(const WordType * src,unsigned parts)2357 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2358 for (unsigned i = 0; i < parts; i++)
2359 if (src[i])
2360 return false;
2361
2362 return true;
2363 }
2364
2365 /* Extract the given bit of a bignum; returns 0 or 1. */
tcExtractBit(const WordType * parts,unsigned bit)2366 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2367 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2368 }
2369
2370 /* Set the given bit of a bignum. */
tcSetBit(WordType * parts,unsigned bit)2371 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2372 parts[whichWord(bit)] |= maskBit(bit);
2373 }
2374
2375 /* Clears the given bit of a bignum. */
tcClearBit(WordType * parts,unsigned bit)2376 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2377 parts[whichWord(bit)] &= ~maskBit(bit);
2378 }
2379
2380 /* Returns the bit number of the least significant set bit of a
2381 number. If the input number has no bits set -1U is returned. */
tcLSB(const WordType * parts,unsigned n)2382 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2383 for (unsigned i = 0; i < n; i++) {
2384 if (parts[i] != 0) {
2385 unsigned lsb = partLSB(parts[i]);
2386
2387 return lsb + i * APINT_BITS_PER_WORD;
2388 }
2389 }
2390
2391 return -1U;
2392 }
2393
2394 /* Returns the bit number of the most significant set bit of a number.
2395 If the input number has no bits set -1U is returned. */
tcMSB(const WordType * parts,unsigned n)2396 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2397 do {
2398 --n;
2399
2400 if (parts[n] != 0) {
2401 unsigned msb = partMSB(parts[n]);
2402
2403 return msb + n * APINT_BITS_PER_WORD;
2404 }
2405 } while (n);
2406
2407 return -1U;
2408 }
2409
2410 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2411 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2412 the least significant bit of DST. All high bits above srcBITS in
2413 DST are zero-filled. */
2414 void
tcExtract(WordType * dst,unsigned dstCount,const WordType * src,unsigned srcBits,unsigned srcLSB)2415 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2416 unsigned srcBits, unsigned srcLSB) {
2417 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2418 assert(dstParts <= dstCount);
2419
2420 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2421 tcAssign (dst, src + firstSrcPart, dstParts);
2422
2423 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2424 tcShiftRight (dst, dstParts, shift);
2425
2426 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2427 in DST. If this is less that srcBits, append the rest, else
2428 clear the high bits. */
2429 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2430 if (n < srcBits) {
2431 WordType mask = lowBitMask (srcBits - n);
2432 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2433 << n % APINT_BITS_PER_WORD);
2434 } else if (n > srcBits) {
2435 if (srcBits % APINT_BITS_PER_WORD)
2436 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2437 }
2438
2439 /* Clear high parts. */
2440 while (dstParts < dstCount)
2441 dst[dstParts++] = 0;
2442 }
2443
2444 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
tcAdd(WordType * dst,const WordType * rhs,WordType c,unsigned parts)2445 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2446 WordType c, unsigned parts) {
2447 assert(c <= 1);
2448
2449 for (unsigned i = 0; i < parts; i++) {
2450 WordType l = dst[i];
2451 if (c) {
2452 dst[i] += rhs[i] + 1;
2453 c = (dst[i] <= l);
2454 } else {
2455 dst[i] += rhs[i];
2456 c = (dst[i] < l);
2457 }
2458 }
2459
2460 return c;
2461 }
2462
2463 /// This function adds a single "word" integer, src, to the multiple
2464 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2465 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2466 /// @returns the carry of the addition.
tcAddPart(WordType * dst,WordType src,unsigned parts)2467 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2468 unsigned parts) {
2469 for (unsigned i = 0; i < parts; ++i) {
2470 dst[i] += src;
2471 if (dst[i] >= src)
2472 return 0; // No need to carry so exit early.
2473 src = 1; // Carry one to next digit.
2474 }
2475
2476 return 1;
2477 }
2478
2479 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
tcSubtract(WordType * dst,const WordType * rhs,WordType c,unsigned parts)2480 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2481 WordType c, unsigned parts) {
2482 assert(c <= 1);
2483
2484 for (unsigned i = 0; i < parts; i++) {
2485 WordType l = dst[i];
2486 if (c) {
2487 dst[i] -= rhs[i] + 1;
2488 c = (dst[i] >= l);
2489 } else {
2490 dst[i] -= rhs[i];
2491 c = (dst[i] > l);
2492 }
2493 }
2494
2495 return c;
2496 }
2497
2498 /// This function subtracts a single "word" (64-bit word), src, from
2499 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2500 /// no further borrowing is needed or it runs out of "words" in dst. The result
2501 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2502 /// exhausted. In other words, if src > dst then this function returns 1,
2503 /// otherwise 0.
2504 /// @returns the borrow out of the subtraction
tcSubtractPart(WordType * dst,WordType src,unsigned parts)2505 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2506 unsigned parts) {
2507 for (unsigned i = 0; i < parts; ++i) {
2508 WordType Dst = dst[i];
2509 dst[i] -= src;
2510 if (src <= Dst)
2511 return 0; // No need to borrow so exit early.
2512 src = 1; // We have to "borrow 1" from next "word"
2513 }
2514
2515 return 1;
2516 }
2517
2518 /* Negate a bignum in-place. */
tcNegate(WordType * dst,unsigned parts)2519 void APInt::tcNegate(WordType *dst, unsigned parts) {
2520 tcComplement(dst, parts);
2521 tcIncrement(dst, parts);
2522 }
2523
2524 /* DST += SRC * MULTIPLIER + CARRY if add is true
2525 DST = SRC * MULTIPLIER + CARRY if add is false
2526
2527 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2528 they must start at the same point, i.e. DST == SRC.
2529
2530 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2531 returned. Otherwise DST is filled with the least significant
2532 DSTPARTS parts of the result, and if all of the omitted higher
2533 parts were zero return zero, otherwise overflow occurred and
2534 return one. */
tcMultiplyPart(WordType * dst,const WordType * src,WordType multiplier,WordType carry,unsigned srcParts,unsigned dstParts,bool add)2535 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2536 WordType multiplier, WordType carry,
2537 unsigned srcParts, unsigned dstParts,
2538 bool add) {
2539 /* Otherwise our writes of DST kill our later reads of SRC. */
2540 assert(dst <= src || dst >= src + srcParts);
2541 assert(dstParts <= srcParts + 1);
2542
2543 /* N loops; minimum of dstParts and srcParts. */
2544 unsigned n = std::min(dstParts, srcParts);
2545
2546 for (unsigned i = 0; i < n; i++) {
2547 WordType low, mid, high, srcPart;
2548
2549 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2550
2551 This cannot overflow, because
2552
2553 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2554
2555 which is less than n^2. */
2556
2557 srcPart = src[i];
2558
2559 if (multiplier == 0 || srcPart == 0) {
2560 low = carry;
2561 high = 0;
2562 } else {
2563 low = lowHalf(srcPart) * lowHalf(multiplier);
2564 high = highHalf(srcPart) * highHalf(multiplier);
2565
2566 mid = lowHalf(srcPart) * highHalf(multiplier);
2567 high += highHalf(mid);
2568 mid <<= APINT_BITS_PER_WORD / 2;
2569 if (low + mid < low)
2570 high++;
2571 low += mid;
2572
2573 mid = highHalf(srcPart) * lowHalf(multiplier);
2574 high += highHalf(mid);
2575 mid <<= APINT_BITS_PER_WORD / 2;
2576 if (low + mid < low)
2577 high++;
2578 low += mid;
2579
2580 /* Now add carry. */
2581 if (low + carry < low)
2582 high++;
2583 low += carry;
2584 }
2585
2586 if (add) {
2587 /* And now DST[i], and store the new low part there. */
2588 if (low + dst[i] < low)
2589 high++;
2590 dst[i] += low;
2591 } else
2592 dst[i] = low;
2593
2594 carry = high;
2595 }
2596
2597 if (srcParts < dstParts) {
2598 /* Full multiplication, there is no overflow. */
2599 assert(srcParts + 1 == dstParts);
2600 dst[srcParts] = carry;
2601 return 0;
2602 }
2603
2604 /* We overflowed if there is carry. */
2605 if (carry)
2606 return 1;
2607
2608 /* We would overflow if any significant unwritten parts would be
2609 non-zero. This is true if any remaining src parts are non-zero
2610 and the multiplier is non-zero. */
2611 if (multiplier)
2612 for (unsigned i = dstParts; i < srcParts; i++)
2613 if (src[i])
2614 return 1;
2615
2616 /* We fitted in the narrow destination. */
2617 return 0;
2618 }
2619
2620 /* DST = LHS * RHS, where DST has the same width as the operands and
2621 is filled with the least significant parts of the result. Returns
2622 one if overflow occurred, otherwise zero. DST must be disjoint
2623 from both operands. */
tcMultiply(WordType * dst,const WordType * lhs,const WordType * rhs,unsigned parts)2624 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2625 const WordType *rhs, unsigned parts) {
2626 assert(dst != lhs && dst != rhs);
2627
2628 int overflow = 0;
2629 tcSet(dst, 0, parts);
2630
2631 for (unsigned i = 0; i < parts; i++)
2632 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2633 parts - i, true);
2634
2635 return overflow;
2636 }
2637
2638 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2639 /// operands. No overflow occurs. DST must be disjoint from both operands.
tcFullMultiply(WordType * dst,const WordType * lhs,const WordType * rhs,unsigned lhsParts,unsigned rhsParts)2640 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2641 const WordType *rhs, unsigned lhsParts,
2642 unsigned rhsParts) {
2643 /* Put the narrower number on the LHS for less loops below. */
2644 if (lhsParts > rhsParts)
2645 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2646
2647 assert(dst != lhs && dst != rhs);
2648
2649 tcSet(dst, 0, rhsParts);
2650
2651 for (unsigned i = 0; i < lhsParts; i++)
2652 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2653 }
2654
2655 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2656 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2657 set REMAINDER to the remainder, return zero. i.e.
2658
2659 OLD_LHS = RHS * LHS + REMAINDER
2660
2661 SCRATCH is a bignum of the same size as the operands and result for
2662 use by the routine; its contents need not be initialized and are
2663 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2664 */
tcDivide(WordType * lhs,const WordType * rhs,WordType * remainder,WordType * srhs,unsigned parts)2665 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2666 WordType *remainder, WordType *srhs,
2667 unsigned parts) {
2668 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2669
2670 unsigned shiftCount = tcMSB(rhs, parts) + 1;
2671 if (shiftCount == 0)
2672 return true;
2673
2674 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2675 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2676 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2677
2678 tcAssign(srhs, rhs, parts);
2679 tcShiftLeft(srhs, parts, shiftCount);
2680 tcAssign(remainder, lhs, parts);
2681 tcSet(lhs, 0, parts);
2682
2683 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2684 the total. */
2685 for (;;) {
2686 int compare = tcCompare(remainder, srhs, parts);
2687 if (compare >= 0) {
2688 tcSubtract(remainder, srhs, 0, parts);
2689 lhs[n] |= mask;
2690 }
2691
2692 if (shiftCount == 0)
2693 break;
2694 shiftCount--;
2695 tcShiftRight(srhs, parts, 1);
2696 if ((mask >>= 1) == 0) {
2697 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2698 n--;
2699 }
2700 }
2701
2702 return false;
2703 }
2704
2705 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2706 /// no restrictions on Count.
tcShiftLeft(WordType * Dst,unsigned Words,unsigned Count)2707 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2708 // Don't bother performing a no-op shift.
2709 if (!Count)
2710 return;
2711
2712 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2713 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2714 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2715
2716 // Fastpath for moving by whole words.
2717 if (BitShift == 0) {
2718 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2719 } else {
2720 while (Words-- > WordShift) {
2721 Dst[Words] = Dst[Words - WordShift] << BitShift;
2722 if (Words > WordShift)
2723 Dst[Words] |=
2724 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2725 }
2726 }
2727
2728 // Fill in the remainder with 0s.
2729 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2730 }
2731
2732 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2733 /// are no restrictions on Count.
tcShiftRight(WordType * Dst,unsigned Words,unsigned Count)2734 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2735 // Don't bother performing a no-op shift.
2736 if (!Count)
2737 return;
2738
2739 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2740 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2741 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2742
2743 unsigned WordsToMove = Words - WordShift;
2744 // Fastpath for moving by whole words.
2745 if (BitShift == 0) {
2746 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2747 } else {
2748 for (unsigned i = 0; i != WordsToMove; ++i) {
2749 Dst[i] = Dst[i + WordShift] >> BitShift;
2750 if (i + 1 != WordsToMove)
2751 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2752 }
2753 }
2754
2755 // Fill in the remainder with 0s.
2756 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2757 }
2758
2759 /* Bitwise and of two bignums. */
tcAnd(WordType * dst,const WordType * rhs,unsigned parts)2760 void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
2761 for (unsigned i = 0; i < parts; i++)
2762 dst[i] &= rhs[i];
2763 }
2764
2765 /* Bitwise inclusive or of two bignums. */
tcOr(WordType * dst,const WordType * rhs,unsigned parts)2766 void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
2767 for (unsigned i = 0; i < parts; i++)
2768 dst[i] |= rhs[i];
2769 }
2770
2771 /* Bitwise exclusive or of two bignums. */
tcXor(WordType * dst,const WordType * rhs,unsigned parts)2772 void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
2773 for (unsigned i = 0; i < parts; i++)
2774 dst[i] ^= rhs[i];
2775 }
2776
2777 /* Complement a bignum in-place. */
tcComplement(WordType * dst,unsigned parts)2778 void APInt::tcComplement(WordType *dst, unsigned parts) {
2779 for (unsigned i = 0; i < parts; i++)
2780 dst[i] = ~dst[i];
2781 }
2782
2783 /* Comparison (unsigned) of two bignums. */
tcCompare(const WordType * lhs,const WordType * rhs,unsigned parts)2784 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2785 unsigned parts) {
2786 while (parts) {
2787 parts--;
2788 if (lhs[parts] != rhs[parts])
2789 return (lhs[parts] > rhs[parts]) ? 1 : -1;
2790 }
2791
2792 return 0;
2793 }
2794
2795 /* Set the least significant BITS bits of a bignum, clear the
2796 rest. */
tcSetLeastSignificantBits(WordType * dst,unsigned parts,unsigned bits)2797 void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
2798 unsigned bits) {
2799 unsigned i = 0;
2800 while (bits > APINT_BITS_PER_WORD) {
2801 dst[i++] = ~(WordType) 0;
2802 bits -= APINT_BITS_PER_WORD;
2803 }
2804
2805 if (bits)
2806 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
2807
2808 while (i < parts)
2809 dst[i++] = 0;
2810 }
2811
RoundingUDiv(const APInt & A,const APInt & B,APInt::Rounding RM)2812 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2813 APInt::Rounding RM) {
2814 // Currently udivrem always rounds down.
2815 switch (RM) {
2816 case APInt::Rounding::DOWN:
2817 case APInt::Rounding::TOWARD_ZERO:
2818 return A.udiv(B);
2819 case APInt::Rounding::UP: {
2820 APInt Quo, Rem;
2821 APInt::udivrem(A, B, Quo, Rem);
2822 if (Rem == 0)
2823 return Quo;
2824 return Quo + 1;
2825 }
2826 }
2827 llvm_unreachable("Unknown APInt::Rounding enum");
2828 }
2829
RoundingSDiv(const APInt & A,const APInt & B,APInt::Rounding RM)2830 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2831 APInt::Rounding RM) {
2832 switch (RM) {
2833 case APInt::Rounding::DOWN:
2834 case APInt::Rounding::UP: {
2835 APInt Quo, Rem;
2836 APInt::sdivrem(A, B, Quo, Rem);
2837 if (Rem == 0)
2838 return Quo;
2839 // This algorithm deals with arbitrary rounding mode used by sdivrem.
2840 // We want to check whether the non-integer part of the mathematical value
2841 // is negative or not. If the non-integer part is negative, we need to round
2842 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2843 // already rounded down.
2844 if (RM == APInt::Rounding::DOWN) {
2845 if (Rem.isNegative() != B.isNegative())
2846 return Quo - 1;
2847 return Quo;
2848 }
2849 if (Rem.isNegative() != B.isNegative())
2850 return Quo;
2851 return Quo + 1;
2852 }
2853 // Currently sdiv rounds towards zero.
2854 case APInt::Rounding::TOWARD_ZERO:
2855 return A.sdiv(B);
2856 }
2857 llvm_unreachable("Unknown APInt::Rounding enum");
2858 }
2859
2860 Optional<APInt>
SolveQuadraticEquationWrap(APInt A,APInt B,APInt C,unsigned RangeWidth)2861 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2862 unsigned RangeWidth) {
2863 unsigned CoeffWidth = A.getBitWidth();
2864 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2865 assert(RangeWidth <= CoeffWidth &&
2866 "Value range width should be less than coefficient width");
2867 assert(RangeWidth > 1 && "Value range bit width should be > 1");
2868
2869 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2870 << "x + " << C << ", rw:" << RangeWidth << '\n');
2871
2872 // Identify 0 as a (non)solution immediately.
2873 if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
2874 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2875 return APInt(CoeffWidth, 0);
2876 }
2877
2878 // The result of APInt arithmetic has the same bit width as the operands,
2879 // so it can actually lose high bits. A product of two n-bit integers needs
2880 // 2n-1 bits to represent the full value.
2881 // The operation done below (on quadratic coefficients) that can produce
2882 // the largest value is the evaluation of the equation during bisection,
2883 // which needs 3 times the bitwidth of the coefficient, so the total number
2884 // of required bits is 3n.
2885 //
2886 // The purpose of this extension is to simulate the set Z of all integers,
2887 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2888 // and negative numbers (not so much in a modulo arithmetic). The method
2889 // used to solve the equation is based on the standard formula for real
2890 // numbers, and uses the concepts of "positive" and "negative" with their
2891 // usual meanings.
2892 CoeffWidth *= 3;
2893 A = A.sext(CoeffWidth);
2894 B = B.sext(CoeffWidth);
2895 C = C.sext(CoeffWidth);
2896
2897 // Make A > 0 for simplicity. Negate cannot overflow at this point because
2898 // the bit width has increased.
2899 if (A.isNegative()) {
2900 A.negate();
2901 B.negate();
2902 C.negate();
2903 }
2904
2905 // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2906 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2907 // and R = 2^BitWidth.
2908 // Since we're trying not only to find exact solutions, but also values
2909 // that "wrap around", such a set will always have a solution, i.e. an x
2910 // that satisfies at least one of the equations, or such that |q(x)|
2911 // exceeds kR, while |q(x-1)| for the same k does not.
2912 //
2913 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2914 // positive solution n (in the above sense), and also such that the n
2915 // will be the least among all solutions corresponding to k = 0, 1, ...
2916 // (more precisely, the least element in the set
2917 // { n(k) | k is such that a solution n(k) exists }).
2918 //
2919 // Consider the parabola (over real numbers) that corresponds to the
2920 // quadratic equation. Since A > 0, the arms of the parabola will point
2921 // up. Picking different values of k will shift it up and down by R.
2922 //
2923 // We want to shift the parabola in such a way as to reduce the problem
2924 // of solving q(x) = kR to solving shifted_q(x) = 0.
2925 // (The interesting solutions are the ceilings of the real number
2926 // solutions.)
2927 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2928 APInt TwoA = 2 * A;
2929 APInt SqrB = B * B;
2930 bool PickLow;
2931
2932 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2933 assert(A.isStrictlyPositive());
2934 APInt T = V.abs().urem(A);
2935 if (T.isNullValue())
2936 return V;
2937 return V.isNegative() ? V+T : V+(A-T);
2938 };
2939
2940 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2941 // iff B is positive.
2942 if (B.isNonNegative()) {
2943 // If B >= 0, the vertex it at a negative location (or at 0), so in
2944 // order to have a non-negative solution we need to pick k that makes
2945 // C-kR negative. To satisfy all the requirements for the solution
2946 // that we are looking for, it needs to be closest to 0 of all k.
2947 C = C.srem(R);
2948 if (C.isStrictlyPositive())
2949 C -= R;
2950 // Pick the greater solution.
2951 PickLow = false;
2952 } else {
2953 // If B < 0, the vertex is at a positive location. For any solution
2954 // to exist, the discriminant must be non-negative. This means that
2955 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2956 // lower bound on values of k: kR >= C - B^2/4A.
2957 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2958 // Round LowkR up (towards +inf) to the nearest kR.
2959 LowkR = RoundUp(LowkR, R);
2960
2961 // If there exists k meeting the condition above, and such that
2962 // C-kR > 0, there will be two positive real number solutions of
2963 // q(x) = kR. Out of all such values of k, pick the one that makes
2964 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2965 // In other words, find maximum k such that LowkR <= kR < C.
2966 if (C.sgt(LowkR)) {
2967 // If LowkR < C, then such a k is guaranteed to exist because
2968 // LowkR itself is a multiple of R.
2969 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
2970 // Pick the smaller solution.
2971 PickLow = true;
2972 } else {
2973 // If C-kR < 0 for all potential k's, it means that one solution
2974 // will be negative, while the other will be positive. The positive
2975 // solution will shift towards 0 if the parabola is moved up.
2976 // Pick the kR closest to the lower bound (i.e. make C-kR closest
2977 // to 0, or in other words, out of all parabolas that have solutions,
2978 // pick the one that is the farthest "up").
2979 // Since LowkR is itself a multiple of R, simply take C-LowkR.
2980 C -= LowkR;
2981 // Pick the greater solution.
2982 PickLow = false;
2983 }
2984 }
2985
2986 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2987 << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2988
2989 APInt D = SqrB - 4*A*C;
2990 assert(D.isNonNegative() && "Negative discriminant");
2991 APInt SQ = D.sqrt();
2992
2993 APInt Q = SQ * SQ;
2994 bool InexactSQ = Q != D;
2995 // The calculated SQ may actually be greater than the exact (non-integer)
2996 // value. If that's the case, decrement SQ to get a value that is lower.
2997 if (Q.sgt(D))
2998 SQ -= 1;
2999
3000 APInt X;
3001 APInt Rem;
3002
3003 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
3004 // When using the quadratic formula directly, the calculated low root
3005 // may be greater than the exact one, since we would be subtracting SQ.
3006 // To make sure that the calculated root is not greater than the exact
3007 // one, subtract SQ+1 when calculating the low root (for inexact value
3008 // of SQ).
3009 if (PickLow)
3010 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
3011 else
3012 APInt::sdivrem(-B + SQ, TwoA, X, Rem);
3013
3014 // The updated coefficients should be such that the (exact) solution is
3015 // positive. Since APInt division rounds towards 0, the calculated one
3016 // can be 0, but cannot be negative.
3017 assert(X.isNonNegative() && "Solution should be non-negative");
3018
3019 if (!InexactSQ && Rem.isNullValue()) {
3020 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
3021 return X;
3022 }
3023
3024 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
3025 // The exact value of the square root of D should be between SQ and SQ+1.
3026 // This implies that the solution should be between that corresponding to
3027 // SQ (i.e. X) and that corresponding to SQ+1.
3028 //
3029 // The calculated X cannot be greater than the exact (real) solution.
3030 // Actually it must be strictly less than the exact solution, while
3031 // X+1 will be greater than or equal to it.
3032
3033 APInt VX = (A*X + B)*X + C;
3034 APInt VY = VX + TwoA*X + A + B;
3035 bool SignChange = VX.isNegative() != VY.isNegative() ||
3036 VX.isNullValue() != VY.isNullValue();
3037 // If the sign did not change between X and X+1, X is not a valid solution.
3038 // This could happen when the actual (exact) roots don't have an integer
3039 // between them, so they would both be contained between X and X+1.
3040 if (!SignChange) {
3041 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
3042 return None;
3043 }
3044
3045 X += 1;
3046 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
3047 return X;
3048 }
3049
3050 Optional<unsigned>
GetMostSignificantDifferentBit(const APInt & A,const APInt & B)3051 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
3052 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
3053 if (A == B)
3054 return llvm::None;
3055 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
3056 }
3057
3058 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3059 /// with the integer held in IntVal.
StoreIntToMemory(const APInt & IntVal,uint8_t * Dst,unsigned StoreBytes)3060 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3061 unsigned StoreBytes) {
3062 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3063 const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3064
3065 if (sys::IsLittleEndianHost) {
3066 // Little-endian host - the source is ordered from LSB to MSB. Order the
3067 // destination from LSB to MSB: Do a straight copy.
3068 memcpy(Dst, Src, StoreBytes);
3069 } else {
3070 // Big-endian host - the source is an array of 64 bit words ordered from
3071 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
3072 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3073 while (StoreBytes > sizeof(uint64_t)) {
3074 StoreBytes -= sizeof(uint64_t);
3075 // May not be aligned so use memcpy.
3076 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3077 Src += sizeof(uint64_t);
3078 }
3079
3080 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3081 }
3082 }
3083
3084 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3085 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
LoadIntFromMemory(APInt & IntVal,const uint8_t * Src,unsigned LoadBytes)3086 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3087 unsigned LoadBytes) {
3088 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3089 uint8_t *Dst = reinterpret_cast<uint8_t *>(
3090 const_cast<uint64_t *>(IntVal.getRawData()));
3091
3092 if (sys::IsLittleEndianHost)
3093 // Little-endian host - the destination must be ordered from LSB to MSB.
3094 // The source is ordered from LSB to MSB: Do a straight copy.
3095 memcpy(Dst, Src, LoadBytes);
3096 else {
3097 // Big-endian - the destination is an array of 64 bit words ordered from
3098 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
3099 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3100 // a word.
3101 while (LoadBytes > sizeof(uint64_t)) {
3102 LoadBytes -= sizeof(uint64_t);
3103 // May not be aligned so use memcpy.
3104 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3105 Dst += sizeof(uint64_t);
3106 }
3107
3108 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3109 }
3110 }
3111