1//=- AArch64SchedCyclone.td - Cyclone Scheduling Definitions -*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the machine model for AArch64 Cyclone to support
10// instruction scheduling and other instruction cost heuristics.
11//
12//===----------------------------------------------------------------------===//
13
14def CycloneModel : SchedMachineModel {
15  let IssueWidth = 6; // 6 micro-ops are dispatched per cycle.
16  let MicroOpBufferSize = 192; // Based on the reorder buffer.
17  let LoadLatency = 4; // Optimistic load latency.
18  let MispredictPenalty = 16; // 14-19 cycles are typical.
19  let CompleteModel = 1;
20
21  list<Predicate> UnsupportedFeatures = !listconcat(SVEUnsupported.F,
22                                                    PAUnsupported.F,
23                                                    SMEUnsupported.F);
24}
25
26//===----------------------------------------------------------------------===//
27// Define each kind of processor resource and number available on Cyclone.
28
29// 4 integer pipes
30def CyUnitI : ProcResource<4> {
31  let BufferSize = 48;
32}
33
34// 2 branch units: I[0..1]
35def CyUnitB : ProcResource<2> {
36  let Super  = CyUnitI;
37  let BufferSize = 24;
38}
39
40// 1 indirect-branch unit: I[0]
41def CyUnitBR : ProcResource<1> {
42  let Super  = CyUnitB;
43}
44
45// 2 shifter pipes: I[2..3]
46// When an instruction consumes a CyUnitIS, it also consumes a CyUnitI
47def CyUnitIS : ProcResource<2> {
48  let Super = CyUnitI;
49  let BufferSize = 24;
50}
51
52// 1 mul pipe: I[0]
53def CyUnitIM : ProcResource<1> {
54  let Super = CyUnitBR;
55  let BufferSize = 32;
56}
57
58// 1 div pipe: I[1]
59def CyUnitID : ProcResource<1> {
60  let Super = CyUnitB;
61  let BufferSize = 16;
62}
63
64// 1 integer division unit. This is driven by the ID pipe, but only
65// consumes the pipe for one cycle at issue and another cycle at writeback.
66def CyUnitIntDiv : ProcResource<1>;
67
68// 2 ld/st pipes.
69def CyUnitLS : ProcResource<2> {
70  let BufferSize = 28;
71}
72
73// 3 fp/vector pipes.
74def CyUnitV : ProcResource<3> {
75  let BufferSize = 48;
76}
77// 2 fp/vector arithmetic and multiply pipes: V[0-1]
78def CyUnitVM : ProcResource<2> {
79  let Super = CyUnitV;
80  let BufferSize = 32;
81}
82// 1 fp/vector division/sqrt pipe: V[2]
83def CyUnitVD : ProcResource<1> {
84  let Super = CyUnitV;
85  let BufferSize = 16;
86}
87// 1 fp compare pipe: V[0]
88def CyUnitVC : ProcResource<1> {
89  let Super = CyUnitVM;
90  let BufferSize = 16;
91}
92
93// 2 fp division/square-root units.  These are driven by the VD pipe,
94// but only consume the pipe for one cycle at issue and a cycle at writeback.
95def CyUnitFloatDiv : ProcResource<2>;
96
97//===----------------------------------------------------------------------===//
98// Define scheduler read/write resources and latency on Cyclone.
99// This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1.
100
101let SchedModel = CycloneModel in {
102
103//---
104// 7.8.1. Moves
105//---
106
107// A single nop micro-op (uX).
108def WriteX : SchedWriteRes<[]> { let Latency = 0; }
109
110// Move zero is a register rename (to machine register zero).
111// The move is replaced by a single nop micro-op.
112// MOVZ Rd, #0
113// AND Rd, Rzr, #imm
114def WriteZPred : SchedPredicate<[{TII->isGPRZero(*MI)}]>;
115def WriteImmZ  : SchedWriteVariant<[
116                   SchedVar<WriteZPred, [WriteX]>,
117                   SchedVar<NoSchedPred, [WriteImm]>]>;
118def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>;
119
120// Move GPR is a register rename and single nop micro-op.
121// ORR Xd, XZR, Xm
122// ADD Xd, Xn, #0
123def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(*MI)}]>;
124def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(*MI)}]>;
125def WriteMov      : SchedWriteVariant<[
126                      SchedVar<WriteIMovPred, [WriteX]>,
127                      SchedVar<WriteVMovPred, [WriteX]>,
128                      SchedVar<NoSchedPred,   [WriteI]>]>;
129def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>;
130
131// Move non-zero immediate is an integer ALU op.
132// MOVN,MOVZ,MOVK
133def : WriteRes<WriteImm, [CyUnitI]>;
134
135//---
136// 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional,
137//              Shifts and Bitfield Operations
138//---
139
140// ADR,ADRP
141// ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri
142// ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr
143// ADC(S),SBC(S)
144// Aliases: CMN, CMP, TST
145//
146// Conditional operations.
147// CCMNi,CCMPi,CCMNr,CCMPr,
148// CSEL,CSINC,CSINV,CSNEG
149//
150// Bit counting and reversal operations.
151// CLS,CLZ,RBIT,REV,REV16,REV32
152def : WriteRes<WriteI, [CyUnitI]>;
153
154// ADD with shifted register operand is a single micro-op that
155// consumes a shift pipeline for two cycles.
156// ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs
157// EXAMPLE: ADDrs Xn, Xm LSL #imm
158def : WriteRes<WriteISReg, [CyUnitIS]> {
159  let Latency = 2;
160  let ResourceCycles = [2];
161}
162
163// ADD with extended register operand is the same as shifted reg operand.
164// ADD(S)re,SUB(S)re
165// EXAMPLE: ADDXre Xn, Xm, UXTB #1
166def : WriteRes<WriteIEReg, [CyUnitIS]> {
167  let Latency = 2;
168  let ResourceCycles = [2];
169}
170
171// Variable shift and bitfield operations.
172// ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM
173def : WriteRes<WriteIS, [CyUnitIS]>;
174
175// EXTR Shifts a pair of registers and requires two micro-ops.
176// The second micro-op is delayed, as modeled by ReadExtrHi.
177// EXTR Xn, Xm, #imm
178def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> {
179  let Latency = 2;
180  let NumMicroOps = 2;
181}
182
183// EXTR's first register read is delayed by one cycle, effectively
184// shortening its writer's latency.
185// EXTR Xn, Xm, #imm
186def : ReadAdvance<ReadExtrHi, 1>;
187
188//---
189// 7.8.6. Multiplies
190//---
191
192// MUL/MNEG are aliases for MADD/MSUB.
193// MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL
194def : WriteRes<WriteIM32, [CyUnitIM]> {
195  let Latency = 4;
196}
197// MADDX,MSUBX,SMULH,UMULH
198def : WriteRes<WriteIM64, [CyUnitIM]> {
199  let Latency = 5;
200}
201
202//---
203// 7.8.7. Divide
204//---
205
206// 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient.
207// The ID pipe is consumed for 2 cycles: issue and writeback.
208// SDIVW,UDIVW
209def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> {
210  let Latency = 10;
211  let ResourceCycles = [2, 10];
212}
213// 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient.
214// The ID pipe is consumed for 2 cycles: issue and writeback.
215// SDIVX,UDIVX
216def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> {
217  let Latency = 13;
218  let ResourceCycles = [2, 13];
219}
220
221//---
222// 7.8.8,7.8.10. Load/Store, single element
223//---
224
225// Integer loads take 4 cycles and use one LS unit for one cycle.
226def : WriteRes<WriteLD, [CyUnitLS]> {
227  let Latency = 4;
228}
229
230// Store-load forwarding is 4 cycles.
231//
232// Note: The store-exclusive sequence incorporates this
233// latency. However, general heuristics should not model the
234// dependence between a store and subsequent may-alias load because
235// hardware speculation works.
236def : WriteRes<WriteST, [CyUnitLS]> {
237  let Latency = 4;
238}
239
240// Load from base address plus an optionally scaled register offset.
241// Rt latency is latency WriteIS + WriteLD.
242// EXAMPLE: LDR Xn, Xm [, lsl 3]
243def CyWriteLDIdx : SchedWriteVariant<[
244  SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register.
245  SchedVar<NoSchedPred,   [WriteLD]>]>;        // Load from register offset.
246def : SchedAlias<WriteLDIdx, CyWriteLDIdx>;    // Map AArch64->Cyclone type.
247
248// EXAMPLE: STR Xn, Xm [, lsl 3]
249def CyWriteSTIdx : SchedWriteVariant<[
250  SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register.
251  SchedVar<NoSchedPred,   [WriteST]>]>;        // Store to register offset.
252def : SchedAlias<WriteSTIdx, CyWriteSTIdx>;    // Map AArch64->Cyclone type.
253
254// Read the (unshifted) base register Xn in the second micro-op one cycle later.
255// EXAMPLE: LDR Xn, Xm [, lsl 3]
256def ReadBaseRS : SchedReadAdvance<1>;
257def CyReadAdrBase : SchedReadVariant<[
258  SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset.
259  SchedVar<NoSchedPred,   [ReadDefault]>]>;   // Read base reg with no shift.
260def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map AArch64->Cyclone type.
261
262//---
263// 7.8.9,7.8.11. Load/Store, paired
264//---
265
266// Address pre/post increment is a simple ALU op with one cycle latency.
267def : WriteRes<WriteAdr, [CyUnitI]>;
268
269// LDP high register write is fused with the load, but a nop micro-op remains.
270def : WriteRes<WriteLDHi, []> {
271  let Latency = 4;
272}
273
274// STP is a vector op and store, except for QQ, which is just two stores.
275def : SchedAlias<WriteSTP, WriteVSTShuffle>;
276def : InstRW<[WriteST, WriteST], (instrs STPQi)>;
277
278//---
279// 7.8.13. Branches
280//---
281
282// Branches take a single micro-op.
283// The misprediction penalty is defined as a SchedMachineModel property.
284def : WriteRes<WriteBr,    [CyUnitB]>  {let Latency = 0;}
285def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;}
286
287//---
288// 7.8.14. Never-issued Instructions, Barrier and Hint Operations
289//---
290
291// NOP,SEV,SEVL,WFE,WFI,YIELD
292def : WriteRes<WriteHint, []> {let Latency = 0;}
293// ISB
294def : InstRW<[WriteI], (instrs ISB)>;
295// SLREX,DMB,DSB
296def : WriteRes<WriteBarrier, [CyUnitLS]>;
297
298// System instructions get an invalid latency because the latency of
299// other operations across them is meaningless.
300def : WriteRes<WriteSys, []> {let Latency = -1;}
301
302//===----------------------------------------------------------------------===//
303// 7.9 Vector Unit Instructions
304
305// Simple vector operations take 2 cycles.
306def : WriteRes<WriteV, [CyUnitV]> {let Latency = 2;}
307
308// Define some longer latency vector op types for Cyclone.
309def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
310def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;}
311def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;}
312def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;}
313
314// Simple floating-point operations take 2 cycles.
315def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;}
316
317//---
318// 7.9.1 Vector Moves
319//---
320
321// TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently
322// generates expensive int-float conversion instead:
323// FMOVDi Dd, #0.0
324// FMOVv2f64ns Vd.2d, #0.0
325
326// FMOVSi,FMOVDi
327def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;}
328
329// MOVI,MVNI are WriteV
330// FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV
331
332// Move FPR is a register rename and single nop micro-op.
333// ORR.16b Vd,Vn,Vn
334// COPY is handled above in the WriteMov Variant.
335def WriteVMov    : SchedWriteVariant<[
336                     SchedVar<WriteVMovPred, [WriteX]>,
337                     SchedVar<NoSchedPred,   [WriteV]>]>;
338def : InstRW<[WriteVMov], (instrs ORRv16i8)>;
339
340// FMOVSr,FMOVDr are WriteF.
341
342// MOV V,V is a WriteV.
343
344// CPY D,V[x] is a WriteV
345
346// INS V[x],V[y] is a WriteV.
347
348// FMOVWSr,FMOVXDr,FMOVXDHighr
349def : WriteRes<WriteFCopy, [CyUnitLS]> {
350  let Latency = 5;
351}
352
353// FMOVSWr,FMOVDXr
354def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>;
355
356// INS V[x],R
357def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteV]>;
358def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>;
359
360// SMOV,UMOV R,V[x]
361def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>;
362def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>;
363
364// DUP V,R
365def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>;
366
367// DUP V,V[x] is a WriteV.
368
369//---
370// 7.9.2 Integer Arithmetic, Logical, and Comparisons
371//---
372
373// BIC,ORR V,#imm are WriteV
374
375def : InstRW<[CyWriteV3], (instregex "ABSv")>;
376
377// MVN,NEG,NOT are WriteV
378
379def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>;
380
381// ADDP is a WriteV.
382def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
383def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>;
384
385def : InstRW<[CyWriteV3],
386             (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>;
387
388def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>;
389
390// ADD,SUB are WriteV
391
392// Forward declare.
393def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
394
395// Add/Diff and accumulate uses the vector multiply unit.
396def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
397def CyReadVAccum  : SchedReadAdvance<1,
398                    [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>;
399
400def : InstRW<[CyWriteVAccum, CyReadVAccum],
401             (instregex "SADALP","UADALP")>;
402
403def : InstRW<[CyWriteVAccum, CyReadVAccum],
404             (instregex "SABAv","UABAv","SABALv","UABALv")>;
405
406def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>;
407
408def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>;
409
410def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>;
411
412// WriteV includes:
413// AND,BIC,CMTST,EOR,ORN,ORR
414// ADDP
415// SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD
416// SADDL,SSUBL,UADDL,USUBL
417// SADDW,SSUBW,UADDW,USUBW
418
419def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv",
420                                     "CMLEv","CMLTv",
421                                     "CMHIv","CMHSv")>;
422
423def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv",
424                                     "SMAXPv","SMINPv","UMAXPv","UMINPv")>;
425
426def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv",
427                                       "SABDLv","UABDLv")>;
428
429//---
430// 7.9.3 Floating Point Arithmetic and Comparisons
431//---
432
433// FABS,FNEG are WriteF
434
435def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>;
436def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>;
437
438def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i",
439                                     "FMINPv2i","FMINNMPv2i")>;
440
441def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>;
442
443def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32,
444                                  FSUBSrr,FSUBv2f32,FSUBv4f32,
445                                  FADDPv2f32,FADDPv4f32,
446                                  FABD32,FABDv2f32,FABDv4f32)>;
447def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64,
448                                  FSUBDrr,FSUBv2f64,
449                                  FADDPv2f64,
450                                  FABD64,FABDv2f64)>;
451
452def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>;
453
454def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT",
455                                     "FMAXS","FMAXD","FMAXv",
456                                     "FMINS","FMIND","FMINv",
457                                     "FMAXNMS","FMAXNMD","FMAXNMv",
458                                     "FMINNMS","FMINNMD","FMINNMv",
459                                     "FMAXPv2f","FMAXPv4f",
460                                     "FMINPv2f","FMINPv4f",
461                                     "FMAXNMPv2f","FMAXNMPv4f",
462                                     "FMINNMPv2f","FMINNMPv4f")>;
463
464// FCMP,FCMPE,FCCMP,FCCMPE
465def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;}
466
467// FCSEL is a WriteF.
468
469//---
470// 7.9.4 Shifts and Bitfield Operations
471//---
472
473// SHL is a WriteV
474
475def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
476def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>;
477
478def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
479def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>;
480
481// Shift and accumulate uses the vector multiply unit.
482def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
483def CyReadVShiftAcc  : SchedReadAdvance<1,
484                        [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>;
485def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc],
486             (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>;
487
488// SSHL,USHL are WriteV.
489
490def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>;
491
492// SQSHL,SQSHLU,UQSHL are WriteV.
493
494def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>;
495
496// WriteV includes:
497// SHLL,SSHLL,USHLL
498// SLI,SRI
499// BIF,BIT,BSL,BSP
500// EXT
501// CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN
502// XTN2
503
504def : InstRW<[CyWriteV4],
505             (instregex "RSHRNv","SHRNv",
506                        "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv",
507                        "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>;
508
509//---
510// 7.9.5 Multiplication
511//---
512
513def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;}
514def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv",
515                             "SQDMULLv","SQDMULHv","SQRDMULHv")>;
516
517// FMUL,FMULX,FNMUL default to WriteFMul.
518def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;}
519
520def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;}
521def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed,
522                               FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>;
523
524def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>;
525def : InstRW<[CyWriteVMul, CyReadVMulAcc],
526             (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL",
527              "SQDMLAL","SQDMLSL")>;
528
529def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;}
530def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;}
531def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>;
532def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>;
533
534def : InstRW<[CyWriteSMul, CyReadSMul],
535             (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr,
536              FMLAv2f32,FMLAv4f32,
537              FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>;
538def : InstRW<[CyWriteDMul, CyReadDMul],
539             (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr,
540              FMLAv2f64,FMLAv2i64_indexed,
541              FMLSv2f64,FMLSv2i64_indexed)>;
542
543def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; }
544def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>;
545
546//---
547// 7.9.6 Divide and Square Root
548//---
549
550// FDIV,FSQRT
551// TODO: Add 64-bit variant with 19 cycle latency.
552// TODO: Specialize FSQRT for longer latency.
553def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> {
554  let Latency = 17;
555  let ResourceCycles = [2, 17];
556}
557
558def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>;
559
560def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; }
561def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>;
562
563def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; }
564def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; }
565def : InstRW<[WriteFRECPS],  (instregex "FRECPSv")>;
566def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>;
567
568//---
569// 7.9.7 Integer-FP Conversions
570//---
571
572// FCVT lengthen f16/s32
573def : InstRW<[WriteV], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>;
574
575// FCVT,FCVTN,FCVTXN
576// SCVTF,UCVTF V,V
577// FRINT(AIMNPXZ) V,V
578def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;}
579
580// SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles.
581def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>;
582def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>;
583
584// FCVT Rd, S/D = V6+LD4: 10 cycles
585def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>;
586def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>;
587
588// FCVTL is a WriteV
589
590//---
591// 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup
592//---
593
594def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;}
595def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr,
596                                       AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr,
597                                       SHA1SU0rrr)>;
598
599def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;}
600def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>;
601
602def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;}
603def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr,
604                                       SHA256Hrrr,SHA256H2rrr)>;
605
606// TRN,UZP,ZUP are WriteV.
607
608// TBL,TBX are WriteV.
609
610//---
611// 7.9.11-7.9.14 Load/Store, single element and paired
612//---
613
614// Loading into the vector unit takes 5 cycles vs 4 for integer loads.
615def : WriteRes<WriteVLD, [CyUnitLS]> {
616  let Latency = 5;
617}
618
619// Store-load forwarding is 4 cycles.
620def : WriteRes<WriteVST, [CyUnitLS]> {
621  let Latency = 4;
622}
623
624// WriteVLDPair/VSTPair sequences are expanded by the target description.
625
626//---
627// 7.9.15 Load, element operations
628//---
629
630// Only the first WriteVLD and WriteAdr for writeback matches def operands.
631// Subsequent WriteVLDs consume resources. Since all loaded values have the
632// same latency, this is acceptable.
633
634// Vd is read 5 cycles after issuing the vector load.
635def : ReadAdvance<ReadVLD, 5>;
636
637def : InstRW<[WriteVLD],
638             (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
639def : InstRW<[WriteVLD, WriteAdr],
640             (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
641
642// Register writes from the load's high half are fused micro-ops.
643def : InstRW<[WriteVLD],
644             (instregex "LD1Twov(8b|4h|2s|1d)$")>;
645def : InstRW<[WriteVLD, WriteAdr],
646             (instregex "LD1Twov(8b|4h|2s|1d)_POST")>;
647def : InstRW<[WriteVLD, WriteVLD],
648             (instregex "LD1Twov(16b|8h|4s|2d)$")>;
649def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
650             (instregex "LD1Twov(16b|8h|4s|2d)_POST")>;
651
652def : InstRW<[WriteVLD, WriteVLD],
653             (instregex "LD1Threev(8b|4h|2s|1d)$")>;
654def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
655             (instregex "LD1Threev(8b|4h|2s|1d)_POST")>;
656def : InstRW<[WriteVLD, WriteVLD, WriteVLD],
657             (instregex "LD1Threev(16b|8h|4s|2d)$")>;
658def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD],
659             (instregex "LD1Threev(16b|8h|4s|2d)_POST")>;
660
661def : InstRW<[WriteVLD, WriteVLD],
662             (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
663def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
664             (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>;
665def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD],
666             (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
667def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD],
668             (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>;
669
670def : InstRW<[WriteVLDShuffle, ReadVLD],
671             (instregex "LD1i(8|16|32)$")>;
672def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],
673             (instregex "LD1i(8|16|32)_POST")>;
674
675def : InstRW<[WriteVLDShuffle, ReadVLD],          (instrs LD1i64)>;
676def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>;
677
678def : InstRW<[WriteVLDShuffle],
679             (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
680def : InstRW<[WriteVLDShuffle, WriteAdr],
681             (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
682
683def : InstRW<[WriteVLDShuffle, WriteV],
684             (instregex "LD2Twov(8b|4h|2s)$")>;
685def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
686             (instregex "LD2Twov(8b|4h|2s)_POST$")>;
687def : InstRW<[WriteVLDShuffle, WriteVLDShuffle],
688             (instregex "LD2Twov(16b|8h|4s|2d)$")>;
689def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle],
690             (instregex "LD2Twov(16b|8h|4s|2d)_POST")>;
691
692def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
693             (instregex "LD2i(8|16|32)$")>;
694def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
695             (instregex "LD2i(8|16|32)_POST")>;
696def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
697             (instregex "LD2i64$")>;
698def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
699             (instregex "LD2i64_POST")>;
700
701def : InstRW<[WriteVLDShuffle, WriteV],
702             (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
703def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
704             (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
705
706def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
707             (instregex "LD3Threev(8b|4h|2s)$")>;
708def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
709             (instregex "LD3Threev(8b|4h|2s)_POST")>;
710def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle],
711             (instregex "LD3Threev(16b|8h|4s|2d)$")>;
712def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle],
713             (instregex "LD3Threev(16b|8h|4s|2d)_POST")>;
714
715def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV],
716             (instregex "LD3i(8|16|32)$")>;
717def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV],
718             (instregex "LD3i(8|16|32)_POST")>;
719
720def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV],
721             (instregex "LD3i64$")>;
722def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
723             (instregex "LD3i64_POST")>;
724
725def : InstRW<[WriteVLDShuffle, WriteV, WriteV],
726             (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>;
727def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV],
728             (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>;
729
730def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
731             (instrs LD3Rv1d,LD3Rv2d)>;
732def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
733             (instrs LD3Rv1d_POST,LD3Rv2d_POST)>;
734
735def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
736             (instregex "LD4Fourv(8b|4h|2s)$")>;
737def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
738             (instregex "LD4Fourv(8b|4h|2s)_POST")>;
739def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle,
740              WriteVLDPairShuffle, WriteVLDPairShuffle],
741             (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
742def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle,
743              WriteVLDPairShuffle, WriteVLDPairShuffle],
744             (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>;
745
746def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV, WriteV],
747             (instregex "LD4i(8|16|32)$")>;
748def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV, WriteV],
749             (instregex "LD4i(8|16|32)_POST")>;
750
751
752def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV, WriteV],
753             (instrs LD4i64)>;
754def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
755             (instrs LD4i64_POST)>;
756
757def : InstRW<[WriteVLDShuffle, WriteV, WriteV, WriteV],
758             (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>;
759def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV, WriteV],
760             (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>;
761
762def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
763             (instrs LD4Rv1d,LD4Rv2d)>;
764def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
765             (instrs LD4Rv1d_POST,LD4Rv2d_POST)>;
766
767//---
768// 7.9.16 Store, element operations
769//---
770
771// Only the WriteAdr for writeback matches a def operands.
772// Subsequent WriteVLDs only consume resources.
773
774def : InstRW<[WriteVST],
775             (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
776def : InstRW<[WriteAdr, WriteVST],
777             (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
778
779def : InstRW<[WriteVSTShuffle],
780             (instregex "ST1Twov(8b|4h|2s|1d)$")>;
781def : InstRW<[WriteAdr, WriteVSTShuffle],
782             (instregex "ST1Twov(8b|4h|2s|1d)_POST")>;
783def : InstRW<[WriteVST, WriteVST],
784             (instregex "ST1Twov(16b|8h|4s|2d)$")>;
785def : InstRW<[WriteAdr, WriteVST, WriteVST],
786             (instregex "ST1Twov(16b|8h|4s|2d)_POST")>;
787
788def : InstRW<[WriteVSTShuffle, WriteVST],
789             (instregex "ST1Threev(8b|4h|2s|1d)$")>;
790def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST],
791             (instregex "ST1Threev(8b|4h|2s|1d)_POST")>;
792def : InstRW<[WriteVST, WriteVST, WriteVST],
793             (instregex "ST1Threev(16b|8h|4s|2d)$")>;
794def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST],
795             (instregex "ST1Threev(16b|8h|4s|2d)_POST")>;
796
797def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
798             (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
799def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
800             (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>;
801def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST],
802             (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
803def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST],
804             (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>;
805
806def : InstRW<[WriteVSTShuffle],           (instregex "ST1i(8|16|32)$")>;
807def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>;
808
809def : InstRW<[WriteVSTShuffle],           (instrs ST1i64)>;
810def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>;
811
812def : InstRW<[WriteVSTShuffle],
813             (instregex "ST2Twov(8b|4h|2s)$")>;
814def : InstRW<[WriteAdr, WriteVSTShuffle],
815             (instregex "ST2Twov(8b|4h|2s)_POST")>;
816def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
817             (instregex "ST2Twov(16b|8h|4s|2d)$")>;
818def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
819             (instregex "ST2Twov(16b|8h|4s|2d)_POST")>;
820
821def : InstRW<[WriteVSTShuffle],           (instregex "ST2i(8|16|32)$")>;
822def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>;
823def : InstRW<[WriteVSTShuffle],           (instrs ST2i64)>;
824def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>;
825
826def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
827             (instregex "ST3Threev(8b|4h|2s)$")>;
828def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
829             (instregex "ST3Threev(8b|4h|2s)_POST")>;
830def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
831             (instregex "ST3Threev(16b|8h|4s|2d)$")>;
832def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
833             (instregex "ST3Threev(16b|8h|4s|2d)_POST")>;
834
835def : InstRW<[WriteVSTShuffle],           (instregex "ST3i(8|16|32)$")>;
836def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>;
837
838def :InstRW<[WriteVSTShuffle, WriteVSTShuffle],           (instrs ST3i64)>;
839def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>;
840
841def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle],
842            (instregex "ST4Fourv(8b|4h|2s|1d)$")>;
843def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle],
844            (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>;
845def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle,
846              WriteVSTPairShuffle, WriteVSTPairShuffle],
847             (instregex "ST4Fourv(16b|8h|4s|2d)$")>;
848def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle,
849              WriteVSTPairShuffle, WriteVSTPairShuffle],
850             (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>;
851
852def : InstRW<[WriteVSTPairShuffle],           (instregex "ST4i(8|16|32)$")>;
853def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>;
854
855def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],          (instrs ST4i64)>;
856def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>;
857
858// Atomic operations are not supported.
859def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
860
861//---
862// Unused SchedRead types
863//---
864
865def : ReadAdvance<ReadI, 0>;
866def : ReadAdvance<ReadISReg, 0>;
867def : ReadAdvance<ReadIEReg, 0>;
868def : ReadAdvance<ReadIM, 0>;
869def : ReadAdvance<ReadIMA, 0>;
870def : ReadAdvance<ReadID, 0>;
871
872} // SchedModel = CycloneModel
873