1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Top-level implementation for the NVPTX target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "NVPTXTargetMachine.h"
14 #include "NVPTX.h"
15 #include "NVPTXAllocaHoisting.h"
16 #include "NVPTXAtomicLower.h"
17 #include "NVPTXLowerAggrCopies.h"
18 #include "NVPTXTargetObjectFile.h"
19 #include "NVPTXTargetTransformInfo.h"
20 #include "TargetInfo/NVPTXTargetInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Passes/PassBuilder.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/TargetRegistry.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Transforms/Scalar/GVN.h"
36 #include "llvm/Transforms/Vectorize.h"
37 #include <cassert>
38 #include <string>
39 
40 using namespace llvm;
41 
42 // LSV is still relatively new; this switch lets us turn it off in case we
43 // encounter (or suspect) a bug.
44 static cl::opt<bool>
45     DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
46                                cl::desc("Disable load/store vectorizer"),
47                                cl::init(false), cl::Hidden);
48 
49 // TODO: Remove this flag when we are confident with no regressions.
50 static cl::opt<bool> DisableRequireStructuredCFG(
51     "disable-nvptx-require-structured-cfg",
52     cl::desc("Transitional flag to turn off NVPTX's requirement on preserving "
53              "structured CFG. The requirement should be disabled only when "
54              "unexpected regressions happen."),
55     cl::init(false), cl::Hidden);
56 
57 static cl::opt<bool> UseShortPointersOpt(
58     "nvptx-short-ptr",
59     cl::desc(
60         "Use 32-bit pointers for accessing const/local/shared address spaces."),
61     cl::init(false), cl::Hidden);
62 
63 namespace llvm {
64 
65 void initializeNVVMIntrRangePass(PassRegistry&);
66 void initializeNVVMReflectPass(PassRegistry&);
67 void initializeGenericToNVVMPass(PassRegistry&);
68 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
69 void initializeNVPTXAtomicLowerPass(PassRegistry &);
70 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
71 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
72 void initializeNVPTXLowerArgsPass(PassRegistry &);
73 void initializeNVPTXLowerAllocaPass(PassRegistry &);
74 void initializeNVPTXProxyRegErasurePass(PassRegistry &);
75 
76 } // end namespace llvm
77 
LLVMInitializeNVPTXTarget()78 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXTarget() {
79   // Register the target.
80   RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32());
81   RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64());
82 
83   // FIXME: This pass is really intended to be invoked during IR optimization,
84   // but it's very NVPTX-specific.
85   PassRegistry &PR = *PassRegistry::getPassRegistry();
86   initializeNVVMReflectPass(PR);
87   initializeNVVMIntrRangePass(PR);
88   initializeGenericToNVVMPass(PR);
89   initializeNVPTXAllocaHoistingPass(PR);
90   initializeNVPTXAssignValidGlobalNamesPass(PR);
91   initializeNVPTXAtomicLowerPass(PR);
92   initializeNVPTXLowerArgsPass(PR);
93   initializeNVPTXLowerAllocaPass(PR);
94   initializeNVPTXLowerAggrCopiesPass(PR);
95   initializeNVPTXProxyRegErasurePass(PR);
96 }
97 
computeDataLayout(bool is64Bit,bool UseShortPointers)98 static std::string computeDataLayout(bool is64Bit, bool UseShortPointers) {
99   std::string Ret = "e";
100 
101   if (!is64Bit)
102     Ret += "-p:32:32";
103   else if (UseShortPointers)
104     Ret += "-p3:32:32-p4:32:32-p5:32:32";
105 
106   Ret += "-i64:64-i128:128-v16:16-v32:32-n16:32:64";
107 
108   return Ret;
109 }
110 
NVPTXTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool is64bit)111 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
112                                        StringRef CPU, StringRef FS,
113                                        const TargetOptions &Options,
114                                        Optional<Reloc::Model> RM,
115                                        Optional<CodeModel::Model> CM,
116                                        CodeGenOpt::Level OL, bool is64bit)
117     // The pic relocation model is used regardless of what the client has
118     // specified, as it is the only relocation model currently supported.
119     : LLVMTargetMachine(T, computeDataLayout(is64bit, UseShortPointersOpt), TT,
120                         CPU, FS, Options, Reloc::PIC_,
121                         getEffectiveCodeModel(CM, CodeModel::Small), OL),
122       is64bit(is64bit), UseShortPointers(UseShortPointersOpt),
123       TLOF(std::make_unique<NVPTXTargetObjectFile>()),
124       Subtarget(TT, std::string(CPU), std::string(FS), *this) {
125   if (TT.getOS() == Triple::NVCL)
126     drvInterface = NVPTX::NVCL;
127   else
128     drvInterface = NVPTX::CUDA;
129   if (!DisableRequireStructuredCFG)
130     setRequiresStructuredCFG(true);
131   initAsmInfo();
132 }
133 
134 NVPTXTargetMachine::~NVPTXTargetMachine() = default;
135 
anchor()136 void NVPTXTargetMachine32::anchor() {}
137 
NVPTXTargetMachine32(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)138 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
139                                            StringRef CPU, StringRef FS,
140                                            const TargetOptions &Options,
141                                            Optional<Reloc::Model> RM,
142                                            Optional<CodeModel::Model> CM,
143                                            CodeGenOpt::Level OL, bool JIT)
144     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
145 
anchor()146 void NVPTXTargetMachine64::anchor() {}
147 
NVPTXTargetMachine64(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)148 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
149                                            StringRef CPU, StringRef FS,
150                                            const TargetOptions &Options,
151                                            Optional<Reloc::Model> RM,
152                                            Optional<CodeModel::Model> CM,
153                                            CodeGenOpt::Level OL, bool JIT)
154     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
155 
156 namespace {
157 
158 class NVPTXPassConfig : public TargetPassConfig {
159 public:
NVPTXPassConfig(NVPTXTargetMachine & TM,PassManagerBase & PM)160   NVPTXPassConfig(NVPTXTargetMachine &TM, PassManagerBase &PM)
161       : TargetPassConfig(TM, PM) {}
162 
getNVPTXTargetMachine() const163   NVPTXTargetMachine &getNVPTXTargetMachine() const {
164     return getTM<NVPTXTargetMachine>();
165   }
166 
167   void addIRPasses() override;
168   bool addInstSelector() override;
169   void addPreRegAlloc() override;
170   void addPostRegAlloc() override;
171   void addMachineSSAOptimization() override;
172 
173   FunctionPass *createTargetRegisterAllocator(bool) override;
174   void addFastRegAlloc() override;
175   void addOptimizedRegAlloc() override;
176 
addRegAssignAndRewriteFast()177   bool addRegAssignAndRewriteFast() override {
178     llvm_unreachable("should not be used");
179   }
180 
addRegAssignAndRewriteOptimized()181   bool addRegAssignAndRewriteOptimized() override {
182     llvm_unreachable("should not be used");
183   }
184 
185 private:
186   // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
187   // function is only called in opt mode.
188   void addEarlyCSEOrGVNPass();
189 
190   // Add passes that propagate special memory spaces.
191   void addAddressSpaceInferencePasses();
192 
193   // Add passes that perform straight-line scalar optimizations.
194   void addStraightLineScalarOptimizationPasses();
195 };
196 
197 } // end anonymous namespace
198 
createPassConfig(PassManagerBase & PM)199 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
200   return new NVPTXPassConfig(*this, PM);
201 }
202 
adjustPassManager(PassManagerBuilder & Builder)203 void NVPTXTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
204   Builder.addExtension(
205     PassManagerBuilder::EP_EarlyAsPossible,
206     [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
207       PM.add(createNVVMReflectPass(Subtarget.getSmVersion()));
208       PM.add(createNVVMIntrRangePass(Subtarget.getSmVersion()));
209     });
210 }
211 
registerPassBuilderCallbacks(PassBuilder & PB)212 void NVPTXTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
213   PB.registerPipelineParsingCallback(
214       [](StringRef PassName, FunctionPassManager &PM,
215          ArrayRef<PassBuilder::PipelineElement>) {
216         if (PassName == "nvvm-reflect") {
217           PM.addPass(NVVMReflectPass());
218           return true;
219         }
220         if (PassName == "nvvm-intr-range") {
221           PM.addPass(NVVMIntrRangePass());
222           return true;
223         }
224         return false;
225       });
226 
227   PB.registerPipelineStartEPCallback(
228       [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) {
229         FunctionPassManager FPM;
230         FPM.addPass(NVVMReflectPass(Subtarget.getSmVersion()));
231         // FIXME: NVVMIntrRangePass is causing numerical discrepancies,
232         // investigate and re-enable.
233         // FPM.addPass(NVVMIntrRangePass(Subtarget.getSmVersion()));
234         PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
235       });
236 }
237 
238 TargetTransformInfo
getTargetTransformInfo(const Function & F)239 NVPTXTargetMachine::getTargetTransformInfo(const Function &F) {
240   return TargetTransformInfo(NVPTXTTIImpl(this, F));
241 }
242 
addEarlyCSEOrGVNPass()243 void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
244   if (getOptLevel() == CodeGenOpt::Aggressive)
245     addPass(createGVNPass());
246   else
247     addPass(createEarlyCSEPass());
248 }
249 
addAddressSpaceInferencePasses()250 void NVPTXPassConfig::addAddressSpaceInferencePasses() {
251   // NVPTXLowerArgs emits alloca for byval parameters which can often
252   // be eliminated by SROA.
253   addPass(createSROAPass());
254   addPass(createNVPTXLowerAllocaPass());
255   addPass(createInferAddressSpacesPass());
256   addPass(createNVPTXAtomicLowerPass());
257 }
258 
addStraightLineScalarOptimizationPasses()259 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
260   addPass(createSeparateConstOffsetFromGEPPass());
261   addPass(createSpeculativeExecutionPass());
262   // ReassociateGEPs exposes more opportunites for SLSR. See
263   // the example in reassociate-geps-and-slsr.ll.
264   addPass(createStraightLineStrengthReducePass());
265   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
266   // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
267   // for some of our benchmarks.
268   addEarlyCSEOrGVNPass();
269   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
270   addPass(createNaryReassociatePass());
271   // NaryReassociate on GEPs creates redundant common expressions, so run
272   // EarlyCSE after it.
273   addPass(createEarlyCSEPass());
274 }
275 
addIRPasses()276 void NVPTXPassConfig::addIRPasses() {
277   // The following passes are known to not play well with virtual regs hanging
278   // around after register allocation (which in our case, is *all* registers).
279   // We explicitly disable them here.  We do, however, need some functionality
280   // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
281   // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
282   disablePass(&PrologEpilogCodeInserterID);
283   disablePass(&MachineCopyPropagationID);
284   disablePass(&TailDuplicateID);
285   disablePass(&StackMapLivenessID);
286   disablePass(&LiveDebugValuesID);
287   disablePass(&PostRAMachineSinkingID);
288   disablePass(&PostRASchedulerID);
289   disablePass(&FuncletLayoutID);
290   disablePass(&PatchableFunctionID);
291   disablePass(&ShrinkWrapID);
292 
293   // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
294   // it here does nothing.  But since we need it for correctness when lowering
295   // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
296   // call addEarlyAsPossiblePasses.
297   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
298   addPass(createNVVMReflectPass(ST.getSmVersion()));
299 
300   if (getOptLevel() != CodeGenOpt::None)
301     addPass(createNVPTXImageOptimizerPass());
302   addPass(createNVPTXAssignValidGlobalNamesPass());
303   addPass(createGenericToNVVMPass());
304 
305   // NVPTXLowerArgs is required for correctness and should be run right
306   // before the address space inference passes.
307   addPass(createNVPTXLowerArgsPass(&getNVPTXTargetMachine()));
308   if (getOptLevel() != CodeGenOpt::None) {
309     addAddressSpaceInferencePasses();
310     addStraightLineScalarOptimizationPasses();
311   }
312 
313   // === LSR and other generic IR passes ===
314   TargetPassConfig::addIRPasses();
315   // EarlyCSE is not always strong enough to clean up what LSR produces. For
316   // example, GVN can combine
317   //
318   //   %0 = add %a, %b
319   //   %1 = add %b, %a
320   //
321   // and
322   //
323   //   %0 = shl nsw %a, 2
324   //   %1 = shl %a, 2
325   //
326   // but EarlyCSE can do neither of them.
327   if (getOptLevel() != CodeGenOpt::None) {
328     addEarlyCSEOrGVNPass();
329     if (!DisableLoadStoreVectorizer)
330       addPass(createLoadStoreVectorizerPass());
331   }
332 }
333 
addInstSelector()334 bool NVPTXPassConfig::addInstSelector() {
335   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
336 
337   addPass(createLowerAggrCopies());
338   addPass(createAllocaHoisting());
339   addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
340 
341   if (!ST.hasImageHandles())
342     addPass(createNVPTXReplaceImageHandlesPass());
343 
344   return false;
345 }
346 
addPreRegAlloc()347 void NVPTXPassConfig::addPreRegAlloc() {
348   // Remove Proxy Register pseudo instructions used to keep `callseq_end` alive.
349   addPass(createNVPTXProxyRegErasurePass());
350 }
351 
addPostRegAlloc()352 void NVPTXPassConfig::addPostRegAlloc() {
353   addPass(createNVPTXPrologEpilogPass(), false);
354   if (getOptLevel() != CodeGenOpt::None) {
355     // NVPTXPrologEpilogPass calculates frame object offset and replace frame
356     // index with VRFrame register. NVPTXPeephole need to be run after that and
357     // will replace VRFrame with VRFrameLocal when possible.
358     addPass(createNVPTXPeephole());
359   }
360 }
361 
createTargetRegisterAllocator(bool)362 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
363   return nullptr; // No reg alloc
364 }
365 
addFastRegAlloc()366 void NVPTXPassConfig::addFastRegAlloc() {
367   addPass(&PHIEliminationID);
368   addPass(&TwoAddressInstructionPassID);
369 }
370 
addOptimizedRegAlloc()371 void NVPTXPassConfig::addOptimizedRegAlloc() {
372   addPass(&ProcessImplicitDefsID);
373   addPass(&LiveVariablesID);
374   addPass(&MachineLoopInfoID);
375   addPass(&PHIEliminationID);
376 
377   addPass(&TwoAddressInstructionPassID);
378   addPass(&RegisterCoalescerID);
379 
380   // PreRA instruction scheduling.
381   if (addPass(&MachineSchedulerID))
382     printAndVerify("After Machine Scheduling");
383 
384 
385   addPass(&StackSlotColoringID);
386 
387   // FIXME: Needs physical registers
388   //addPass(&MachineLICMID);
389 
390   printAndVerify("After StackSlotColoring");
391 }
392 
addMachineSSAOptimization()393 void NVPTXPassConfig::addMachineSSAOptimization() {
394   // Pre-ra tail duplication.
395   if (addPass(&EarlyTailDuplicateID))
396     printAndVerify("After Pre-RegAlloc TailDuplicate");
397 
398   // Optimize PHIs before DCE: removing dead PHI cycles may make more
399   // instructions dead.
400   addPass(&OptimizePHIsID);
401 
402   // This pass merges large allocas. StackSlotColoring is a different pass
403   // which merges spill slots.
404   addPass(&StackColoringID);
405 
406   // If the target requests it, assign local variables to stack slots relative
407   // to one another and simplify frame index references where possible.
408   addPass(&LocalStackSlotAllocationID);
409 
410   // With optimization, dead code should already be eliminated. However
411   // there is one known exception: lowered code for arguments that are only
412   // used by tail calls, where the tail calls reuse the incoming stack
413   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
414   addPass(&DeadMachineInstructionElimID);
415   printAndVerify("After codegen DCE pass");
416 
417   // Allow targets to insert passes that improve instruction level parallelism,
418   // like if-conversion. Such passes will typically need dominator trees and
419   // loop info, just like LICM and CSE below.
420   if (addILPOpts())
421     printAndVerify("After ILP optimizations");
422 
423   addPass(&EarlyMachineLICMID);
424   addPass(&MachineCSEID);
425 
426   addPass(&MachineSinkingID);
427   printAndVerify("After Machine LICM, CSE and Sinking passes");
428 
429   addPass(&PeepholeOptimizerID);
430   printAndVerify("After codegen peephole optimization pass");
431 }
432