1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
getCacheSize(TargetTransformInfo::CacheLevel Level) const68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
getNumberOfRegisters(unsigned ClassID) const119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 TypeSize
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
134   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
135   switch (K) {
136   case TargetTransformInfo::RGK_Scalar:
137     return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
138   case TargetTransformInfo::RGK_FixedWidthVector:
139     if (ST->hasAVX512() && PreferVectorWidth >= 512)
140       return TypeSize::getFixed(512);
141     if (ST->hasAVX() && PreferVectorWidth >= 256)
142       return TypeSize::getFixed(256);
143     if (ST->hasSSE1() && PreferVectorWidth >= 128)
144       return TypeSize::getFixed(128);
145     return TypeSize::getFixed(0);
146   case TargetTransformInfo::RGK_ScalableVector:
147     return TypeSize::getScalable(0);
148   }
149 
150   llvm_unreachable("Unsupported register kind");
151 }
152 
getLoadStoreVecRegBitWidth(unsigned) const153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
154   return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
155       .getFixedSize();
156 }
157 
getMaxInterleaveFactor(unsigned VF)158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
159   // If the loop will not be vectorized, don't interleave the loop.
160   // Let regular unroll to unroll the loop, which saves the overflow
161   // check and memory check cost.
162   if (VF == 1)
163     return 1;
164 
165   if (ST->isAtom())
166     return 1;
167 
168   // Sandybridge and Haswell have multiple execution ports and pipelined
169   // vector units.
170   if (ST->hasAVX())
171     return 4;
172 
173   return 2;
174 }
175 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueKind Op1Info,TTI::OperandValueKind Op2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI)176 InstructionCost X86TTIImpl::getArithmeticInstrCost(
177     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
178     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
179     TTI::OperandValueProperties Opd1PropInfo,
180     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
181     const Instruction *CxtI) {
182   // TODO: Handle more cost kinds.
183   if (CostKind != TTI::TCK_RecipThroughput)
184     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
185                                          Op2Info, Opd1PropInfo,
186                                          Opd2PropInfo, Args, CxtI);
187 
188   // vXi8 multiplications are always promoted to vXi16.
189   if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
190       Ty->getScalarSizeInBits() == 8) {
191     Type *WideVecTy =
192         VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
193     return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
194                             TargetTransformInfo::CastContextHint::None,
195                             CostKind) +
196            getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
197                             TargetTransformInfo::CastContextHint::None,
198                             CostKind) +
199            getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info,
200                                   Opd1PropInfo, Opd2PropInfo);
201   }
202 
203   // Legalize the type.
204   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
205 
206   int ISD = TLI->InstructionOpcodeToISD(Opcode);
207   assert(ISD && "Invalid opcode");
208 
209   static const CostTblEntry GLMCostTable[] = {
210     { ISD::FDIV,  MVT::f32,   18 }, // divss
211     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
212     { ISD::FDIV,  MVT::f64,   33 }, // divsd
213     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
214   };
215 
216   if (ST->useGLMDivSqrtCosts())
217     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
218                                             LT.second))
219       return LT.first * Entry->Cost;
220 
221   static const CostTblEntry SLMCostTable[] = {
222     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
223     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
224     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
225     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
226     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
227     { ISD::FDIV,  MVT::f32,   17 }, // divss
228     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
229     { ISD::FDIV,  MVT::f64,   32 }, // divsd
230     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
231     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
232     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
233     // v2i64/v4i64 mul is custom lowered as a series of long:
234     // multiplies(3), shifts(3) and adds(2)
235     // slm muldq version throughput is 2 and addq throughput 4
236     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
237     //       3X4 (addq throughput) = 17
238     { ISD::MUL,   MVT::v2i64, 17 },
239     // slm addq\subq throughput is 4
240     { ISD::ADD,   MVT::v2i64, 4  },
241     { ISD::SUB,   MVT::v2i64, 4  },
242   };
243 
244   if (ST->isSLM()) {
245     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
246       // Check if the operands can be shrinked into a smaller datatype.
247       bool Op1Signed = false;
248       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
249       bool Op2Signed = false;
250       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
251 
252       bool SignedMode = Op1Signed || Op2Signed;
253       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
254 
255       if (OpMinSize <= 7)
256         return LT.first * 3; // pmullw/sext
257       if (!SignedMode && OpMinSize <= 8)
258         return LT.first * 3; // pmullw/zext
259       if (OpMinSize <= 15)
260         return LT.first * 5; // pmullw/pmulhw/pshuf
261       if (!SignedMode && OpMinSize <= 16)
262         return LT.first * 5; // pmullw/pmulhw/pshuf
263     }
264 
265     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
266                                             LT.second)) {
267       return LT.first * Entry->Cost;
268     }
269   }
270 
271   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
272        ISD == ISD::UREM) &&
273       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
274        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
275       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
276     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
277       // On X86, vector signed division by constants power-of-two are
278       // normally expanded to the sequence SRA + SRL + ADD + SRA.
279       // The OperandValue properties may not be the same as that of the previous
280       // operation; conservatively assume OP_None.
281       InstructionCost Cost =
282           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
283                                      Op2Info, TargetTransformInfo::OP_None,
284                                      TargetTransformInfo::OP_None);
285       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
286                                      Op2Info,
287                                      TargetTransformInfo::OP_None,
288                                      TargetTransformInfo::OP_None);
289       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
290                                      Op2Info,
291                                      TargetTransformInfo::OP_None,
292                                      TargetTransformInfo::OP_None);
293 
294       if (ISD == ISD::SREM) {
295         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
296         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
297                                        Op2Info);
298         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
299                                        Op2Info);
300       }
301 
302       return Cost;
303     }
304 
305     // Vector unsigned division/remainder will be simplified to shifts/masks.
306     if (ISD == ISD::UDIV)
307       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
308                                     Op1Info, Op2Info,
309                                     TargetTransformInfo::OP_None,
310                                     TargetTransformInfo::OP_None);
311 
312     else // UREM
313       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
314                                     Op1Info, Op2Info,
315                                     TargetTransformInfo::OP_None,
316                                     TargetTransformInfo::OP_None);
317   }
318 
319   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
320     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
321     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
322     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
323   };
324 
325   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
326       ST->hasBWI()) {
327     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
328                                             LT.second))
329       return LT.first * Entry->Cost;
330   }
331 
332   static const CostTblEntry AVX512UniformConstCostTable[] = {
333     { ISD::SRA,  MVT::v2i64,   1 },
334     { ISD::SRA,  MVT::v4i64,   1 },
335     { ISD::SRA,  MVT::v8i64,   1 },
336 
337     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
338     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
339     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
340 
341     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
342     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
343     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
344     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
345   };
346 
347   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
348       ST->hasAVX512()) {
349     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
350                                             LT.second))
351       return LT.first * Entry->Cost;
352   }
353 
354   static const CostTblEntry AVX2UniformConstCostTable[] = {
355     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
356     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
357     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
358 
359     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
360 
361     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
362     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
363     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
364     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
365   };
366 
367   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
368       ST->hasAVX2()) {
369     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
370                                             LT.second))
371       return LT.first * Entry->Cost;
372   }
373 
374   static const CostTblEntry SSE2UniformConstCostTable[] = {
375     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
376     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
377     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
378 
379     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
380     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
381     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
382 
383     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
384     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
385     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
386     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
387     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
388     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
389     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
390     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
391   };
392 
393   // XOP has faster vXi8 shifts.
394   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
395       ST->hasSSE2() && !ST->hasXOP()) {
396     if (const auto *Entry =
397             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
398       return LT.first * Entry->Cost;
399   }
400 
401   static const CostTblEntry AVX512BWConstCostTable[] = {
402     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
403     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
404     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
405     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
406     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
407     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
408     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
409     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
410   };
411 
412   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
413        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
414       ST->hasBWI()) {
415     if (const auto *Entry =
416             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
417       return LT.first * Entry->Cost;
418   }
419 
420   static const CostTblEntry AVX512ConstCostTable[] = {
421     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
422     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
423     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
424     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
425     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
426     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
427     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
428     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
429     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
430     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
431     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
432     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
433   };
434 
435   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
436        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
437       ST->hasAVX512()) {
438     if (const auto *Entry =
439             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
440       return LT.first * Entry->Cost;
441   }
442 
443   static const CostTblEntry AVX2ConstCostTable[] = {
444     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
445     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
446     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
447     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
448     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
449     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
450     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
451     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
452     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
453     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
454     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
455     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
456   };
457 
458   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
459        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
460       ST->hasAVX2()) {
461     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
462       return LT.first * Entry->Cost;
463   }
464 
465   static const CostTblEntry SSE2ConstCostTable[] = {
466     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
467     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
468     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
469     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
470     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
471     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
472     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
473     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
474     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
475     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
476     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
477     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
478     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
479     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
480     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
481     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
482     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
483     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
484     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
485     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
486     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
487     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
488     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
489     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
490   };
491 
492   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
493        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
494       ST->hasSSE2()) {
495     // pmuldq sequence.
496     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
497       return LT.first * 32;
498     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
499       return LT.first * 38;
500     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
501       return LT.first * 15;
502     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
503       return LT.first * 20;
504 
505     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
506       return LT.first * Entry->Cost;
507   }
508 
509   static const CostTblEntry AVX512BWShiftCostTable[] = {
510     { ISD::SHL,   MVT::v16i8,      4 }, // extend/vpsllvw/pack sequence.
511     { ISD::SRL,   MVT::v16i8,      4 }, // extend/vpsrlvw/pack sequence.
512     { ISD::SRA,   MVT::v16i8,      4 }, // extend/vpsravw/pack sequence.
513     { ISD::SHL,   MVT::v32i8,      4 }, // extend/vpsllvw/pack sequence.
514     { ISD::SRL,   MVT::v32i8,      4 }, // extend/vpsrlvw/pack sequence.
515     { ISD::SRA,   MVT::v32i8,      6 }, // extend/vpsravw/pack sequence.
516     { ISD::SHL,   MVT::v64i8,      6 }, // extend/vpsllvw/pack sequence.
517     { ISD::SRL,   MVT::v64i8,      7 }, // extend/vpsrlvw/pack sequence.
518     { ISD::SRA,   MVT::v64i8,     15 }, // extend/vpsravw/pack sequence.
519 
520     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
521     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
522     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
523     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
524     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
525     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
526     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
527     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
528     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
529   };
530 
531   if (ST->hasBWI())
532     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
533       return LT.first * Entry->Cost;
534 
535   static const CostTblEntry AVX2UniformCostTable[] = {
536     // Uniform splats are cheaper for the following instructions.
537     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
538     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
539     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
540     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
541     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
542     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
543 
544     { ISD::SHL,  MVT::v8i32,  1 }, // pslld
545     { ISD::SRL,  MVT::v8i32,  1 }, // psrld
546     { ISD::SRA,  MVT::v8i32,  1 }, // psrad
547     { ISD::SHL,  MVT::v4i64,  1 }, // psllq
548     { ISD::SRL,  MVT::v4i64,  1 }, // psrlq
549   };
550 
551   if (ST->hasAVX2() &&
552       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
553        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
554     if (const auto *Entry =
555             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
556       return LT.first * Entry->Cost;
557   }
558 
559   static const CostTblEntry SSE2UniformCostTable[] = {
560     // Uniform splats are cheaper for the following instructions.
561     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
562     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
563     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
564 
565     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
566     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
567     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
568 
569     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
570     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
571   };
572 
573   if (ST->hasSSE2() &&
574       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
575        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
576     if (const auto *Entry =
577             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
578       return LT.first * Entry->Cost;
579   }
580 
581   static const CostTblEntry AVX512DQCostTable[] = {
582     { ISD::MUL,  MVT::v2i64, 2 }, // pmullq
583     { ISD::MUL,  MVT::v4i64, 2 }, // pmullq
584     { ISD::MUL,  MVT::v8i64, 2 }  // pmullq
585   };
586 
587   // Look for AVX512DQ lowering tricks for custom cases.
588   if (ST->hasDQI())
589     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
590       return LT.first * Entry->Cost;
591 
592   static const CostTblEntry AVX512BWCostTable[] = {
593     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
594     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
595     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
596   };
597 
598   // Look for AVX512BW lowering tricks for custom cases.
599   if (ST->hasBWI())
600     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
601       return LT.first * Entry->Cost;
602 
603   static const CostTblEntry AVX512CostTable[] = {
604     { ISD::SHL,     MVT::v4i32,      1 },
605     { ISD::SRL,     MVT::v4i32,      1 },
606     { ISD::SRA,     MVT::v4i32,      1 },
607     { ISD::SHL,     MVT::v8i32,      1 },
608     { ISD::SRL,     MVT::v8i32,      1 },
609     { ISD::SRA,     MVT::v8i32,      1 },
610     { ISD::SHL,     MVT::v16i32,     1 },
611     { ISD::SRL,     MVT::v16i32,     1 },
612     { ISD::SRA,     MVT::v16i32,     1 },
613 
614     { ISD::SHL,     MVT::v2i64,      1 },
615     { ISD::SRL,     MVT::v2i64,      1 },
616     { ISD::SHL,     MVT::v4i64,      1 },
617     { ISD::SRL,     MVT::v4i64,      1 },
618     { ISD::SHL,     MVT::v8i64,      1 },
619     { ISD::SRL,     MVT::v8i64,      1 },
620 
621     { ISD::SRA,     MVT::v2i64,      1 },
622     { ISD::SRA,     MVT::v4i64,      1 },
623     { ISD::SRA,     MVT::v8i64,      1 },
624 
625     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
626     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
627     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
628     { ISD::MUL,     MVT::v8i64,      6 }, // 3*pmuludq/3*shift/2*add
629 
630     { ISD::FNEG,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
631     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
632     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
633     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
634     { ISD::FDIV,    MVT::f64,        4 }, // Skylake from http://www.agner.org/
635     { ISD::FDIV,    MVT::v2f64,      4 }, // Skylake from http://www.agner.org/
636     { ISD::FDIV,    MVT::v4f64,      8 }, // Skylake from http://www.agner.org/
637     { ISD::FDIV,    MVT::v8f64,     16 }, // Skylake from http://www.agner.org/
638 
639     { ISD::FNEG,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
640     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
641     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
642     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
643     { ISD::FDIV,    MVT::f32,        3 }, // Skylake from http://www.agner.org/
644     { ISD::FDIV,    MVT::v4f32,      3 }, // Skylake from http://www.agner.org/
645     { ISD::FDIV,    MVT::v8f32,      5 }, // Skylake from http://www.agner.org/
646     { ISD::FDIV,    MVT::v16f32,    10 }, // Skylake from http://www.agner.org/
647   };
648 
649   if (ST->hasAVX512())
650     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
651       return LT.first * Entry->Cost;
652 
653   static const CostTblEntry AVX2ShiftCostTable[] = {
654     // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
655     // customize them to detect the cases where shift amount is a scalar one.
656     { ISD::SHL,     MVT::v4i32,    2 }, // vpsllvd (Haswell from agner.org)
657     { ISD::SRL,     MVT::v4i32,    2 }, // vpsrlvd (Haswell from agner.org)
658     { ISD::SRA,     MVT::v4i32,    2 }, // vpsravd (Haswell from agner.org)
659     { ISD::SHL,     MVT::v8i32,    2 }, // vpsllvd (Haswell from agner.org)
660     { ISD::SRL,     MVT::v8i32,    2 }, // vpsrlvd (Haswell from agner.org)
661     { ISD::SRA,     MVT::v8i32,    2 }, // vpsravd (Haswell from agner.org)
662     { ISD::SHL,     MVT::v2i64,    1 }, // vpsllvq (Haswell from agner.org)
663     { ISD::SRL,     MVT::v2i64,    1 }, // vpsrlvq (Haswell from agner.org)
664     { ISD::SHL,     MVT::v4i64,    1 }, // vpsllvq (Haswell from agner.org)
665     { ISD::SRL,     MVT::v4i64,    1 }, // vpsrlvq (Haswell from agner.org)
666   };
667 
668   if (ST->hasAVX512()) {
669     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
670         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
671          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
672       // On AVX512, a packed v32i16 shift left by a constant build_vector
673       // is lowered into a vector multiply (vpmullw).
674       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
675                                     Op1Info, Op2Info,
676                                     TargetTransformInfo::OP_None,
677                                     TargetTransformInfo::OP_None);
678   }
679 
680   // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
681   if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
682     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
683         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
684          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
685       // On AVX2, a packed v16i16 shift left by a constant build_vector
686       // is lowered into a vector multiply (vpmullw).
687       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
688                                     Op1Info, Op2Info,
689                                     TargetTransformInfo::OP_None,
690                                     TargetTransformInfo::OP_None);
691 
692     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
693       return LT.first * Entry->Cost;
694   }
695 
696   static const CostTblEntry XOPShiftCostTable[] = {
697     // 128bit shifts take 1cy, but right shifts require negation beforehand.
698     { ISD::SHL,     MVT::v16i8,    1 },
699     { ISD::SRL,     MVT::v16i8,    2 },
700     { ISD::SRA,     MVT::v16i8,    2 },
701     { ISD::SHL,     MVT::v8i16,    1 },
702     { ISD::SRL,     MVT::v8i16,    2 },
703     { ISD::SRA,     MVT::v8i16,    2 },
704     { ISD::SHL,     MVT::v4i32,    1 },
705     { ISD::SRL,     MVT::v4i32,    2 },
706     { ISD::SRA,     MVT::v4i32,    2 },
707     { ISD::SHL,     MVT::v2i64,    1 },
708     { ISD::SRL,     MVT::v2i64,    2 },
709     { ISD::SRA,     MVT::v2i64,    2 },
710     // 256bit shifts require splitting if AVX2 didn't catch them above.
711     { ISD::SHL,     MVT::v32i8,  2+2 },
712     { ISD::SRL,     MVT::v32i8,  4+2 },
713     { ISD::SRA,     MVT::v32i8,  4+2 },
714     { ISD::SHL,     MVT::v16i16, 2+2 },
715     { ISD::SRL,     MVT::v16i16, 4+2 },
716     { ISD::SRA,     MVT::v16i16, 4+2 },
717     { ISD::SHL,     MVT::v8i32,  2+2 },
718     { ISD::SRL,     MVT::v8i32,  4+2 },
719     { ISD::SRA,     MVT::v8i32,  4+2 },
720     { ISD::SHL,     MVT::v4i64,  2+2 },
721     { ISD::SRL,     MVT::v4i64,  4+2 },
722     { ISD::SRA,     MVT::v4i64,  4+2 },
723   };
724 
725   // Look for XOP lowering tricks.
726   if (ST->hasXOP()) {
727     // If the right shift is constant then we'll fold the negation so
728     // it's as cheap as a left shift.
729     int ShiftISD = ISD;
730     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
731         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
732          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
733       ShiftISD = ISD::SHL;
734     if (const auto *Entry =
735             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
736       return LT.first * Entry->Cost;
737   }
738 
739   static const CostTblEntry SSE2UniformShiftCostTable[] = {
740     // Uniform splats are cheaper for the following instructions.
741     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
742     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
743     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
744 
745     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
746     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
747     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
748 
749     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
750     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
751     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
752     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
753   };
754 
755   if (ST->hasSSE2() &&
756       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
757        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
758 
759     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
760     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
761       return LT.first * 4; // 2*psrad + shuffle.
762 
763     if (const auto *Entry =
764             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
765       return LT.first * Entry->Cost;
766   }
767 
768   if (ISD == ISD::SHL &&
769       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
770     MVT VT = LT.second;
771     // Vector shift left by non uniform constant can be lowered
772     // into vector multiply.
773     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
774         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
775       ISD = ISD::MUL;
776   }
777 
778   static const CostTblEntry AVX2CostTable[] = {
779     { ISD::SHL,  MVT::v16i8,      6 }, // vpblendvb sequence.
780     { ISD::SHL,  MVT::v32i8,      6 }, // vpblendvb sequence.
781     { ISD::SHL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
782     { ISD::SHL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
783     { ISD::SHL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
784     { ISD::SHL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
785 
786     { ISD::SRL,  MVT::v16i8,      6 }, // vpblendvb sequence.
787     { ISD::SRL,  MVT::v32i8,      6 }, // vpblendvb sequence.
788     { ISD::SRL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
789     { ISD::SRL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
790     { ISD::SRL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
791     { ISD::SRL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
792 
793     { ISD::SRA,  MVT::v16i8,     17 }, // vpblendvb sequence.
794     { ISD::SRA,  MVT::v32i8,     17 }, // vpblendvb sequence.
795     { ISD::SRA,  MVT::v64i8,     34 }, // 2*vpblendvb sequence.
796     { ISD::SRA,  MVT::v8i16,      5 }, // extend/vpsravd/pack sequence.
797     { ISD::SRA,  MVT::v16i16,     7 }, // extend/vpsravd/pack sequence.
798     { ISD::SRA,  MVT::v32i16,    14 }, // 2*extend/vpsravd/pack sequence.
799     { ISD::SRA,  MVT::v2i64,      2 }, // srl/xor/sub sequence.
800     { ISD::SRA,  MVT::v4i64,      2 }, // srl/xor/sub sequence.
801 
802     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
803     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
804     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
805     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
806     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
807     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
808     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
809     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
810 
811     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
812     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
813     { ISD::MUL,  MVT::v4i64,      6 }, // 3*pmuludq/3*shift/2*add
814 
815     { ISD::FNEG, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
816     { ISD::FNEG, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
817     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
818     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
819     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
820     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
821     { ISD::FMUL, MVT::f64,        1 }, // Haswell from http://www.agner.org/
822     { ISD::FMUL, MVT::v2f64,      1 }, // Haswell from http://www.agner.org/
823     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
824     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
825 
826     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
827     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
828     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
829     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
830     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
831     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
832   };
833 
834   // Look for AVX2 lowering tricks for custom cases.
835   if (ST->hasAVX2())
836     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
837       return LT.first * Entry->Cost;
838 
839   static const CostTblEntry AVX1CostTable[] = {
840     // We don't have to scalarize unsupported ops. We can issue two half-sized
841     // operations and we only need to extract the upper YMM half.
842     // Two ops + 1 extract + 1 insert = 4.
843     { ISD::MUL,     MVT::v16i16,     4 },
844     { ISD::MUL,     MVT::v8i32,      5 }, // BTVER2 from http://www.agner.org/
845     { ISD::MUL,     MVT::v4i64,     12 },
846 
847     { ISD::SUB,     MVT::v32i8,      4 },
848     { ISD::ADD,     MVT::v32i8,      4 },
849     { ISD::SUB,     MVT::v16i16,     4 },
850     { ISD::ADD,     MVT::v16i16,     4 },
851     { ISD::SUB,     MVT::v8i32,      4 },
852     { ISD::ADD,     MVT::v8i32,      4 },
853     { ISD::SUB,     MVT::v4i64,      4 },
854     { ISD::ADD,     MVT::v4i64,      4 },
855 
856     { ISD::SHL,     MVT::v32i8,     22 }, // pblendvb sequence + split.
857     { ISD::SHL,     MVT::v8i16,      6 }, // pblendvb sequence.
858     { ISD::SHL,     MVT::v16i16,    13 }, // pblendvb sequence + split.
859     { ISD::SHL,     MVT::v4i32,      3 }, // pslld/paddd/cvttps2dq/pmulld
860     { ISD::SHL,     MVT::v8i32,      9 }, // pslld/paddd/cvttps2dq/pmulld + split
861     { ISD::SHL,     MVT::v2i64,      2 }, // Shift each lane + blend.
862     { ISD::SHL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
863 
864     { ISD::SRL,     MVT::v32i8,     23 }, // pblendvb sequence + split.
865     { ISD::SRL,     MVT::v16i16,    28 }, // pblendvb sequence + split.
866     { ISD::SRL,     MVT::v4i32,      6 }, // Shift each lane + blend.
867     { ISD::SRL,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
868     { ISD::SRL,     MVT::v2i64,      2 }, // Shift each lane + blend.
869     { ISD::SRL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
870 
871     { ISD::SRA,     MVT::v32i8,     44 }, // pblendvb sequence + split.
872     { ISD::SRA,     MVT::v16i16,    28 }, // pblendvb sequence + split.
873     { ISD::SRA,     MVT::v4i32,      6 }, // Shift each lane + blend.
874     { ISD::SRA,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
875     { ISD::SRA,     MVT::v2i64,      5 }, // Shift each lane + blend.
876     { ISD::SRA,     MVT::v4i64,     12 }, // Shift each lane + blend + split.
877 
878     { ISD::FNEG,    MVT::v4f64,      2 }, // BTVER2 from http://www.agner.org/
879     { ISD::FNEG,    MVT::v8f32,      2 }, // BTVER2 from http://www.agner.org/
880 
881     { ISD::FMUL,    MVT::f64,        2 }, // BTVER2 from http://www.agner.org/
882     { ISD::FMUL,    MVT::v2f64,      2 }, // BTVER2 from http://www.agner.org/
883     { ISD::FMUL,    MVT::v4f64,      4 }, // BTVER2 from http://www.agner.org/
884 
885     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
886     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
887     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
888     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
889     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
890     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
891   };
892 
893   if (ST->hasAVX())
894     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
895       return LT.first * Entry->Cost;
896 
897   static const CostTblEntry SSE42CostTable[] = {
898     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
899     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
900     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
901     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
902 
903     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
904     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
905     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
906     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
907 
908     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
909     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
910     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
911     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
912 
913     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
914     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
915     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
916     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
917 
918     { ISD::MUL,   MVT::v2i64,  6 }  // 3*pmuludq/3*shift/2*add
919   };
920 
921   if (ST->hasSSE42())
922     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
923       return LT.first * Entry->Cost;
924 
925   static const CostTblEntry SSE41CostTable[] = {
926     { ISD::SHL,  MVT::v16i8,      10 }, // pblendvb sequence.
927     { ISD::SHL,  MVT::v8i16,      11 }, // pblendvb sequence.
928     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
929 
930     { ISD::SRL,  MVT::v16i8,      11 }, // pblendvb sequence.
931     { ISD::SRL,  MVT::v8i16,      13 }, // pblendvb sequence.
932     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
933 
934     { ISD::SRA,  MVT::v16i8,      21 }, // pblendvb sequence.
935     { ISD::SRA,  MVT::v8i16,      13 }, // pblendvb sequence.
936 
937     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
938   };
939 
940   if (ST->hasSSE41())
941     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
942       return LT.first * Entry->Cost;
943 
944   static const CostTblEntry SSE2CostTable[] = {
945     // We don't correctly identify costs of casts because they are marked as
946     // custom.
947     { ISD::SHL,  MVT::v16i8,      13 }, // cmpgtb sequence.
948     { ISD::SHL,  MVT::v8i16,      25 }, // cmpgtw sequence.
949     { ISD::SHL,  MVT::v4i32,      16 }, // pslld/paddd/cvttps2dq/pmuludq.
950     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
951 
952     { ISD::SRL,  MVT::v16i8,      14 }, // cmpgtb sequence.
953     { ISD::SRL,  MVT::v8i16,      16 }, // cmpgtw sequence.
954     { ISD::SRL,  MVT::v4i32,      12 }, // Shift each lane + blend.
955     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
956 
957     { ISD::SRA,  MVT::v16i8,      27 }, // unpacked cmpgtb sequence.
958     { ISD::SRA,  MVT::v8i16,      16 }, // cmpgtw sequence.
959     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
960     { ISD::SRA,  MVT::v2i64,       8 }, // srl/xor/sub splat+shuffle sequence.
961 
962     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
963     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
964     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
965 
966     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
967     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
968     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
969     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
970 
971     { ISD::FNEG, MVT::f32,         1 }, // Pentium IV from http://www.agner.org/
972     { ISD::FNEG, MVT::f64,         1 }, // Pentium IV from http://www.agner.org/
973     { ISD::FNEG, MVT::v4f32,       1 }, // Pentium IV from http://www.agner.org/
974     { ISD::FNEG, MVT::v2f64,       1 }, // Pentium IV from http://www.agner.org/
975 
976     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
977     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
978 
979     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
980     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
981   };
982 
983   if (ST->hasSSE2())
984     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
985       return LT.first * Entry->Cost;
986 
987   static const CostTblEntry SSE1CostTable[] = {
988     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
989     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
990 
991     { ISD::FNEG, MVT::f32,    2 }, // Pentium III from http://www.agner.org/
992     { ISD::FNEG, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
993 
994     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
995     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
996 
997     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
998     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
999   };
1000 
1001   if (ST->hasSSE1())
1002     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1003       return LT.first * Entry->Cost;
1004 
1005   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1006     { ISD::ADD,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1007     { ISD::SUB,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1008   };
1009 
1010   if (ST->is64Bit())
1011     if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1012       return LT.first * Entry->Cost;
1013 
1014   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1015     { ISD::ADD,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1016     { ISD::ADD,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1017     { ISD::ADD,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1018 
1019     { ISD::SUB,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1020     { ISD::SUB,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1021     { ISD::SUB,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1022   };
1023 
1024   if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1025     return LT.first * Entry->Cost;
1026 
1027   // It is not a good idea to vectorize division. We have to scalarize it and
1028   // in the process we will often end up having to spilling regular
1029   // registers. The overhead of division is going to dominate most kernels
1030   // anyways so try hard to prevent vectorization of division - it is
1031   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1032   // to hide "20 cycles" for each lane.
1033   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
1034                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
1035     InstructionCost ScalarCost = getArithmeticInstrCost(
1036         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
1037         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1038     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1039   }
1040 
1041   // Fallback to the default implementation.
1042   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
1043 }
1044 
getShuffleCost(TTI::ShuffleKind Kind,VectorType * BaseTp,ArrayRef<int> Mask,int Index,VectorType * SubTp)1045 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1046                                            VectorType *BaseTp,
1047                                            ArrayRef<int> Mask, int Index,
1048                                            VectorType *SubTp) {
1049   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1050   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1051   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
1052 
1053   Kind = improveShuffleKindFromMask(Kind, Mask);
1054   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1055   if (Kind == TTI::SK_Transpose)
1056     Kind = TTI::SK_PermuteTwoSrc;
1057 
1058   // For Broadcasts we are splatting the first element from the first input
1059   // register, so only need to reference that input and all the output
1060   // registers are the same.
1061   if (Kind == TTI::SK_Broadcast)
1062     LT.first = 1;
1063 
1064   // Subvector extractions are free if they start at the beginning of a
1065   // vector and cheap if the subvectors are aligned.
1066   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1067     int NumElts = LT.second.getVectorNumElements();
1068     if ((Index % NumElts) == 0)
1069       return 0;
1070     std::pair<InstructionCost, MVT> SubLT =
1071         TLI->getTypeLegalizationCost(DL, SubTp);
1072     if (SubLT.second.isVector()) {
1073       int NumSubElts = SubLT.second.getVectorNumElements();
1074       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1075         return SubLT.first;
1076       // Handle some cases for widening legalization. For now we only handle
1077       // cases where the original subvector was naturally aligned and evenly
1078       // fit in its legalized subvector type.
1079       // FIXME: Remove some of the alignment restrictions.
1080       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1081       // vectors.
1082       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1083       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1084           (NumSubElts % OrigSubElts) == 0 &&
1085           LT.second.getVectorElementType() ==
1086               SubLT.second.getVectorElementType() &&
1087           LT.second.getVectorElementType().getSizeInBits() ==
1088               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1089         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1090                "Unexpected number of elements!");
1091         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1092                                            LT.second.getVectorNumElements());
1093         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1094                                            SubLT.second.getVectorNumElements());
1095         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1096         InstructionCost ExtractCost = getShuffleCost(
1097             TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy);
1098 
1099         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1100         // if we have SSSE3 we can use pshufb.
1101         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1102           return ExtractCost + 1; // pshufd or pshufb
1103 
1104         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1105                "Unexpected vector size");
1106 
1107         return ExtractCost + 2; // worst case pshufhw + pshufd
1108       }
1109     }
1110   }
1111 
1112   // Subvector insertions are cheap if the subvectors are aligned.
1113   // Note that in general, the insertion starting at the beginning of a vector
1114   // isn't free, because we need to preserve the rest of the wide vector.
1115   if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1116     int NumElts = LT.second.getVectorNumElements();
1117     std::pair<InstructionCost, MVT> SubLT =
1118         TLI->getTypeLegalizationCost(DL, SubTp);
1119     if (SubLT.second.isVector()) {
1120       int NumSubElts = SubLT.second.getVectorNumElements();
1121       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1122         return SubLT.first;
1123     }
1124   }
1125 
1126   // Handle some common (illegal) sub-vector types as they are often very cheap
1127   // to shuffle even on targets without PSHUFB.
1128   EVT VT = TLI->getValueType(DL, BaseTp);
1129   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1130       !ST->hasSSSE3()) {
1131      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1132       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1133       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1134       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1135       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1136       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1137 
1138       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1139       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1140       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1141       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1142 
1143       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1144       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1145       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1146       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1147       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1148 
1149       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1150       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1151       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1152       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1153       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1154     };
1155 
1156     if (ST->hasSSE2())
1157       if (const auto *Entry =
1158               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1159         return Entry->Cost;
1160   }
1161 
1162   // We are going to permute multiple sources and the result will be in multiple
1163   // destinations. Providing an accurate cost only for splits where the element
1164   // type remains the same.
1165   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1166     MVT LegalVT = LT.second;
1167     if (LegalVT.isVector() &&
1168         LegalVT.getVectorElementType().getSizeInBits() ==
1169             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1170         LegalVT.getVectorNumElements() <
1171             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1172 
1173       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1174       unsigned LegalVTSize = LegalVT.getStoreSize();
1175       // Number of source vectors after legalization:
1176       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1177       // Number of destination vectors after legalization:
1178       InstructionCost NumOfDests = LT.first;
1179 
1180       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1181                                               LegalVT.getVectorNumElements());
1182 
1183       InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1184       return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1185                                             None, 0, nullptr);
1186     }
1187 
1188     return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1189   }
1190 
1191   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1192   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1193     // We assume that source and destination have the same vector type.
1194     InstructionCost NumOfDests = LT.first;
1195     InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
1196     LT.first = NumOfDests * NumOfShufflesPerDest;
1197   }
1198 
1199   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1200       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1201       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1202 
1203       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1204       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1205 
1206       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1207       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1208       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1209   };
1210 
1211   if (ST->hasVBMI())
1212     if (const auto *Entry =
1213             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1214       return LT.first * Entry->Cost;
1215 
1216   static const CostTblEntry AVX512BWShuffleTbl[] = {
1217       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1218       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1219 
1220       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1221       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1222       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1223 
1224       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1225       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1226       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1227 
1228       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1229       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1230       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1231       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1232 
1233       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1234       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1235   };
1236 
1237   if (ST->hasBWI())
1238     if (const auto *Entry =
1239             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1240       return LT.first * Entry->Cost;
1241 
1242   static const CostTblEntry AVX512ShuffleTbl[] = {
1243       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1244       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1245       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1246       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1247       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1248       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1249 
1250       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1251       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1252       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1253       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1254       {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca
1255       {TTI::SK_Reverse, MVT::v64i8,  7}, // per mca
1256 
1257       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1258       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1259       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1260       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1261       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1262       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1263       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1264       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1265       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1266       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1267       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1268       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1269       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1270 
1271       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1272       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1273       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1274       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1275       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1276       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1277       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1278       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1279       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1280       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1281       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1282       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1283 
1284       // FIXME: This just applies the type legalization cost rules above
1285       // assuming these completely split.
1286       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1287       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1288       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1289       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1290 
1291       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1292       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1293       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1294       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1295       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1296       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1297   };
1298 
1299   if (ST->hasAVX512())
1300     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1301       return LT.first * Entry->Cost;
1302 
1303   static const CostTblEntry AVX2ShuffleTbl[] = {
1304       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1305       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1306       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1307       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1308       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1309       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1310 
1311       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1312       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1313       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1314       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1315       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1316       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1317 
1318       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1319       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1320 
1321       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1322       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1323       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1324       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1325       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1326                                                   // + vpblendvb
1327       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1328                                                   // + vpblendvb
1329 
1330       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1331       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1332       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1333       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1334       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1335                                                // + vpblendvb
1336       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1337                                                // + vpblendvb
1338   };
1339 
1340   if (ST->hasAVX2())
1341     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1342       return LT.first * Entry->Cost;
1343 
1344   static const CostTblEntry XOPShuffleTbl[] = {
1345       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1346       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1347       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1348       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1349       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1350                                                   // + vinsertf128
1351       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1352                                                   // + vinsertf128
1353 
1354       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1355                                                // + vinsertf128
1356       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1357       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1358                                                // + vinsertf128
1359       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1360   };
1361 
1362   if (ST->hasXOP())
1363     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1364       return LT.first * Entry->Cost;
1365 
1366   static const CostTblEntry AVX1ShuffleTbl[] = {
1367       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1368       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1369       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1370       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1371       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1372       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1373 
1374       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1375       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1376       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1377       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1378       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1379                                          // + vinsertf128
1380       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1381                                          // + vinsertf128
1382 
1383       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1384       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1385       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1386       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1387       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1388       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1389 
1390       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1391       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1392       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1393       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1394       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1395                                                   // + 2*por + vinsertf128
1396       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1397                                                   // + 2*por + vinsertf128
1398 
1399       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1400       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1401       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1402       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1403       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1404                                                 // + 4*por + vinsertf128
1405       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1406                                                 // + 4*por + vinsertf128
1407   };
1408 
1409   if (ST->hasAVX())
1410     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1411       return LT.first * Entry->Cost;
1412 
1413   static const CostTblEntry SSE41ShuffleTbl[] = {
1414       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1415       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1416       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1417       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1418       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1419       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1420   };
1421 
1422   if (ST->hasSSE41())
1423     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1424       return LT.first * Entry->Cost;
1425 
1426   static const CostTblEntry SSSE3ShuffleTbl[] = {
1427       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1428       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1429 
1430       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1431       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1432 
1433       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1434       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1435 
1436       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1437       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1438 
1439       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1440       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1441   };
1442 
1443   if (ST->hasSSSE3())
1444     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1445       return LT.first * Entry->Cost;
1446 
1447   static const CostTblEntry SSE2ShuffleTbl[] = {
1448       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1449       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1450       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1451       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1452       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1453 
1454       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1455       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1456       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1457       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1458       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1459                                         // + 2*pshufd + 2*unpck + packus
1460 
1461       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1462       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1463       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1464       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1465       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1466 
1467       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1468       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1469       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1470       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1471                                                   // + pshufd/unpck
1472     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1473                                                   // + 2*pshufd + 2*unpck + 2*packus
1474 
1475     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1476     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1477     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1478     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1479     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1480   };
1481 
1482   if (ST->hasSSE2())
1483     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1484       return LT.first * Entry->Cost;
1485 
1486   static const CostTblEntry SSE1ShuffleTbl[] = {
1487     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1488     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1489     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1490     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1491     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1492   };
1493 
1494   if (ST->hasSSE1())
1495     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1496       return LT.first * Entry->Cost;
1497 
1498   return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1499 }
1500 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,TTI::CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)1501 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1502                                              Type *Src,
1503                                              TTI::CastContextHint CCH,
1504                                              TTI::TargetCostKind CostKind,
1505                                              const Instruction *I) {
1506   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1507   assert(ISD && "Invalid opcode");
1508 
1509   // TODO: Allow non-throughput costs that aren't binary.
1510   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1511     if (CostKind != TTI::TCK_RecipThroughput)
1512       return Cost == 0 ? 0 : 1;
1513     return Cost;
1514   };
1515 
1516   // The cost tables include both specific, custom (non-legal) src/dst type
1517   // conversions and generic, legalized types. We test for customs first, before
1518   // falling back to legalization.
1519   // FIXME: Need a better design of the cost table to handle non-simple types of
1520   // potential massive combinations (elem_num x src_type x dst_type).
1521   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1522     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1523     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1524 
1525     // Mask sign extend has an instruction.
1526     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1527     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1528     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1529     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1530     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1531     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1532     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1533     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1534     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1535     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1536     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1537 
1538     // Mask zero extend is a sext + shift.
1539     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1540     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1541     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1542     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1543     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1544     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1545     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1546     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1547     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1548     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1549     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1550 
1551     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1552     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1553     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1554     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1555     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // vpmovwb
1556     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1557     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1558     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // vpmovwb
1559     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1560     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1561     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // vpmovwb
1562     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1563     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1564     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1565     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1566     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1567   };
1568 
1569   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1570     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1571     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1572 
1573     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1574     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1575 
1576     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1577     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1578 
1579     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1580     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1581   };
1582 
1583   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1584   // 256-bit wide vectors.
1585 
1586   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1587     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1588     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1589     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1590 
1591     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1592     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1593     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1594     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1595     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1596     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1597     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1598     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1599     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1600     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1601     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1602     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1603     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1604     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1605     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1606     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i32,  2 }, // vpmovdb
1607     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i32,  2 }, // vpmovdb
1608     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 }, // vpmovdb
1609     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 }, // vpmovdb
1610     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i64,  2 }, // vpmovqb
1611     { ISD::TRUNCATE,  MVT::v2i16,   MVT::v2i64,  1 }, // vpshufb
1612     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 }, // vpmovqb
1613     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 }, // vpmovqw
1614     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 }, // vpmovqd
1615     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1616     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1617 
1618     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1619     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1620 
1621     // Sign extend is zmm vpternlogd+vptruncdb.
1622     // Zero extend is zmm broadcast load+vptruncdw.
1623     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1624     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1625     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1626     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1627     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1628     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1629     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1630     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1631 
1632     // Sign extend is zmm vpternlogd+vptruncdw.
1633     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1634     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1635     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1636     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1637     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1638     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1639     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1640     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1641     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1642 
1643     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1644     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1645     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1646     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1647     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1648     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1649     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1650     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1651     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1652     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1653 
1654     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1655     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1656     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1657     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1658 
1659     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1660     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1661     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1662     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1663     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1664     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1665     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1666     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1667     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1668     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1669 
1670     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1671     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1672 
1673     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1674     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1675     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1676     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1677     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1678     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1679     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1680     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1681 
1682     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1683     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1684     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1685     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1686     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1687     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1688     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1689     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1690     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1691     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1692 
1693     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
1694     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f64, 7 },
1695     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f64,15 },
1696     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f32,11 },
1697     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f64,31 },
1698     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1699     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f64, 7 },
1700     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f32, 5 },
1701     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f64,15 },
1702     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  1 },
1703     { ISD::FP_TO_SINT,  MVT::v16i32, MVT::v16f64, 3 },
1704 
1705     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1706     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1707     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1708     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1709     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1710     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1711   };
1712 
1713   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1714     // Mask sign extend has an instruction.
1715     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1716     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1717     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1718     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1719     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1720     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1721     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1722     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1723     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1724 
1725     // Mask zero extend is a sext + shift.
1726     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1727     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1728     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1729     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1730     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1731     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1732     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1733     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1734     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1735 
1736     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1737     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1738     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1739     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1740     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1741     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1742     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1743     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1744     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1745     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1746   };
1747 
1748   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1749     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1750     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1751     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1752     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1753 
1754     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1755     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1756     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1757     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1758 
1759     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v4f32,  1 },
1760     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1761     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1762     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1763 
1764     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v4f32,  1 },
1765     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1766     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1767     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1768   };
1769 
1770   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1771     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1772     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1773     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1774     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1775     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1776     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1777     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1778     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1779     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1780     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1781     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1782     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1783     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1784     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1785     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i64,  2 }, // vpmovqb
1786     { ISD::TRUNCATE,  MVT::v4i16,   MVT::v4i64,  2 }, // vpmovqw
1787     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i32,  2 }, // vpmovwb
1788 
1789     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1790     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1791     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1792     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1793     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1794     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1795     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1796     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1797     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1798     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1799 
1800     // sign extend is vpcmpeq+maskedmove+vpmovdw
1801     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1802     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1803     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1804     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1805     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1806     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1807     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1808     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1809     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1810 
1811     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1812     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1813     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1814     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1815     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1816     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1817     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1818     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1819     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1820     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1821 
1822     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
1823     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
1824     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
1825     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
1826     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1827     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1828     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
1829     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
1830     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1831     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1832     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1833     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1834 
1835     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
1836     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
1837     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
1838     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
1839 
1840     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1841     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1842     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
1843     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
1844     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
1845     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
1846     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  1 },
1847     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1848     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1849     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1850     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1851     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1852     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1853 
1854     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
1855     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
1856     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f32, 5 },
1857 
1858     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1859     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1860     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1861     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  1 },
1862     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1863     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1864     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1865   };
1866 
1867   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1868     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1869     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1870     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1871     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1872     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1873     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1874 
1875     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
1876     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
1877     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
1878     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
1879     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1880     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1881     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
1882     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
1883     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1884     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1885     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1886     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1887     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
1888     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
1889 
1890     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1891 
1892     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  1 },
1893     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  1 },
1894     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  1 },
1895     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  4 },
1896     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  4 },
1897     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  1 },
1898     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  1 },
1899     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  5 },
1900     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  1 },
1901     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1902 
1903     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1904     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1905 
1906     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  1 },
1907     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  1 },
1908     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  1 },
1909     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  3 },
1910 
1911     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    3 },
1912     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    3 },
1913     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  1 },
1914     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
1915     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
1916     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  4 },
1917     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  3 },
1918     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  4 },
1919 
1920     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
1921     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
1922     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
1923     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1924     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1925     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1926     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  3 },
1927 
1928     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
1929     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
1930     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
1931     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1932     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1933     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1934     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  2 },
1935     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
1936     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
1937     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
1938   };
1939 
1940   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1941     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   6 },
1942     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   4 },
1943     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   7 },
1944     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   4 },
1945     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1946     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1947 
1948     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
1949     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
1950     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
1951     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
1952     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1953     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1954     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
1955     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
1956     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1957     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1958     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1959     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1960 
1961     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  4 },
1962     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  5 },
1963     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 4 },
1964     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i64,  9 },
1965     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i64, 11 },
1966 
1967     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // and+extract+packuswb
1968     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  5 },
1969     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1970     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  5 },
1971     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  3 }, // and+extract+2*packusdw
1972     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1973 
1974     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   3 },
1975     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   3 },
1976     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   8 },
1977     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
1978     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
1979     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
1980     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
1981     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
1982     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
1983     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
1984     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  5 },
1985     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  8 },
1986 
1987     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   7 },
1988     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   7 },
1989     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   6 },
1990     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
1991     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
1992     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
1993     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
1994     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  4 },
1995     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  4 },
1996     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
1997     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  6 },
1998     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1999     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32, 10 },
2000     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64, 10 },
2001     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 18 },
2002     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
2003     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 10 },
2004 
2005     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
2006     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f64,  2 },
2007     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v8f32,  2 },
2008     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v4f64,  2 },
2009     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f32,  2 },
2010     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f64,  2 },
2011     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  2 },
2012     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v4f64,  2 },
2013     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  2 },
2014     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  2 },
2015     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  5 },
2016 
2017     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v8f32,  2 },
2018     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f64,  2 },
2019     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v8f32,  2 },
2020     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v4f64,  2 },
2021     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f32,  2 },
2022     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f64,  2 },
2023     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  2 },
2024     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v4f64,  2 },
2025     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
2026     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2027     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  6 },
2028     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  7 },
2029     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  7 },
2030 
2031     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
2032     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
2033   };
2034 
2035   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
2036     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2037     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2038     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2039     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2040     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2041     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2042     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2043     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2044     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2045     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2046     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2047     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2048 
2049     // These truncates end up widening elements.
2050     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
2051     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
2052     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
2053 
2054     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  2 },
2055     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  2 },
2056     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  2 },
2057 
2058     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2059     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2060     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
2061     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
2062     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2063     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2064     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2065     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2066     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
2067     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  1 },
2068     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2069 
2070     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2071     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2072     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
2073     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
2074     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2075     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2076     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2077     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2078     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  3 },
2079     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2080     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  2 },
2081     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 12 },
2082     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 22 },
2083     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  4 },
2084 
2085     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    1 },
2086     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    1 },
2087     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    1 },
2088     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    1 },
2089     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  2 },
2090     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  2 },
2091     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  1 },
2092     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  1 },
2093     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  1 },
2094     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  1 },
2095 
2096     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    1 },
2097     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2098     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    1 },
2099     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
2100     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  2 },
2101     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  2 },
2102     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  1 },
2103     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  1 },
2104     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  4 },
2105     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2106   };
2107 
2108   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
2109     // These are somewhat magic numbers justified by comparing the
2110     // output of llvm-mca for our various supported scheduler models
2111     // and basing it off the worst case scenario.
2112     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2113     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2114     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    3 },
2115     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    3 },
2116     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  3 },
2117     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2118     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  3 },
2119     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2120     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2121     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  4 },
2122     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  8 },
2123     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  8 },
2124 
2125     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2126     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2127     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    8 },
2128     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    9 },
2129     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2130     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  4 },
2131     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  4 },
2132     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2133     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  7 },
2134     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  7 },
2135     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
2136     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64, 15 },
2137     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 18 },
2138 
2139     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    4 },
2140     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    4 },
2141     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    4 },
2142     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    4 },
2143     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  6 },
2144     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  6 },
2145     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  5 },
2146     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  5 },
2147     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  4 },
2148     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  4 },
2149 
2150     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    4 },
2151     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2152     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    4 },
2153     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,   15 },
2154     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  6 },
2155     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  6 },
2156     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  5 },
2157     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  5 },
2158     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  8 },
2159     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  8 },
2160 
2161     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2162     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2163     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v16i8,  2 },
2164     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v16i8,  3 },
2165     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v16i8,  1 },
2166     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v16i8,  2 },
2167     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v8i16,  2 },
2168     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v8i16,  3 },
2169     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v8i16,  1 },
2170     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v8i16,  2 },
2171     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v4i32,  1 },
2172     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v4i32,  2 },
2173 
2174     // These truncates are really widening elements.
2175     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
2176     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
2177     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
2178     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
2179     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
2180     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
2181 
2182     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  2 }, // PAND+PACKUSWB
2183     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
2184     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  3 }, // PAND+2*PACKUSWB
2185     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2186     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
2187     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  3 },
2188     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2189     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32,10 },
2190     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2191     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2192     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v2i64,  1 }, // PSHUFD
2193   };
2194 
2195   // Attempt to map directly to (simple) MVT types to let us match custom entries.
2196   EVT SrcTy = TLI->getValueType(DL, Src);
2197   EVT DstTy = TLI->getValueType(DL, Dst);
2198 
2199   // The function getSimpleVT only handles simple value types.
2200   if (SrcTy.isSimple() && DstTy.isSimple()) {
2201     MVT SimpleSrcTy = SrcTy.getSimpleVT();
2202     MVT SimpleDstTy = DstTy.getSimpleVT();
2203 
2204     if (ST->useAVX512Regs()) {
2205       if (ST->hasBWI())
2206         if (const auto *Entry = ConvertCostTableLookup(
2207                 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2208           return AdjustCost(Entry->Cost);
2209 
2210       if (ST->hasDQI())
2211         if (const auto *Entry = ConvertCostTableLookup(
2212                 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2213           return AdjustCost(Entry->Cost);
2214 
2215       if (ST->hasAVX512())
2216         if (const auto *Entry = ConvertCostTableLookup(
2217                 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2218           return AdjustCost(Entry->Cost);
2219     }
2220 
2221     if (ST->hasBWI())
2222       if (const auto *Entry = ConvertCostTableLookup(
2223               AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2224         return AdjustCost(Entry->Cost);
2225 
2226     if (ST->hasDQI())
2227       if (const auto *Entry = ConvertCostTableLookup(
2228               AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2229         return AdjustCost(Entry->Cost);
2230 
2231     if (ST->hasAVX512())
2232       if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2233                                                      SimpleDstTy, SimpleSrcTy))
2234         return AdjustCost(Entry->Cost);
2235 
2236     if (ST->hasAVX2()) {
2237       if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2238                                                      SimpleDstTy, SimpleSrcTy))
2239         return AdjustCost(Entry->Cost);
2240     }
2241 
2242     if (ST->hasAVX()) {
2243       if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2244                                                      SimpleDstTy, SimpleSrcTy))
2245         return AdjustCost(Entry->Cost);
2246     }
2247 
2248     if (ST->hasSSE41()) {
2249       if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2250                                                      SimpleDstTy, SimpleSrcTy))
2251         return AdjustCost(Entry->Cost);
2252     }
2253 
2254     if (ST->hasSSE2()) {
2255       if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2256                                                      SimpleDstTy, SimpleSrcTy))
2257         return AdjustCost(Entry->Cost);
2258     }
2259   }
2260 
2261   // Fall back to legalized types.
2262   std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2263   std::pair<InstructionCost, MVT> LTDest =
2264       TLI->getTypeLegalizationCost(DL, Dst);
2265 
2266   if (ST->useAVX512Regs()) {
2267     if (ST->hasBWI())
2268       if (const auto *Entry = ConvertCostTableLookup(
2269               AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
2270         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2271 
2272     if (ST->hasDQI())
2273       if (const auto *Entry = ConvertCostTableLookup(
2274               AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
2275         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2276 
2277     if (ST->hasAVX512())
2278       if (const auto *Entry = ConvertCostTableLookup(
2279               AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
2280         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2281   }
2282 
2283   if (ST->hasBWI())
2284     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2285                                                    LTDest.second, LTSrc.second))
2286       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2287 
2288   if (ST->hasDQI())
2289     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2290                                                    LTDest.second, LTSrc.second))
2291       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2292 
2293   if (ST->hasAVX512())
2294     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2295                                                    LTDest.second, LTSrc.second))
2296       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2297 
2298   if (ST->hasAVX2())
2299     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2300                                                    LTDest.second, LTSrc.second))
2301       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2302 
2303   if (ST->hasAVX())
2304     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2305                                                    LTDest.second, LTSrc.second))
2306       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2307 
2308   if (ST->hasSSE41())
2309     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2310                                                    LTDest.second, LTSrc.second))
2311       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2312 
2313   if (ST->hasSSE2())
2314     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2315                                                    LTDest.second, LTSrc.second))
2316       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2317 
2318   // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
2319   // sitofp.
2320   if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
2321       1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
2322     Type *ExtSrc = Src->getWithNewBitWidth(32);
2323     unsigned ExtOpc =
2324         (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
2325 
2326     // For scalar loads the extend would be free.
2327     InstructionCost ExtCost = 0;
2328     if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0))))
2329       ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind);
2330 
2331     return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc,
2332                                       TTI::CastContextHint::None, CostKind);
2333   }
2334 
2335   // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
2336   // i32.
2337   if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
2338       1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
2339     Type *TruncDst = Dst->getWithNewBitWidth(32);
2340     return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) +
2341            getCastInstrCost(Instruction::Trunc, Dst, TruncDst,
2342                             TTI::CastContextHint::None, CostKind);
2343   }
2344 
2345   return AdjustCost(
2346       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2347 }
2348 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)2349 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2350                                                Type *CondTy,
2351                                                CmpInst::Predicate VecPred,
2352                                                TTI::TargetCostKind CostKind,
2353                                                const Instruction *I) {
2354   // TODO: Handle other cost kinds.
2355   if (CostKind != TTI::TCK_RecipThroughput)
2356     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2357                                      I);
2358 
2359   // Legalize the type.
2360   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2361 
2362   MVT MTy = LT.second;
2363 
2364   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2365   assert(ISD && "Invalid opcode");
2366 
2367   unsigned ExtraCost = 0;
2368   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2369     // Some vector comparison predicates cost extra instructions.
2370     if (MTy.isVector() &&
2371         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2372           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2373           ST->hasBWI())) {
2374       switch (cast<CmpInst>(I)->getPredicate()) {
2375       case CmpInst::Predicate::ICMP_NE:
2376         // xor(cmpeq(x,y),-1)
2377         ExtraCost = 1;
2378         break;
2379       case CmpInst::Predicate::ICMP_SGE:
2380       case CmpInst::Predicate::ICMP_SLE:
2381         // xor(cmpgt(x,y),-1)
2382         ExtraCost = 1;
2383         break;
2384       case CmpInst::Predicate::ICMP_ULT:
2385       case CmpInst::Predicate::ICMP_UGT:
2386         // cmpgt(xor(x,signbit),xor(y,signbit))
2387         // xor(cmpeq(pmaxu(x,y),x),-1)
2388         ExtraCost = 2;
2389         break;
2390       case CmpInst::Predicate::ICMP_ULE:
2391       case CmpInst::Predicate::ICMP_UGE:
2392         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2393             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2394           // cmpeq(psubus(x,y),0)
2395           // cmpeq(pminu(x,y),x)
2396           ExtraCost = 1;
2397         } else {
2398           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2399           ExtraCost = 3;
2400         }
2401         break;
2402       default:
2403         break;
2404       }
2405     }
2406   }
2407 
2408   static const CostTblEntry SLMCostTbl[] = {
2409     // slm pcmpeq/pcmpgt throughput is 2
2410     { ISD::SETCC,   MVT::v2i64,   2 },
2411   };
2412 
2413   static const CostTblEntry AVX512BWCostTbl[] = {
2414     { ISD::SETCC,   MVT::v32i16,  1 },
2415     { ISD::SETCC,   MVT::v64i8,   1 },
2416 
2417     { ISD::SELECT,  MVT::v32i16,  1 },
2418     { ISD::SELECT,  MVT::v64i8,   1 },
2419   };
2420 
2421   static const CostTblEntry AVX512CostTbl[] = {
2422     { ISD::SETCC,   MVT::v8i64,   1 },
2423     { ISD::SETCC,   MVT::v16i32,  1 },
2424     { ISD::SETCC,   MVT::v8f64,   1 },
2425     { ISD::SETCC,   MVT::v16f32,  1 },
2426 
2427     { ISD::SELECT,  MVT::v8i64,   1 },
2428     { ISD::SELECT,  MVT::v16i32,  1 },
2429     { ISD::SELECT,  MVT::v8f64,   1 },
2430     { ISD::SELECT,  MVT::v16f32,  1 },
2431 
2432     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2433     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2434 
2435     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2436     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2437   };
2438 
2439   static const CostTblEntry AVX2CostTbl[] = {
2440     { ISD::SETCC,   MVT::v4i64,   1 },
2441     { ISD::SETCC,   MVT::v8i32,   1 },
2442     { ISD::SETCC,   MVT::v16i16,  1 },
2443     { ISD::SETCC,   MVT::v32i8,   1 },
2444 
2445     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2446     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2447     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2448     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2449   };
2450 
2451   static const CostTblEntry AVX1CostTbl[] = {
2452     { ISD::SETCC,   MVT::v4f64,   1 },
2453     { ISD::SETCC,   MVT::v8f32,   1 },
2454     // AVX1 does not support 8-wide integer compare.
2455     { ISD::SETCC,   MVT::v4i64,   4 },
2456     { ISD::SETCC,   MVT::v8i32,   4 },
2457     { ISD::SETCC,   MVT::v16i16,  4 },
2458     { ISD::SETCC,   MVT::v32i8,   4 },
2459 
2460     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2461     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2462     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2463     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2464     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2465     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2466   };
2467 
2468   static const CostTblEntry SSE42CostTbl[] = {
2469     { ISD::SETCC,   MVT::v2f64,   1 },
2470     { ISD::SETCC,   MVT::v4f32,   1 },
2471     { ISD::SETCC,   MVT::v2i64,   1 },
2472   };
2473 
2474   static const CostTblEntry SSE41CostTbl[] = {
2475     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2476     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2477     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2478     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2479     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2480     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2481   };
2482 
2483   static const CostTblEntry SSE2CostTbl[] = {
2484     { ISD::SETCC,   MVT::v2f64,   2 },
2485     { ISD::SETCC,   MVT::f64,     1 },
2486     { ISD::SETCC,   MVT::v2i64,   8 },
2487     { ISD::SETCC,   MVT::v4i32,   1 },
2488     { ISD::SETCC,   MVT::v8i16,   1 },
2489     { ISD::SETCC,   MVT::v16i8,   1 },
2490 
2491     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2492     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2493     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2494     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2495     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2496   };
2497 
2498   static const CostTblEntry SSE1CostTbl[] = {
2499     { ISD::SETCC,   MVT::v4f32,   2 },
2500     { ISD::SETCC,   MVT::f32,     1 },
2501 
2502     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2503   };
2504 
2505   if (ST->isSLM())
2506     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2507       return LT.first * (ExtraCost + Entry->Cost);
2508 
2509   if (ST->hasBWI())
2510     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2511       return LT.first * (ExtraCost + Entry->Cost);
2512 
2513   if (ST->hasAVX512())
2514     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2515       return LT.first * (ExtraCost + Entry->Cost);
2516 
2517   if (ST->hasAVX2())
2518     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2519       return LT.first * (ExtraCost + Entry->Cost);
2520 
2521   if (ST->hasAVX())
2522     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2523       return LT.first * (ExtraCost + Entry->Cost);
2524 
2525   if (ST->hasSSE42())
2526     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2527       return LT.first * (ExtraCost + Entry->Cost);
2528 
2529   if (ST->hasSSE41())
2530     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2531       return LT.first * (ExtraCost + Entry->Cost);
2532 
2533   if (ST->hasSSE2())
2534     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2535       return LT.first * (ExtraCost + Entry->Cost);
2536 
2537   if (ST->hasSSE1())
2538     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2539       return LT.first * (ExtraCost + Entry->Cost);
2540 
2541   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2542 }
2543 
getAtomicMemIntrinsicMaxElementSize() const2544 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2545 
2546 InstructionCost
getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)2547 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2548                                            TTI::TargetCostKind CostKind) {
2549 
2550   // Costs should match the codegen from:
2551   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2552   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2553   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2554   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2555   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2556 
2557   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2558   //       specialized in these tables yet.
2559   static const CostTblEntry AVX512CDCostTbl[] = {
2560     { ISD::CTLZ,       MVT::v8i64,   1 },
2561     { ISD::CTLZ,       MVT::v16i32,  1 },
2562     { ISD::CTLZ,       MVT::v32i16,  8 },
2563     { ISD::CTLZ,       MVT::v64i8,  20 },
2564     { ISD::CTLZ,       MVT::v4i64,   1 },
2565     { ISD::CTLZ,       MVT::v8i32,   1 },
2566     { ISD::CTLZ,       MVT::v16i16,  4 },
2567     { ISD::CTLZ,       MVT::v32i8,  10 },
2568     { ISD::CTLZ,       MVT::v2i64,   1 },
2569     { ISD::CTLZ,       MVT::v4i32,   1 },
2570     { ISD::CTLZ,       MVT::v8i16,   4 },
2571     { ISD::CTLZ,       MVT::v16i8,   4 },
2572   };
2573   static const CostTblEntry AVX512BWCostTbl[] = {
2574     { ISD::ABS,        MVT::v32i16,  1 },
2575     { ISD::ABS,        MVT::v64i8,   1 },
2576     { ISD::BITREVERSE, MVT::v8i64,   5 },
2577     { ISD::BITREVERSE, MVT::v16i32,  5 },
2578     { ISD::BITREVERSE, MVT::v32i16,  5 },
2579     { ISD::BITREVERSE, MVT::v64i8,   5 },
2580     { ISD::BSWAP,      MVT::v8i64,   1 },
2581     { ISD::BSWAP,      MVT::v16i32,  1 },
2582     { ISD::BSWAP,      MVT::v32i16,  1 },
2583     { ISD::CTLZ,       MVT::v8i64,  23 },
2584     { ISD::CTLZ,       MVT::v16i32, 22 },
2585     { ISD::CTLZ,       MVT::v32i16, 18 },
2586     { ISD::CTLZ,       MVT::v64i8,  17 },
2587     { ISD::CTPOP,      MVT::v8i64,   7 },
2588     { ISD::CTPOP,      MVT::v16i32, 11 },
2589     { ISD::CTPOP,      MVT::v32i16,  9 },
2590     { ISD::CTPOP,      MVT::v64i8,   6 },
2591     { ISD::CTTZ,       MVT::v8i64,  10 },
2592     { ISD::CTTZ,       MVT::v16i32, 14 },
2593     { ISD::CTTZ,       MVT::v32i16, 12 },
2594     { ISD::CTTZ,       MVT::v64i8,   9 },
2595     { ISD::SADDSAT,    MVT::v32i16,  1 },
2596     { ISD::SADDSAT,    MVT::v64i8,   1 },
2597     { ISD::SMAX,       MVT::v32i16,  1 },
2598     { ISD::SMAX,       MVT::v64i8,   1 },
2599     { ISD::SMIN,       MVT::v32i16,  1 },
2600     { ISD::SMIN,       MVT::v64i8,   1 },
2601     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2602     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2603     { ISD::UADDSAT,    MVT::v32i16,  1 },
2604     { ISD::UADDSAT,    MVT::v64i8,   1 },
2605     { ISD::UMAX,       MVT::v32i16,  1 },
2606     { ISD::UMAX,       MVT::v64i8,   1 },
2607     { ISD::UMIN,       MVT::v32i16,  1 },
2608     { ISD::UMIN,       MVT::v64i8,   1 },
2609     { ISD::USUBSAT,    MVT::v32i16,  1 },
2610     { ISD::USUBSAT,    MVT::v64i8,   1 },
2611   };
2612   static const CostTblEntry AVX512CostTbl[] = {
2613     { ISD::ABS,        MVT::v8i64,   1 },
2614     { ISD::ABS,        MVT::v16i32,  1 },
2615     { ISD::ABS,        MVT::v32i16,  2 }, // FIXME: include split
2616     { ISD::ABS,        MVT::v64i8,   2 }, // FIXME: include split
2617     { ISD::ABS,        MVT::v4i64,   1 },
2618     { ISD::ABS,        MVT::v2i64,   1 },
2619     { ISD::BITREVERSE, MVT::v8i64,  36 },
2620     { ISD::BITREVERSE, MVT::v16i32, 24 },
2621     { ISD::BITREVERSE, MVT::v32i16, 10 },
2622     { ISD::BITREVERSE, MVT::v64i8,  10 },
2623     { ISD::BSWAP,      MVT::v8i64,   4 },
2624     { ISD::BSWAP,      MVT::v16i32,  4 },
2625     { ISD::BSWAP,      MVT::v32i16,  4 },
2626     { ISD::CTLZ,       MVT::v8i64,  29 },
2627     { ISD::CTLZ,       MVT::v16i32, 35 },
2628     { ISD::CTLZ,       MVT::v32i16, 28 },
2629     { ISD::CTLZ,       MVT::v64i8,  18 },
2630     { ISD::CTPOP,      MVT::v8i64,  16 },
2631     { ISD::CTPOP,      MVT::v16i32, 24 },
2632     { ISD::CTPOP,      MVT::v32i16, 18 },
2633     { ISD::CTPOP,      MVT::v64i8,  12 },
2634     { ISD::CTTZ,       MVT::v8i64,  20 },
2635     { ISD::CTTZ,       MVT::v16i32, 28 },
2636     { ISD::CTTZ,       MVT::v32i16, 24 },
2637     { ISD::CTTZ,       MVT::v64i8,  18 },
2638     { ISD::SMAX,       MVT::v8i64,   1 },
2639     { ISD::SMAX,       MVT::v16i32,  1 },
2640     { ISD::SMAX,       MVT::v32i16,  2 }, // FIXME: include split
2641     { ISD::SMAX,       MVT::v64i8,   2 }, // FIXME: include split
2642     { ISD::SMAX,       MVT::v4i64,   1 },
2643     { ISD::SMAX,       MVT::v2i64,   1 },
2644     { ISD::SMIN,       MVT::v8i64,   1 },
2645     { ISD::SMIN,       MVT::v16i32,  1 },
2646     { ISD::SMIN,       MVT::v32i16,  2 }, // FIXME: include split
2647     { ISD::SMIN,       MVT::v64i8,   2 }, // FIXME: include split
2648     { ISD::SMIN,       MVT::v4i64,   1 },
2649     { ISD::SMIN,       MVT::v2i64,   1 },
2650     { ISD::UMAX,       MVT::v8i64,   1 },
2651     { ISD::UMAX,       MVT::v16i32,  1 },
2652     { ISD::UMAX,       MVT::v32i16,  2 }, // FIXME: include split
2653     { ISD::UMAX,       MVT::v64i8,   2 }, // FIXME: include split
2654     { ISD::UMAX,       MVT::v4i64,   1 },
2655     { ISD::UMAX,       MVT::v2i64,   1 },
2656     { ISD::UMIN,       MVT::v8i64,   1 },
2657     { ISD::UMIN,       MVT::v16i32,  1 },
2658     { ISD::UMIN,       MVT::v32i16,  2 }, // FIXME: include split
2659     { ISD::UMIN,       MVT::v64i8,   2 }, // FIXME: include split
2660     { ISD::UMIN,       MVT::v4i64,   1 },
2661     { ISD::UMIN,       MVT::v2i64,   1 },
2662     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2663     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2664     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2665     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2666     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2667     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2668     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2669     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2670     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2671     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2672     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2673     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2674     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2675     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2676     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2677     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2678     { ISD::FMAXNUM,    MVT::f32,     2 },
2679     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2680     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2681     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2682     { ISD::FMAXNUM,    MVT::f64,     2 },
2683     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2684     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2685     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2686   };
2687   static const CostTblEntry XOPCostTbl[] = {
2688     { ISD::BITREVERSE, MVT::v4i64,   4 },
2689     { ISD::BITREVERSE, MVT::v8i32,   4 },
2690     { ISD::BITREVERSE, MVT::v16i16,  4 },
2691     { ISD::BITREVERSE, MVT::v32i8,   4 },
2692     { ISD::BITREVERSE, MVT::v2i64,   1 },
2693     { ISD::BITREVERSE, MVT::v4i32,   1 },
2694     { ISD::BITREVERSE, MVT::v8i16,   1 },
2695     { ISD::BITREVERSE, MVT::v16i8,   1 },
2696     { ISD::BITREVERSE, MVT::i64,     3 },
2697     { ISD::BITREVERSE, MVT::i32,     3 },
2698     { ISD::BITREVERSE, MVT::i16,     3 },
2699     { ISD::BITREVERSE, MVT::i8,      3 }
2700   };
2701   static const CostTblEntry AVX2CostTbl[] = {
2702     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2703     { ISD::ABS,        MVT::v8i32,   1 },
2704     { ISD::ABS,        MVT::v16i16,  1 },
2705     { ISD::ABS,        MVT::v32i8,   1 },
2706     { ISD::BITREVERSE, MVT::v4i64,   5 },
2707     { ISD::BITREVERSE, MVT::v8i32,   5 },
2708     { ISD::BITREVERSE, MVT::v16i16,  5 },
2709     { ISD::BITREVERSE, MVT::v32i8,   5 },
2710     { ISD::BSWAP,      MVT::v4i64,   1 },
2711     { ISD::BSWAP,      MVT::v8i32,   1 },
2712     { ISD::BSWAP,      MVT::v16i16,  1 },
2713     { ISD::CTLZ,       MVT::v4i64,  23 },
2714     { ISD::CTLZ,       MVT::v8i32,  18 },
2715     { ISD::CTLZ,       MVT::v16i16, 14 },
2716     { ISD::CTLZ,       MVT::v32i8,   9 },
2717     { ISD::CTPOP,      MVT::v4i64,   7 },
2718     { ISD::CTPOP,      MVT::v8i32,  11 },
2719     { ISD::CTPOP,      MVT::v16i16,  9 },
2720     { ISD::CTPOP,      MVT::v32i8,   6 },
2721     { ISD::CTTZ,       MVT::v4i64,  10 },
2722     { ISD::CTTZ,       MVT::v8i32,  14 },
2723     { ISD::CTTZ,       MVT::v16i16, 12 },
2724     { ISD::CTTZ,       MVT::v32i8,   9 },
2725     { ISD::SADDSAT,    MVT::v16i16,  1 },
2726     { ISD::SADDSAT,    MVT::v32i8,   1 },
2727     { ISD::SMAX,       MVT::v8i32,   1 },
2728     { ISD::SMAX,       MVT::v16i16,  1 },
2729     { ISD::SMAX,       MVT::v32i8,   1 },
2730     { ISD::SMIN,       MVT::v8i32,   1 },
2731     { ISD::SMIN,       MVT::v16i16,  1 },
2732     { ISD::SMIN,       MVT::v32i8,   1 },
2733     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2734     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2735     { ISD::UADDSAT,    MVT::v16i16,  1 },
2736     { ISD::UADDSAT,    MVT::v32i8,   1 },
2737     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2738     { ISD::UMAX,       MVT::v8i32,   1 },
2739     { ISD::UMAX,       MVT::v16i16,  1 },
2740     { ISD::UMAX,       MVT::v32i8,   1 },
2741     { ISD::UMIN,       MVT::v8i32,   1 },
2742     { ISD::UMIN,       MVT::v16i16,  1 },
2743     { ISD::UMIN,       MVT::v32i8,   1 },
2744     { ISD::USUBSAT,    MVT::v16i16,  1 },
2745     { ISD::USUBSAT,    MVT::v32i8,   1 },
2746     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2747     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2748     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2749     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2750     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2751     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2752     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2753     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2754     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2755   };
2756   static const CostTblEntry AVX1CostTbl[] = {
2757     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2758     { ISD::ABS,        MVT::v8i32,   3 },
2759     { ISD::ABS,        MVT::v16i16,  3 },
2760     { ISD::ABS,        MVT::v32i8,   3 },
2761     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2762     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2763     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2764     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2765     { ISD::BSWAP,      MVT::v4i64,   4 },
2766     { ISD::BSWAP,      MVT::v8i32,   4 },
2767     { ISD::BSWAP,      MVT::v16i16,  4 },
2768     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2769     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2770     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2771     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2772     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2773     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2774     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2775     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2776     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2777     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2778     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2779     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2780     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2781     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2782     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2783     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2784     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2785     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2786     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2787     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2788     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2789     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2790     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2791     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2792     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2793     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2794     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2795     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2796     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2797     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2798     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2799     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2800     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2801     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2802     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
2803     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2804     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
2805     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
2806     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2807     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
2808     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2809     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2810     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2811     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2812     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2813     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2814   };
2815   static const CostTblEntry GLMCostTbl[] = {
2816     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2817     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2818     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2819     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2820   };
2821   static const CostTblEntry SLMCostTbl[] = {
2822     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2823     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2824     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2825     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2826   };
2827   static const CostTblEntry SSE42CostTbl[] = {
2828     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2829     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2830     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2831     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2832   };
2833   static const CostTblEntry SSE41CostTbl[] = {
2834     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
2835     { ISD::SMAX,       MVT::v4i32,   1 },
2836     { ISD::SMAX,       MVT::v16i8,   1 },
2837     { ISD::SMIN,       MVT::v4i32,   1 },
2838     { ISD::SMIN,       MVT::v16i8,   1 },
2839     { ISD::UMAX,       MVT::v4i32,   1 },
2840     { ISD::UMAX,       MVT::v8i16,   1 },
2841     { ISD::UMIN,       MVT::v4i32,   1 },
2842     { ISD::UMIN,       MVT::v8i16,   1 },
2843   };
2844   static const CostTblEntry SSSE3CostTbl[] = {
2845     { ISD::ABS,        MVT::v4i32,   1 },
2846     { ISD::ABS,        MVT::v8i16,   1 },
2847     { ISD::ABS,        MVT::v16i8,   1 },
2848     { ISD::BITREVERSE, MVT::v2i64,   5 },
2849     { ISD::BITREVERSE, MVT::v4i32,   5 },
2850     { ISD::BITREVERSE, MVT::v8i16,   5 },
2851     { ISD::BITREVERSE, MVT::v16i8,   5 },
2852     { ISD::BSWAP,      MVT::v2i64,   1 },
2853     { ISD::BSWAP,      MVT::v4i32,   1 },
2854     { ISD::BSWAP,      MVT::v8i16,   1 },
2855     { ISD::CTLZ,       MVT::v2i64,  23 },
2856     { ISD::CTLZ,       MVT::v4i32,  18 },
2857     { ISD::CTLZ,       MVT::v8i16,  14 },
2858     { ISD::CTLZ,       MVT::v16i8,   9 },
2859     { ISD::CTPOP,      MVT::v2i64,   7 },
2860     { ISD::CTPOP,      MVT::v4i32,  11 },
2861     { ISD::CTPOP,      MVT::v8i16,   9 },
2862     { ISD::CTPOP,      MVT::v16i8,   6 },
2863     { ISD::CTTZ,       MVT::v2i64,  10 },
2864     { ISD::CTTZ,       MVT::v4i32,  14 },
2865     { ISD::CTTZ,       MVT::v8i16,  12 },
2866     { ISD::CTTZ,       MVT::v16i8,   9 }
2867   };
2868   static const CostTblEntry SSE2CostTbl[] = {
2869     { ISD::ABS,        MVT::v2i64,   4 },
2870     { ISD::ABS,        MVT::v4i32,   3 },
2871     { ISD::ABS,        MVT::v8i16,   2 },
2872     { ISD::ABS,        MVT::v16i8,   2 },
2873     { ISD::BITREVERSE, MVT::v2i64,  29 },
2874     { ISD::BITREVERSE, MVT::v4i32,  27 },
2875     { ISD::BITREVERSE, MVT::v8i16,  27 },
2876     { ISD::BITREVERSE, MVT::v16i8,  20 },
2877     { ISD::BSWAP,      MVT::v2i64,   7 },
2878     { ISD::BSWAP,      MVT::v4i32,   7 },
2879     { ISD::BSWAP,      MVT::v8i16,   7 },
2880     { ISD::CTLZ,       MVT::v2i64,  25 },
2881     { ISD::CTLZ,       MVT::v4i32,  26 },
2882     { ISD::CTLZ,       MVT::v8i16,  20 },
2883     { ISD::CTLZ,       MVT::v16i8,  17 },
2884     { ISD::CTPOP,      MVT::v2i64,  12 },
2885     { ISD::CTPOP,      MVT::v4i32,  15 },
2886     { ISD::CTPOP,      MVT::v8i16,  13 },
2887     { ISD::CTPOP,      MVT::v16i8,  10 },
2888     { ISD::CTTZ,       MVT::v2i64,  14 },
2889     { ISD::CTTZ,       MVT::v4i32,  18 },
2890     { ISD::CTTZ,       MVT::v8i16,  16 },
2891     { ISD::CTTZ,       MVT::v16i8,  13 },
2892     { ISD::SADDSAT,    MVT::v8i16,   1 },
2893     { ISD::SADDSAT,    MVT::v16i8,   1 },
2894     { ISD::SMAX,       MVT::v8i16,   1 },
2895     { ISD::SMIN,       MVT::v8i16,   1 },
2896     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2897     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2898     { ISD::UADDSAT,    MVT::v8i16,   1 },
2899     { ISD::UADDSAT,    MVT::v16i8,   1 },
2900     { ISD::UMAX,       MVT::v8i16,   2 },
2901     { ISD::UMAX,       MVT::v16i8,   1 },
2902     { ISD::UMIN,       MVT::v8i16,   2 },
2903     { ISD::UMIN,       MVT::v16i8,   1 },
2904     { ISD::USUBSAT,    MVT::v8i16,   1 },
2905     { ISD::USUBSAT,    MVT::v16i8,   1 },
2906     { ISD::FMAXNUM,    MVT::f64,     4 },
2907     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2908     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2909     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2910   };
2911   static const CostTblEntry SSE1CostTbl[] = {
2912     { ISD::FMAXNUM,    MVT::f32,     4 },
2913     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2914     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2915     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2916   };
2917   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2918     { ISD::CTTZ,       MVT::i64,     1 },
2919   };
2920   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2921     { ISD::CTTZ,       MVT::i32,     1 },
2922     { ISD::CTTZ,       MVT::i16,     1 },
2923     { ISD::CTTZ,       MVT::i8,      1 },
2924   };
2925   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2926     { ISD::CTLZ,       MVT::i64,     1 },
2927   };
2928   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2929     { ISD::CTLZ,       MVT::i32,     1 },
2930     { ISD::CTLZ,       MVT::i16,     1 },
2931     { ISD::CTLZ,       MVT::i8,      1 },
2932   };
2933   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2934     { ISD::CTPOP,      MVT::i64,     1 },
2935   };
2936   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2937     { ISD::CTPOP,      MVT::i32,     1 },
2938     { ISD::CTPOP,      MVT::i16,     1 },
2939     { ISD::CTPOP,      MVT::i8,      1 },
2940   };
2941   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2942     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
2943     { ISD::BITREVERSE, MVT::i64,    14 },
2944     { ISD::BSWAP,      MVT::i64,     1 },
2945     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2946     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2947     { ISD::CTPOP,      MVT::i64,    10 },
2948     { ISD::SADDO,      MVT::i64,     1 },
2949     { ISD::UADDO,      MVT::i64,     1 },
2950     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
2951   };
2952   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2953     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
2954     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
2955     { ISD::BITREVERSE, MVT::i32,    14 },
2956     { ISD::BITREVERSE, MVT::i16,    14 },
2957     { ISD::BITREVERSE, MVT::i8,     11 },
2958     { ISD::BSWAP,      MVT::i32,     1 },
2959     { ISD::BSWAP,      MVT::i16,     1 }, // ROL
2960     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2961     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2962     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2963     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2964     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2965     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2966     { ISD::CTPOP,      MVT::i32,     8 },
2967     { ISD::CTPOP,      MVT::i16,     9 },
2968     { ISD::CTPOP,      MVT::i8,      7 },
2969     { ISD::SADDO,      MVT::i32,     1 },
2970     { ISD::SADDO,      MVT::i16,     1 },
2971     { ISD::SADDO,      MVT::i8,      1 },
2972     { ISD::UADDO,      MVT::i32,     1 },
2973     { ISD::UADDO,      MVT::i16,     1 },
2974     { ISD::UADDO,      MVT::i8,      1 },
2975     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
2976     { ISD::UMULO,      MVT::i16,     2 },
2977     { ISD::UMULO,      MVT::i8,      2 },
2978   };
2979 
2980   Type *RetTy = ICA.getReturnType();
2981   Type *OpTy = RetTy;
2982   Intrinsic::ID IID = ICA.getID();
2983   unsigned ISD = ISD::DELETED_NODE;
2984   switch (IID) {
2985   default:
2986     break;
2987   case Intrinsic::abs:
2988     ISD = ISD::ABS;
2989     break;
2990   case Intrinsic::bitreverse:
2991     ISD = ISD::BITREVERSE;
2992     break;
2993   case Intrinsic::bswap:
2994     ISD = ISD::BSWAP;
2995     break;
2996   case Intrinsic::ctlz:
2997     ISD = ISD::CTLZ;
2998     break;
2999   case Intrinsic::ctpop:
3000     ISD = ISD::CTPOP;
3001     break;
3002   case Intrinsic::cttz:
3003     ISD = ISD::CTTZ;
3004     break;
3005   case Intrinsic::maxnum:
3006   case Intrinsic::minnum:
3007     // FMINNUM has same costs so don't duplicate.
3008     ISD = ISD::FMAXNUM;
3009     break;
3010   case Intrinsic::sadd_sat:
3011     ISD = ISD::SADDSAT;
3012     break;
3013   case Intrinsic::smax:
3014     ISD = ISD::SMAX;
3015     break;
3016   case Intrinsic::smin:
3017     ISD = ISD::SMIN;
3018     break;
3019   case Intrinsic::ssub_sat:
3020     ISD = ISD::SSUBSAT;
3021     break;
3022   case Intrinsic::uadd_sat:
3023     ISD = ISD::UADDSAT;
3024     break;
3025   case Intrinsic::umax:
3026     ISD = ISD::UMAX;
3027     break;
3028   case Intrinsic::umin:
3029     ISD = ISD::UMIN;
3030     break;
3031   case Intrinsic::usub_sat:
3032     ISD = ISD::USUBSAT;
3033     break;
3034   case Intrinsic::sqrt:
3035     ISD = ISD::FSQRT;
3036     break;
3037   case Intrinsic::sadd_with_overflow:
3038   case Intrinsic::ssub_with_overflow:
3039     // SSUBO has same costs so don't duplicate.
3040     ISD = ISD::SADDO;
3041     OpTy = RetTy->getContainedType(0);
3042     break;
3043   case Intrinsic::uadd_with_overflow:
3044   case Intrinsic::usub_with_overflow:
3045     // USUBO has same costs so don't duplicate.
3046     ISD = ISD::UADDO;
3047     OpTy = RetTy->getContainedType(0);
3048     break;
3049   case Intrinsic::umul_with_overflow:
3050   case Intrinsic::smul_with_overflow:
3051     // SMULO has same costs so don't duplicate.
3052     ISD = ISD::UMULO;
3053     OpTy = RetTy->getContainedType(0);
3054     break;
3055   }
3056 
3057   if (ISD != ISD::DELETED_NODE) {
3058     // Legalize the type.
3059     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
3060     MVT MTy = LT.second;
3061 
3062     // Attempt to lookup cost.
3063     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
3064         MTy.isVector()) {
3065       // With PSHUFB the code is very similar for all types. If we have integer
3066       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
3067       // we also need a PSHUFB.
3068       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
3069 
3070       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
3071       // instructions. We also need an extract and an insert.
3072       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
3073             (ST->hasBWI() && MTy.is512BitVector())))
3074         Cost = Cost * 2 + 2;
3075 
3076       return LT.first * Cost;
3077     }
3078 
3079     auto adjustTableCost = [](const CostTblEntry &Entry,
3080                               InstructionCost LegalizationCost,
3081                               FastMathFlags FMF) {
3082       // If there are no NANs to deal with, then these are reduced to a
3083       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
3084       // assume is used in the non-fast case.
3085       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
3086         if (FMF.noNaNs())
3087           return LegalizationCost * 1;
3088       }
3089       return LegalizationCost * (int)Entry.Cost;
3090     };
3091 
3092     if (ST->useGLMDivSqrtCosts())
3093       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
3094         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3095 
3096     if (ST->isSLM())
3097       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
3098         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3099 
3100     if (ST->hasCDI())
3101       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
3102         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3103 
3104     if (ST->hasBWI())
3105       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3106         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3107 
3108     if (ST->hasAVX512())
3109       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3110         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3111 
3112     if (ST->hasXOP())
3113       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3114         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3115 
3116     if (ST->hasAVX2())
3117       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3118         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3119 
3120     if (ST->hasAVX())
3121       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3122         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3123 
3124     if (ST->hasSSE42())
3125       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3126         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3127 
3128     if (ST->hasSSE41())
3129       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3130         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3131 
3132     if (ST->hasSSSE3())
3133       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
3134         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3135 
3136     if (ST->hasSSE2())
3137       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3138         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3139 
3140     if (ST->hasSSE1())
3141       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3142         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3143 
3144     if (ST->hasBMI()) {
3145       if (ST->is64Bit())
3146         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
3147           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3148 
3149       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
3150         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3151     }
3152 
3153     if (ST->hasLZCNT()) {
3154       if (ST->is64Bit())
3155         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
3156           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3157 
3158       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
3159         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3160     }
3161 
3162     if (ST->hasPOPCNT()) {
3163       if (ST->is64Bit())
3164         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
3165           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3166 
3167       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
3168         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3169     }
3170 
3171     if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
3172       if (const Instruction *II = ICA.getInst()) {
3173         if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
3174           return TTI::TCC_Free;
3175         if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
3176           if (LI->hasOneUse())
3177             return TTI::TCC_Free;
3178         }
3179       }
3180     }
3181 
3182     // TODO - add BMI (TZCNT) scalar handling
3183 
3184     if (ST->is64Bit())
3185       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3186         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3187 
3188     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3189       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3190   }
3191 
3192   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3193 }
3194 
3195 InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)3196 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3197                                   TTI::TargetCostKind CostKind) {
3198   if (ICA.isTypeBasedOnly())
3199     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
3200 
3201   static const CostTblEntry AVX512CostTbl[] = {
3202     { ISD::ROTL,       MVT::v8i64,   1 },
3203     { ISD::ROTL,       MVT::v4i64,   1 },
3204     { ISD::ROTL,       MVT::v2i64,   1 },
3205     { ISD::ROTL,       MVT::v16i32,  1 },
3206     { ISD::ROTL,       MVT::v8i32,   1 },
3207     { ISD::ROTL,       MVT::v4i32,   1 },
3208     { ISD::ROTR,       MVT::v8i64,   1 },
3209     { ISD::ROTR,       MVT::v4i64,   1 },
3210     { ISD::ROTR,       MVT::v2i64,   1 },
3211     { ISD::ROTR,       MVT::v16i32,  1 },
3212     { ISD::ROTR,       MVT::v8i32,   1 },
3213     { ISD::ROTR,       MVT::v4i32,   1 }
3214   };
3215   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3216   static const CostTblEntry XOPCostTbl[] = {
3217     { ISD::ROTL,       MVT::v4i64,   4 },
3218     { ISD::ROTL,       MVT::v8i32,   4 },
3219     { ISD::ROTL,       MVT::v16i16,  4 },
3220     { ISD::ROTL,       MVT::v32i8,   4 },
3221     { ISD::ROTL,       MVT::v2i64,   1 },
3222     { ISD::ROTL,       MVT::v4i32,   1 },
3223     { ISD::ROTL,       MVT::v8i16,   1 },
3224     { ISD::ROTL,       MVT::v16i8,   1 },
3225     { ISD::ROTR,       MVT::v4i64,   6 },
3226     { ISD::ROTR,       MVT::v8i32,   6 },
3227     { ISD::ROTR,       MVT::v16i16,  6 },
3228     { ISD::ROTR,       MVT::v32i8,   6 },
3229     { ISD::ROTR,       MVT::v2i64,   2 },
3230     { ISD::ROTR,       MVT::v4i32,   2 },
3231     { ISD::ROTR,       MVT::v8i16,   2 },
3232     { ISD::ROTR,       MVT::v16i8,   2 }
3233   };
3234   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3235     { ISD::ROTL,       MVT::i64,     1 },
3236     { ISD::ROTR,       MVT::i64,     1 },
3237     { ISD::FSHL,       MVT::i64,     4 }
3238   };
3239   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3240     { ISD::ROTL,       MVT::i32,     1 },
3241     { ISD::ROTL,       MVT::i16,     1 },
3242     { ISD::ROTL,       MVT::i8,      1 },
3243     { ISD::ROTR,       MVT::i32,     1 },
3244     { ISD::ROTR,       MVT::i16,     1 },
3245     { ISD::ROTR,       MVT::i8,      1 },
3246     { ISD::FSHL,       MVT::i32,     4 },
3247     { ISD::FSHL,       MVT::i16,     4 },
3248     { ISD::FSHL,       MVT::i8,      4 }
3249   };
3250 
3251   Intrinsic::ID IID = ICA.getID();
3252   Type *RetTy = ICA.getReturnType();
3253   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
3254   unsigned ISD = ISD::DELETED_NODE;
3255   switch (IID) {
3256   default:
3257     break;
3258   case Intrinsic::fshl:
3259     ISD = ISD::FSHL;
3260     if (Args[0] == Args[1])
3261       ISD = ISD::ROTL;
3262     break;
3263   case Intrinsic::fshr:
3264     // FSHR has same costs so don't duplicate.
3265     ISD = ISD::FSHL;
3266     if (Args[0] == Args[1])
3267       ISD = ISD::ROTR;
3268     break;
3269   }
3270 
3271   if (ISD != ISD::DELETED_NODE) {
3272     // Legalize the type.
3273     std::pair<InstructionCost, MVT> LT =
3274         TLI->getTypeLegalizationCost(DL, RetTy);
3275     MVT MTy = LT.second;
3276 
3277     // Attempt to lookup cost.
3278     if (ST->hasAVX512())
3279       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3280         return LT.first * Entry->Cost;
3281 
3282     if (ST->hasXOP())
3283       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3284         return LT.first * Entry->Cost;
3285 
3286     if (ST->is64Bit())
3287       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3288         return LT.first * Entry->Cost;
3289 
3290     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3291       return LT.first * Entry->Cost;
3292   }
3293 
3294   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3295 }
3296 
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)3297 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3298                                                unsigned Index) {
3299   static const CostTblEntry SLMCostTbl[] = {
3300      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
3301      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
3302      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
3303      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
3304    };
3305 
3306   assert(Val->isVectorTy() && "This must be a vector type");
3307   Type *ScalarType = Val->getScalarType();
3308   int RegisterFileMoveCost = 0;
3309 
3310   // Non-immediate extraction/insertion can be handled as a sequence of
3311   // aliased loads+stores via the stack.
3312   if (Index == -1U && (Opcode == Instruction::ExtractElement ||
3313                        Opcode == Instruction::InsertElement)) {
3314     // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
3315     // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
3316 
3317     // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
3318     assert(isa<FixedVectorType>(Val) && "Fixed vector type expected");
3319     Align VecAlign = DL.getPrefTypeAlign(Val);
3320     Align SclAlign = DL.getPrefTypeAlign(ScalarType);
3321 
3322     // Extract - store vector to stack, load scalar.
3323     if (Opcode == Instruction::ExtractElement) {
3324       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3325                              TTI::TargetCostKind::TCK_RecipThroughput) +
3326              getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
3327                              TTI::TargetCostKind::TCK_RecipThroughput);
3328     }
3329     // Insert - store vector to stack, store scalar, load vector.
3330     if (Opcode == Instruction::InsertElement) {
3331       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3332                              TTI::TargetCostKind::TCK_RecipThroughput) +
3333              getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
3334                              TTI::TargetCostKind::TCK_RecipThroughput) +
3335              getMemoryOpCost(Instruction::Load, Val, VecAlign, 0,
3336                              TTI::TargetCostKind::TCK_RecipThroughput);
3337     }
3338   }
3339 
3340   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3341                        Opcode == Instruction::InsertElement)) {
3342     // Legalize the type.
3343     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3344 
3345     // This type is legalized to a scalar type.
3346     if (!LT.second.isVector())
3347       return 0;
3348 
3349     // The type may be split. Normalize the index to the new type.
3350     unsigned NumElts = LT.second.getVectorNumElements();
3351     unsigned SubNumElts = NumElts;
3352     Index = Index % NumElts;
3353 
3354     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3355     // For inserts, we also need to insert the subvector back.
3356     if (LT.second.getSizeInBits() > 128) {
3357       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
3358       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3359       SubNumElts = NumElts / NumSubVecs;
3360       if (SubNumElts <= Index) {
3361         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3362         Index %= SubNumElts;
3363       }
3364     }
3365 
3366     if (Index == 0) {
3367       // Floating point scalars are already located in index #0.
3368       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3369       // true for all.
3370       if (ScalarType->isFloatingPointTy())
3371         return RegisterFileMoveCost;
3372 
3373       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3374       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3375         return 1 + RegisterFileMoveCost;
3376     }
3377 
3378     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3379     assert(ISD && "Unexpected vector opcode");
3380     MVT MScalarTy = LT.second.getScalarType();
3381     if (ST->isSLM())
3382       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3383         return Entry->Cost + RegisterFileMoveCost;
3384 
3385     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3386     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3387         (MScalarTy.isInteger() && ST->hasSSE41()))
3388       return 1 + RegisterFileMoveCost;
3389 
3390     // Assume insertps is relatively cheap on all targets.
3391     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3392         Opcode == Instruction::InsertElement)
3393       return 1 + RegisterFileMoveCost;
3394 
3395     // For extractions we just need to shuffle the element to index 0, which
3396     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3397     // the elements to its destination. In both cases we must handle the
3398     // subvector move(s).
3399     // If the vector type is already less than 128-bits then don't reduce it.
3400     // TODO: Under what circumstances should we shuffle using the full width?
3401     InstructionCost ShuffleCost = 1;
3402     if (Opcode == Instruction::InsertElement) {
3403       auto *SubTy = cast<VectorType>(Val);
3404       EVT VT = TLI->getValueType(DL, Val);
3405       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3406         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3407       ShuffleCost =
3408           getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3409     }
3410     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3411     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3412   }
3413 
3414   // Add to the base cost if we know that the extracted element of a vector is
3415   // destined to be moved to and used in the integer register file.
3416   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3417     RegisterFileMoveCost += 1;
3418 
3419   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3420 }
3421 
getScalarizationOverhead(VectorType * Ty,const APInt & DemandedElts,bool Insert,bool Extract)3422 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3423                                                      const APInt &DemandedElts,
3424                                                      bool Insert,
3425                                                      bool Extract) {
3426   InstructionCost Cost = 0;
3427 
3428   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3429   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3430   if (Insert) {
3431     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3432     MVT MScalarTy = LT.second.getScalarType();
3433 
3434     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3435         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3436         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3437       // For types we can insert directly, insertion into 128-bit sub vectors is
3438       // cheap, followed by a cheap chain of concatenations.
3439       if (LT.second.getSizeInBits() <= 128) {
3440         Cost +=
3441             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3442       } else {
3443         // In each 128-lane, if at least one index is demanded but not all
3444         // indices are demanded and this 128-lane is not the first 128-lane of
3445         // the legalized-vector, then this 128-lane needs a extracti128; If in
3446         // each 128-lane, there is at least one demanded index, this 128-lane
3447         // needs a inserti128.
3448 
3449         // The following cases will help you build a better understanding:
3450         // Assume we insert several elements into a v8i32 vector in avx2,
3451         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3452         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3453         // inserti128.
3454         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3455         const int CostValue = *LT.first.getValue();
3456         assert(CostValue >= 0 && "Negative cost!");
3457         unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * CostValue;
3458         unsigned NumElts = LT.second.getVectorNumElements() * CostValue;
3459         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3460         unsigned Scale = NumElts / Num128Lanes;
3461         // We iterate each 128-lane, and check if we need a
3462         // extracti128/inserti128 for this 128-lane.
3463         for (unsigned I = 0; I < NumElts; I += Scale) {
3464           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3465           APInt MaskedDE = Mask & WidenedDemandedElts;
3466           unsigned Population = MaskedDE.countPopulation();
3467           Cost += (Population > 0 && Population != Scale &&
3468                    I % LT.second.getVectorNumElements() != 0);
3469           Cost += Population > 0;
3470         }
3471         Cost += DemandedElts.countPopulation();
3472 
3473         // For vXf32 cases, insertion into the 0'th index in each v4f32
3474         // 128-bit vector is free.
3475         // NOTE: This assumes legalization widens vXf32 vectors.
3476         if (MScalarTy == MVT::f32)
3477           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3478                i < e; i += 4)
3479             if (DemandedElts[i])
3480               Cost--;
3481       }
3482     } else if (LT.second.isVector()) {
3483       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3484       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3485       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3486       // considered cheap.
3487       if (Ty->isIntOrIntVectorTy())
3488         Cost += DemandedElts.countPopulation();
3489 
3490       // Get the smaller of the legalized or original pow2-extended number of
3491       // vector elements, which represents the number of unpacks we'll end up
3492       // performing.
3493       unsigned NumElts = LT.second.getVectorNumElements();
3494       unsigned Pow2Elts =
3495           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3496       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3497     }
3498   }
3499 
3500   // TODO: Use default extraction for now, but we should investigate extending this
3501   // to handle repeated subvector extraction.
3502   if (Extract)
3503     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3504 
3505   return Cost;
3506 }
3507 
getMemoryOpCost(unsigned Opcode,Type * Src,MaybeAlign Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)3508 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3509                                             MaybeAlign Alignment,
3510                                             unsigned AddressSpace,
3511                                             TTI::TargetCostKind CostKind,
3512                                             const Instruction *I) {
3513   // TODO: Handle other cost kinds.
3514   if (CostKind != TTI::TCK_RecipThroughput) {
3515     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3516       // Store instruction with index and scale costs 2 Uops.
3517       // Check the preceding GEP to identify non-const indices.
3518       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
3519         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3520           return TTI::TCC_Basic * 2;
3521       }
3522     }
3523     return TTI::TCC_Basic;
3524   }
3525 
3526   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3527          "Invalid Opcode");
3528   // Type legalization can't handle structs
3529   if (TLI->getValueType(DL, Src, true) == MVT::Other)
3530     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3531                                   CostKind);
3532 
3533   // Legalize the type.
3534   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3535 
3536   auto *VTy = dyn_cast<FixedVectorType>(Src);
3537 
3538   // Handle the simple case of non-vectors.
3539   // NOTE: this assumes that legalization never creates vector from scalars!
3540   if (!VTy || !LT.second.isVector())
3541     // Each load/store unit costs 1.
3542     return LT.first * 1;
3543 
3544   bool IsLoad = Opcode == Instruction::Load;
3545 
3546   Type *EltTy = VTy->getElementType();
3547 
3548   const int EltTyBits = DL.getTypeSizeInBits(EltTy);
3549 
3550   InstructionCost Cost = 0;
3551 
3552   // Source of truth: how many elements were there in the original IR vector?
3553   const unsigned SrcNumElt = VTy->getNumElements();
3554 
3555   // How far have we gotten?
3556   int NumEltRemaining = SrcNumElt;
3557   // Note that we intentionally capture by-reference, NumEltRemaining changes.
3558   auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
3559 
3560   const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
3561 
3562   // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
3563   const unsigned XMMBits = 128;
3564   if (XMMBits % EltTyBits != 0)
3565     // Vector size must be a multiple of the element size. I.e. no padding.
3566     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3567                                   CostKind);
3568   const int NumEltPerXMM = XMMBits / EltTyBits;
3569 
3570   auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
3571 
3572   for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
3573        NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
3574     // How many elements would a single op deal with at once?
3575     if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
3576       // Vector size must be a multiple of the element size. I.e. no padding.
3577       return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3578                                     CostKind);
3579     int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
3580 
3581     assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
3582     assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
3583             (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
3584            "Unless we haven't halved the op size yet, "
3585            "we have less than two op's sized units of work left.");
3586 
3587     auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
3588                           ? FixedVectorType::get(EltTy, CurrNumEltPerOp)
3589                           : XMMVecTy;
3590 
3591     assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
3592            "After halving sizes, the vector elt count is no longer a multiple "
3593            "of number of elements per operation?");
3594     auto *CoalescedVecTy =
3595         CurrNumEltPerOp == 1
3596             ? CurrVecTy
3597             : FixedVectorType::get(
3598                   IntegerType::get(Src->getContext(),
3599                                    EltTyBits * CurrNumEltPerOp),
3600                   CurrVecTy->getNumElements() / CurrNumEltPerOp);
3601     assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
3602                DL.getTypeSizeInBits(CurrVecTy) &&
3603            "coalesciing elements doesn't change vector width.");
3604 
3605     while (NumEltRemaining > 0) {
3606       assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
3607 
3608       // Can we use this vector size, as per the remaining element count?
3609       // Iff the vector is naturally aligned, we can do a wide load regardless.
3610       if (NumEltRemaining < CurrNumEltPerOp &&
3611           (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
3612           CurrOpSizeBytes != 1)
3613         break; // Try smalled vector size.
3614 
3615       bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
3616 
3617       // If we have fully processed the previous reg, we need to replenish it.
3618       if (SubVecEltsLeft == 0) {
3619         SubVecEltsLeft += CurrVecTy->getNumElements();
3620         // And that's free only for the 0'th subvector of a legalized vector.
3621         if (!Is0thSubVec)
3622           Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
3623                                         : TTI::ShuffleKind::SK_ExtractSubvector,
3624                                  VTy, None, NumEltDone(), CurrVecTy);
3625       }
3626 
3627       // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
3628       // for smaller widths (32/16/8) we have to insert/extract them separately.
3629       // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
3630       // but let's pretend that it is also true for 16/8 bit wide ops...)
3631       if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
3632         int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
3633         assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
3634         int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
3635         APInt DemandedElts =
3636             APInt::getBitsSet(CoalescedVecTy->getNumElements(),
3637                               CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
3638         assert(DemandedElts.countPopulation() == 1 && "Inserting single value");
3639         Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
3640                                          !IsLoad);
3641       }
3642 
3643       // This isn't exactly right. We're using slow unaligned 32-byte accesses
3644       // as a proxy for a double-pumped AVX memory interface such as on
3645       // Sandybridge.
3646       if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
3647         Cost += 2;
3648       else
3649         Cost += 1;
3650 
3651       SubVecEltsLeft -= CurrNumEltPerOp;
3652       NumEltRemaining -= CurrNumEltPerOp;
3653       Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
3654     }
3655   }
3656 
3657   assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
3658 
3659   return Cost;
3660 }
3661 
3662 InstructionCost
getMaskedMemoryOpCost(unsigned Opcode,Type * SrcTy,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind)3663 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
3664                                   unsigned AddressSpace,
3665                                   TTI::TargetCostKind CostKind) {
3666   bool IsLoad = (Instruction::Load == Opcode);
3667   bool IsStore = (Instruction::Store == Opcode);
3668 
3669   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3670   if (!SrcVTy)
3671     // To calculate scalar take the regular cost, without mask
3672     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3673 
3674   unsigned NumElem = SrcVTy->getNumElements();
3675   auto *MaskTy =
3676       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3677   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3678       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
3679     // Scalarization
3680     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3681     InstructionCost MaskSplitCost =
3682         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3683     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
3684         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3685         CmpInst::BAD_ICMP_PREDICATE, CostKind);
3686     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3687     InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3688     InstructionCost ValueSplitCost =
3689         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3690     InstructionCost MemopCost =
3691         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3692                                          Alignment, AddressSpace, CostKind);
3693     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3694   }
3695 
3696   // Legalize the type.
3697   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3698   auto VT = TLI->getValueType(DL, SrcVTy);
3699   InstructionCost Cost = 0;
3700   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3701       LT.second.getVectorNumElements() == NumElem)
3702     // Promotion requires extend/truncate for data and a shuffle for mask.
3703     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
3704             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
3705 
3706   else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
3707     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3708                                            LT.second.getVectorNumElements());
3709     // Expanding requires fill mask with zeroes
3710     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
3711   }
3712 
3713   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3714   if (!ST->hasAVX512())
3715     return Cost + LT.first * (IsLoad ? 2 : 8);
3716 
3717   // AVX-512 masked load/store is cheapper
3718   return Cost + LT.first;
3719 }
3720 
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)3721 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
3722                                                       ScalarEvolution *SE,
3723                                                       const SCEV *Ptr) {
3724   // Address computations in vectorized code with non-consecutive addresses will
3725   // likely result in more instructions compared to scalar code where the
3726   // computation can more often be merged into the index mode. The resulting
3727   // extra micro-ops can significantly decrease throughput.
3728   const unsigned NumVectorInstToHideOverhead = 10;
3729 
3730   // Cost modeling of Strided Access Computation is hidden by the indexing
3731   // modes of X86 regardless of the stride value. We dont believe that there
3732   // is a difference between constant strided access in gerenal and constant
3733   // strided value which is less than or equal to 64.
3734   // Even in the case of (loop invariant) stride whose value is not known at
3735   // compile time, the address computation will not incur more than one extra
3736   // ADD instruction.
3737   if (Ty->isVectorTy() && SE) {
3738     if (!BaseT::isStridedAccess(Ptr))
3739       return NumVectorInstToHideOverhead;
3740     if (!BaseT::getConstantStrideStep(SE, Ptr))
3741       return 1;
3742   }
3743 
3744   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3745 }
3746 
3747 InstructionCost
getArithmeticReductionCost(unsigned Opcode,VectorType * ValTy,Optional<FastMathFlags> FMF,TTI::TargetCostKind CostKind)3748 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3749                                        Optional<FastMathFlags> FMF,
3750                                        TTI::TargetCostKind CostKind) {
3751   if (TTI::requiresOrderedReduction(FMF))
3752     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
3753 
3754   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3755   // and make it as the cost.
3756 
3757   static const CostTblEntry SLMCostTblNoPairWise[] = {
3758     { ISD::FADD,  MVT::v2f64,   3 },
3759     { ISD::ADD,   MVT::v2i64,   5 },
3760   };
3761 
3762   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3763     { ISD::FADD,  MVT::v2f64,   2 },
3764     { ISD::FADD,  MVT::v2f32,   2 },
3765     { ISD::FADD,  MVT::v4f32,   4 },
3766     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3767     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3768     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3769     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3770     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3771     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3772     { ISD::ADD,   MVT::v2i8,    2 },
3773     { ISD::ADD,   MVT::v4i8,    2 },
3774     { ISD::ADD,   MVT::v8i8,    2 },
3775     { ISD::ADD,   MVT::v16i8,   3 },
3776   };
3777 
3778   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3779     { ISD::FADD,  MVT::v4f64,   3 },
3780     { ISD::FADD,  MVT::v4f32,   3 },
3781     { ISD::FADD,  MVT::v8f32,   4 },
3782     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3783     { ISD::ADD,   MVT::v4i64,   3 },
3784     { ISD::ADD,   MVT::v8i32,   5 },
3785     { ISD::ADD,   MVT::v16i16,  5 },
3786     { ISD::ADD,   MVT::v32i8,   4 },
3787   };
3788 
3789   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3790   assert(ISD && "Invalid opcode");
3791 
3792   // Before legalizing the type, give a chance to look up illegal narrow types
3793   // in the table.
3794   // FIXME: Is there a better way to do this?
3795   EVT VT = TLI->getValueType(DL, ValTy);
3796   if (VT.isSimple()) {
3797     MVT MTy = VT.getSimpleVT();
3798     if (ST->isSLM())
3799       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3800         return Entry->Cost;
3801 
3802     if (ST->hasAVX())
3803       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3804         return Entry->Cost;
3805 
3806     if (ST->hasSSE2())
3807       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3808         return Entry->Cost;
3809   }
3810 
3811   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3812 
3813   MVT MTy = LT.second;
3814 
3815   auto *ValVTy = cast<FixedVectorType>(ValTy);
3816 
3817   // Special case: vXi8 mul reductions are performed as vXi16.
3818   if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
3819     auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
3820     auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
3821     return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
3822                             TargetTransformInfo::CastContextHint::None,
3823                             CostKind) +
3824            getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind);
3825   }
3826 
3827   InstructionCost ArithmeticCost = 0;
3828   if (LT.first != 1 && MTy.isVector() &&
3829       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3830     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3831     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3832                                             MTy.getVectorNumElements());
3833     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3834     ArithmeticCost *= LT.first - 1;
3835   }
3836 
3837   if (ST->isSLM())
3838     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3839       return ArithmeticCost + Entry->Cost;
3840 
3841   if (ST->hasAVX())
3842     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3843       return ArithmeticCost + Entry->Cost;
3844 
3845   if (ST->hasSSE2())
3846     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3847       return ArithmeticCost + Entry->Cost;
3848 
3849   // FIXME: These assume a naive kshift+binop lowering, which is probably
3850   // conservative in most cases.
3851   static const CostTblEntry AVX512BoolReduction[] = {
3852     { ISD::AND,  MVT::v2i1,   3 },
3853     { ISD::AND,  MVT::v4i1,   5 },
3854     { ISD::AND,  MVT::v8i1,   7 },
3855     { ISD::AND,  MVT::v16i1,  9 },
3856     { ISD::AND,  MVT::v32i1, 11 },
3857     { ISD::AND,  MVT::v64i1, 13 },
3858     { ISD::OR,   MVT::v2i1,   3 },
3859     { ISD::OR,   MVT::v4i1,   5 },
3860     { ISD::OR,   MVT::v8i1,   7 },
3861     { ISD::OR,   MVT::v16i1,  9 },
3862     { ISD::OR,   MVT::v32i1, 11 },
3863     { ISD::OR,   MVT::v64i1, 13 },
3864   };
3865 
3866   static const CostTblEntry AVX2BoolReduction[] = {
3867     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3868     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3869     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3870     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3871   };
3872 
3873   static const CostTblEntry AVX1BoolReduction[] = {
3874     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3875     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3876     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3877     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3878     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3879     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3880     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3881     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3882   };
3883 
3884   static const CostTblEntry SSE2BoolReduction[] = {
3885     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3886     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3887     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3888     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3889     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3890     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3891     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3892     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3893   };
3894 
3895   // Handle bool allof/anyof patterns.
3896   if (ValVTy->getElementType()->isIntegerTy(1)) {
3897     InstructionCost ArithmeticCost = 0;
3898     if (LT.first != 1 && MTy.isVector() &&
3899         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3900       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3901       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3902                                               MTy.getVectorNumElements());
3903       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3904       ArithmeticCost *= LT.first - 1;
3905     }
3906 
3907     if (ST->hasAVX512())
3908       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3909         return ArithmeticCost + Entry->Cost;
3910     if (ST->hasAVX2())
3911       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3912         return ArithmeticCost + Entry->Cost;
3913     if (ST->hasAVX())
3914       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3915         return ArithmeticCost + Entry->Cost;
3916     if (ST->hasSSE2())
3917       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3918         return ArithmeticCost + Entry->Cost;
3919 
3920     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
3921   }
3922 
3923   unsigned NumVecElts = ValVTy->getNumElements();
3924   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3925 
3926   // Special case power of 2 reductions where the scalar type isn't changed
3927   // by type legalization.
3928   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3929     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
3930 
3931   InstructionCost ReductionCost = 0;
3932 
3933   auto *Ty = ValVTy;
3934   if (LT.first != 1 && MTy.isVector() &&
3935       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3936     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3937     Ty = FixedVectorType::get(ValVTy->getElementType(),
3938                               MTy.getVectorNumElements());
3939     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3940     ReductionCost *= LT.first - 1;
3941     NumVecElts = MTy.getVectorNumElements();
3942   }
3943 
3944   // Now handle reduction with the legal type, taking into account size changes
3945   // at each level.
3946   while (NumVecElts > 1) {
3947     // Determine the size of the remaining vector we need to reduce.
3948     unsigned Size = NumVecElts * ScalarSize;
3949     NumVecElts /= 2;
3950     // If we're reducing from 256/512 bits, use an extract_subvector.
3951     if (Size > 128) {
3952       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3953       ReductionCost +=
3954           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
3955       Ty = SubTy;
3956     } else if (Size == 128) {
3957       // Reducing from 128 bits is a permute of v2f64/v2i64.
3958       FixedVectorType *ShufTy;
3959       if (ValVTy->isFloatingPointTy())
3960         ShufTy =
3961             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3962       else
3963         ShufTy =
3964             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3965       ReductionCost +=
3966           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3967     } else if (Size == 64) {
3968       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3969       FixedVectorType *ShufTy;
3970       if (ValVTy->isFloatingPointTy())
3971         ShufTy =
3972             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3973       else
3974         ShufTy =
3975             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3976       ReductionCost +=
3977           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3978     } else {
3979       // Reducing from smaller size is a shift by immediate.
3980       auto *ShiftTy = FixedVectorType::get(
3981           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3982       ReductionCost += getArithmeticInstrCost(
3983           Instruction::LShr, ShiftTy, CostKind,
3984           TargetTransformInfo::OK_AnyValue,
3985           TargetTransformInfo::OK_UniformConstantValue,
3986           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3987     }
3988 
3989     // Add the arithmetic op for this level.
3990     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3991   }
3992 
3993   // Add the final extract element to the cost.
3994   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3995 }
3996 
getMinMaxCost(Type * Ty,Type * CondTy,bool IsUnsigned)3997 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy,
3998                                           bool IsUnsigned) {
3999   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
4000 
4001   MVT MTy = LT.second;
4002 
4003   int ISD;
4004   if (Ty->isIntOrIntVectorTy()) {
4005     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4006   } else {
4007     assert(Ty->isFPOrFPVectorTy() &&
4008            "Expected float point or integer vector type.");
4009     ISD = ISD::FMINNUM;
4010   }
4011 
4012   static const CostTblEntry SSE1CostTbl[] = {
4013     {ISD::FMINNUM, MVT::v4f32, 1},
4014   };
4015 
4016   static const CostTblEntry SSE2CostTbl[] = {
4017     {ISD::FMINNUM, MVT::v2f64, 1},
4018     {ISD::SMIN,    MVT::v8i16, 1},
4019     {ISD::UMIN,    MVT::v16i8, 1},
4020   };
4021 
4022   static const CostTblEntry SSE41CostTbl[] = {
4023     {ISD::SMIN,    MVT::v4i32, 1},
4024     {ISD::UMIN,    MVT::v4i32, 1},
4025     {ISD::UMIN,    MVT::v8i16, 1},
4026     {ISD::SMIN,    MVT::v16i8, 1},
4027   };
4028 
4029   static const CostTblEntry SSE42CostTbl[] = {
4030     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
4031   };
4032 
4033   static const CostTblEntry AVX1CostTbl[] = {
4034     {ISD::FMINNUM, MVT::v8f32,  1},
4035     {ISD::FMINNUM, MVT::v4f64,  1},
4036     {ISD::SMIN,    MVT::v8i32,  3},
4037     {ISD::UMIN,    MVT::v8i32,  3},
4038     {ISD::SMIN,    MVT::v16i16, 3},
4039     {ISD::UMIN,    MVT::v16i16, 3},
4040     {ISD::SMIN,    MVT::v32i8,  3},
4041     {ISD::UMIN,    MVT::v32i8,  3},
4042   };
4043 
4044   static const CostTblEntry AVX2CostTbl[] = {
4045     {ISD::SMIN,    MVT::v8i32,  1},
4046     {ISD::UMIN,    MVT::v8i32,  1},
4047     {ISD::SMIN,    MVT::v16i16, 1},
4048     {ISD::UMIN,    MVT::v16i16, 1},
4049     {ISD::SMIN,    MVT::v32i8,  1},
4050     {ISD::UMIN,    MVT::v32i8,  1},
4051   };
4052 
4053   static const CostTblEntry AVX512CostTbl[] = {
4054     {ISD::FMINNUM, MVT::v16f32, 1},
4055     {ISD::FMINNUM, MVT::v8f64,  1},
4056     {ISD::SMIN,    MVT::v2i64,  1},
4057     {ISD::UMIN,    MVT::v2i64,  1},
4058     {ISD::SMIN,    MVT::v4i64,  1},
4059     {ISD::UMIN,    MVT::v4i64,  1},
4060     {ISD::SMIN,    MVT::v8i64,  1},
4061     {ISD::UMIN,    MVT::v8i64,  1},
4062     {ISD::SMIN,    MVT::v16i32, 1},
4063     {ISD::UMIN,    MVT::v16i32, 1},
4064   };
4065 
4066   static const CostTblEntry AVX512BWCostTbl[] = {
4067     {ISD::SMIN,    MVT::v32i16, 1},
4068     {ISD::UMIN,    MVT::v32i16, 1},
4069     {ISD::SMIN,    MVT::v64i8,  1},
4070     {ISD::UMIN,    MVT::v64i8,  1},
4071   };
4072 
4073   // If we have a native MIN/MAX instruction for this type, use it.
4074   if (ST->hasBWI())
4075     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
4076       return LT.first * Entry->Cost;
4077 
4078   if (ST->hasAVX512())
4079     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
4080       return LT.first * Entry->Cost;
4081 
4082   if (ST->hasAVX2())
4083     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
4084       return LT.first * Entry->Cost;
4085 
4086   if (ST->hasAVX())
4087     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
4088       return LT.first * Entry->Cost;
4089 
4090   if (ST->hasSSE42())
4091     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
4092       return LT.first * Entry->Cost;
4093 
4094   if (ST->hasSSE41())
4095     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
4096       return LT.first * Entry->Cost;
4097 
4098   if (ST->hasSSE2())
4099     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
4100       return LT.first * Entry->Cost;
4101 
4102   if (ST->hasSSE1())
4103     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
4104       return LT.first * Entry->Cost;
4105 
4106   unsigned CmpOpcode;
4107   if (Ty->isFPOrFPVectorTy()) {
4108     CmpOpcode = Instruction::FCmp;
4109   } else {
4110     assert(Ty->isIntOrIntVectorTy() &&
4111            "expecting floating point or integer type for min/max reduction");
4112     CmpOpcode = Instruction::ICmp;
4113   }
4114 
4115   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4116   // Otherwise fall back to cmp+select.
4117   InstructionCost Result =
4118       getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
4119                          CostKind) +
4120       getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
4121                          CmpInst::BAD_ICMP_PREDICATE, CostKind);
4122   return Result;
4123 }
4124 
4125 InstructionCost
getMinMaxReductionCost(VectorType * ValTy,VectorType * CondTy,bool IsUnsigned,TTI::TargetCostKind CostKind)4126 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
4127                                    bool IsUnsigned,
4128                                    TTI::TargetCostKind CostKind) {
4129   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4130 
4131   MVT MTy = LT.second;
4132 
4133   int ISD;
4134   if (ValTy->isIntOrIntVectorTy()) {
4135     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4136   } else {
4137     assert(ValTy->isFPOrFPVectorTy() &&
4138            "Expected float point or integer vector type.");
4139     ISD = ISD::FMINNUM;
4140   }
4141 
4142   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4143   // and make it as the cost.
4144 
4145   static const CostTblEntry SSE2CostTblNoPairWise[] = {
4146       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
4147       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
4148       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
4149   };
4150 
4151   static const CostTblEntry SSE41CostTblNoPairWise[] = {
4152       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
4153       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
4154       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
4155       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
4156       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
4157       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
4158       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
4159       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
4160       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
4161       {ISD::SMIN, MVT::v16i8, 6},
4162       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
4163       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
4164       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
4165       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
4166   };
4167 
4168   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4169       {ISD::SMIN, MVT::v16i16, 6},
4170       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
4171       {ISD::SMIN, MVT::v32i8, 8},
4172       {ISD::UMIN, MVT::v32i8, 8},
4173   };
4174 
4175   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
4176       {ISD::SMIN, MVT::v32i16, 8},
4177       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
4178       {ISD::SMIN, MVT::v64i8, 10},
4179       {ISD::UMIN, MVT::v64i8, 10},
4180   };
4181 
4182   // Before legalizing the type, give a chance to look up illegal narrow types
4183   // in the table.
4184   // FIXME: Is there a better way to do this?
4185   EVT VT = TLI->getValueType(DL, ValTy);
4186   if (VT.isSimple()) {
4187     MVT MTy = VT.getSimpleVT();
4188     if (ST->hasBWI())
4189       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4190         return Entry->Cost;
4191 
4192     if (ST->hasAVX())
4193       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4194         return Entry->Cost;
4195 
4196     if (ST->hasSSE41())
4197       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4198         return Entry->Cost;
4199 
4200     if (ST->hasSSE2())
4201       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4202         return Entry->Cost;
4203   }
4204 
4205   auto *ValVTy = cast<FixedVectorType>(ValTy);
4206   unsigned NumVecElts = ValVTy->getNumElements();
4207 
4208   auto *Ty = ValVTy;
4209   InstructionCost MinMaxCost = 0;
4210   if (LT.first != 1 && MTy.isVector() &&
4211       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4212     // Type needs to be split. We need LT.first - 1 operations ops.
4213     Ty = FixedVectorType::get(ValVTy->getElementType(),
4214                               MTy.getVectorNumElements());
4215     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
4216                                            MTy.getVectorNumElements());
4217     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4218     MinMaxCost *= LT.first - 1;
4219     NumVecElts = MTy.getVectorNumElements();
4220   }
4221 
4222   if (ST->hasBWI())
4223     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4224       return MinMaxCost + Entry->Cost;
4225 
4226   if (ST->hasAVX())
4227     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4228       return MinMaxCost + Entry->Cost;
4229 
4230   if (ST->hasSSE41())
4231     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4232       return MinMaxCost + Entry->Cost;
4233 
4234   if (ST->hasSSE2())
4235     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4236       return MinMaxCost + Entry->Cost;
4237 
4238   unsigned ScalarSize = ValTy->getScalarSizeInBits();
4239 
4240   // Special case power of 2 reductions where the scalar type isn't changed
4241   // by type legalization.
4242   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
4243       ScalarSize != MTy.getScalarSizeInBits())
4244     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsUnsigned, CostKind);
4245 
4246   // Now handle reduction with the legal type, taking into account size changes
4247   // at each level.
4248   while (NumVecElts > 1) {
4249     // Determine the size of the remaining vector we need to reduce.
4250     unsigned Size = NumVecElts * ScalarSize;
4251     NumVecElts /= 2;
4252     // If we're reducing from 256/512 bits, use an extract_subvector.
4253     if (Size > 128) {
4254       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4255       MinMaxCost +=
4256           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4257       Ty = SubTy;
4258     } else if (Size == 128) {
4259       // Reducing from 128 bits is a permute of v2f64/v2i64.
4260       VectorType *ShufTy;
4261       if (ValTy->isFloatingPointTy())
4262         ShufTy =
4263             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
4264       else
4265         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
4266       MinMaxCost +=
4267           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4268     } else if (Size == 64) {
4269       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4270       FixedVectorType *ShufTy;
4271       if (ValTy->isFloatingPointTy())
4272         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
4273       else
4274         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
4275       MinMaxCost +=
4276           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4277     } else {
4278       // Reducing from smaller size is a shift by immediate.
4279       auto *ShiftTy = FixedVectorType::get(
4280           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
4281       MinMaxCost += getArithmeticInstrCost(
4282           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
4283           TargetTransformInfo::OK_AnyValue,
4284           TargetTransformInfo::OK_UniformConstantValue,
4285           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4286     }
4287 
4288     // Add the arithmetic op for this level.
4289     auto *SubCondTy =
4290         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
4291     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4292   }
4293 
4294   // Add the final extract element to the cost.
4295   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4296 }
4297 
4298 /// Calculate the cost of materializing a 64-bit value. This helper
4299 /// method might only calculate a fraction of a larger immediate. Therefore it
4300 /// is valid to return a cost of ZERO.
getIntImmCost(int64_t Val)4301 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
4302   if (Val == 0)
4303     return TTI::TCC_Free;
4304 
4305   if (isInt<32>(Val))
4306     return TTI::TCC_Basic;
4307 
4308   return 2 * TTI::TCC_Basic;
4309 }
4310 
getIntImmCost(const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)4311 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
4312                                           TTI::TargetCostKind CostKind) {
4313   assert(Ty->isIntegerTy());
4314 
4315   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4316   if (BitSize == 0)
4317     return ~0U;
4318 
4319   // Never hoist constants larger than 128bit, because this might lead to
4320   // incorrect code generation or assertions in codegen.
4321   // Fixme: Create a cost model for types larger than i128 once the codegen
4322   // issues have been fixed.
4323   if (BitSize > 128)
4324     return TTI::TCC_Free;
4325 
4326   if (Imm == 0)
4327     return TTI::TCC_Free;
4328 
4329   // Sign-extend all constants to a multiple of 64-bit.
4330   APInt ImmVal = Imm;
4331   if (BitSize % 64 != 0)
4332     ImmVal = Imm.sext(alignTo(BitSize, 64));
4333 
4334   // Split the constant into 64-bit chunks and calculate the cost for each
4335   // chunk.
4336   InstructionCost Cost = 0;
4337   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
4338     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
4339     int64_t Val = Tmp.getSExtValue();
4340     Cost += getIntImmCost(Val);
4341   }
4342   // We need at least one instruction to materialize the constant.
4343   return std::max<InstructionCost>(1, Cost);
4344 }
4345 
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind,Instruction * Inst)4346 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
4347                                               const APInt &Imm, Type *Ty,
4348                                               TTI::TargetCostKind CostKind,
4349                                               Instruction *Inst) {
4350   assert(Ty->isIntegerTy());
4351 
4352   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4353   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4354   // here, so that constant hoisting will ignore this constant.
4355   if (BitSize == 0)
4356     return TTI::TCC_Free;
4357 
4358   unsigned ImmIdx = ~0U;
4359   switch (Opcode) {
4360   default:
4361     return TTI::TCC_Free;
4362   case Instruction::GetElementPtr:
4363     // Always hoist the base address of a GetElementPtr. This prevents the
4364     // creation of new constants for every base constant that gets constant
4365     // folded with the offset.
4366     if (Idx == 0)
4367       return 2 * TTI::TCC_Basic;
4368     return TTI::TCC_Free;
4369   case Instruction::Store:
4370     ImmIdx = 0;
4371     break;
4372   case Instruction::ICmp:
4373     // This is an imperfect hack to prevent constant hoisting of
4374     // compares that might be trying to check if a 64-bit value fits in
4375     // 32-bits. The backend can optimize these cases using a right shift by 32.
4376     // Ideally we would check the compare predicate here. There also other
4377     // similar immediates the backend can use shifts for.
4378     if (Idx == 1 && Imm.getBitWidth() == 64) {
4379       uint64_t ImmVal = Imm.getZExtValue();
4380       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
4381         return TTI::TCC_Free;
4382     }
4383     ImmIdx = 1;
4384     break;
4385   case Instruction::And:
4386     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
4387     // by using a 32-bit operation with implicit zero extension. Detect such
4388     // immediates here as the normal path expects bit 31 to be sign extended.
4389     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
4390       return TTI::TCC_Free;
4391     ImmIdx = 1;
4392     break;
4393   case Instruction::Add:
4394   case Instruction::Sub:
4395     // For add/sub, we can use the opposite instruction for INT32_MIN.
4396     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
4397       return TTI::TCC_Free;
4398     ImmIdx = 1;
4399     break;
4400   case Instruction::UDiv:
4401   case Instruction::SDiv:
4402   case Instruction::URem:
4403   case Instruction::SRem:
4404     // Division by constant is typically expanded later into a different
4405     // instruction sequence. This completely changes the constants.
4406     // Report them as "free" to stop ConstantHoist from marking them as opaque.
4407     return TTI::TCC_Free;
4408   case Instruction::Mul:
4409   case Instruction::Or:
4410   case Instruction::Xor:
4411     ImmIdx = 1;
4412     break;
4413   // Always return TCC_Free for the shift value of a shift instruction.
4414   case Instruction::Shl:
4415   case Instruction::LShr:
4416   case Instruction::AShr:
4417     if (Idx == 1)
4418       return TTI::TCC_Free;
4419     break;
4420   case Instruction::Trunc:
4421   case Instruction::ZExt:
4422   case Instruction::SExt:
4423   case Instruction::IntToPtr:
4424   case Instruction::PtrToInt:
4425   case Instruction::BitCast:
4426   case Instruction::PHI:
4427   case Instruction::Call:
4428   case Instruction::Select:
4429   case Instruction::Ret:
4430   case Instruction::Load:
4431     break;
4432   }
4433 
4434   if (Idx == ImmIdx) {
4435     int NumConstants = divideCeil(BitSize, 64);
4436     InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4437     return (Cost <= NumConstants * TTI::TCC_Basic)
4438                ? static_cast<int>(TTI::TCC_Free)
4439                : Cost;
4440   }
4441 
4442   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4443 }
4444 
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)4445 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4446                                                 const APInt &Imm, Type *Ty,
4447                                                 TTI::TargetCostKind CostKind) {
4448   assert(Ty->isIntegerTy());
4449 
4450   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4451   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4452   // here, so that constant hoisting will ignore this constant.
4453   if (BitSize == 0)
4454     return TTI::TCC_Free;
4455 
4456   switch (IID) {
4457   default:
4458     return TTI::TCC_Free;
4459   case Intrinsic::sadd_with_overflow:
4460   case Intrinsic::uadd_with_overflow:
4461   case Intrinsic::ssub_with_overflow:
4462   case Intrinsic::usub_with_overflow:
4463   case Intrinsic::smul_with_overflow:
4464   case Intrinsic::umul_with_overflow:
4465     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4466       return TTI::TCC_Free;
4467     break;
4468   case Intrinsic::experimental_stackmap:
4469     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4470       return TTI::TCC_Free;
4471     break;
4472   case Intrinsic::experimental_patchpoint_void:
4473   case Intrinsic::experimental_patchpoint_i64:
4474     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4475       return TTI::TCC_Free;
4476     break;
4477   }
4478   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4479 }
4480 
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I)4481 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
4482                                            TTI::TargetCostKind CostKind,
4483                                            const Instruction *I) {
4484   if (CostKind != TTI::TCK_RecipThroughput)
4485     return Opcode == Instruction::PHI ? 0 : 1;
4486   // Branches are assumed to be predicted.
4487   return 0;
4488 }
4489 
getGatherOverhead() const4490 int X86TTIImpl::getGatherOverhead() const {
4491   // Some CPUs have more overhead for gather. The specified overhead is relative
4492   // to the Load operation. "2" is the number provided by Intel architects. This
4493   // parameter is used for cost estimation of Gather Op and comparison with
4494   // other alternatives.
4495   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4496   // enable gather with a -march.
4497   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4498     return 2;
4499 
4500   return 1024;
4501 }
4502 
getScatterOverhead() const4503 int X86TTIImpl::getScatterOverhead() const {
4504   if (ST->hasAVX512())
4505     return 2;
4506 
4507   return 1024;
4508 }
4509 
4510 // Return an average cost of Gather / Scatter instruction, maybe improved later.
4511 // FIXME: Add TargetCostKind support.
getGSVectorCost(unsigned Opcode,Type * SrcVTy,const Value * Ptr,Align Alignment,unsigned AddressSpace)4512 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
4513                                             const Value *Ptr, Align Alignment,
4514                                             unsigned AddressSpace) {
4515 
4516   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4517   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4518 
4519   // Try to reduce index size from 64 bit (default for GEP)
4520   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4521   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4522   // to split. Also check that the base pointer is the same for all lanes,
4523   // and that there's at most one variable index.
4524   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4525     unsigned IndexSize = DL.getPointerSizeInBits();
4526     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4527     if (IndexSize < 64 || !GEP)
4528       return IndexSize;
4529 
4530     unsigned NumOfVarIndices = 0;
4531     const Value *Ptrs = GEP->getPointerOperand();
4532     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4533       return IndexSize;
4534     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4535       if (isa<Constant>(GEP->getOperand(i)))
4536         continue;
4537       Type *IndxTy = GEP->getOperand(i)->getType();
4538       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4539         IndxTy = IndexVTy->getElementType();
4540       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4541           !isa<SExtInst>(GEP->getOperand(i))) ||
4542          ++NumOfVarIndices > 1)
4543         return IndexSize; // 64
4544     }
4545     return (unsigned)32;
4546   };
4547 
4548   // Trying to reduce IndexSize to 32 bits for vector 16.
4549   // By default the IndexSize is equal to pointer size.
4550   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4551                            ? getIndexSizeInBits(Ptr, DL)
4552                            : DL.getPointerSizeInBits();
4553 
4554   auto *IndexVTy = FixedVectorType::get(
4555       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4556   std::pair<InstructionCost, MVT> IdxsLT =
4557       TLI->getTypeLegalizationCost(DL, IndexVTy);
4558   std::pair<InstructionCost, MVT> SrcLT =
4559       TLI->getTypeLegalizationCost(DL, SrcVTy);
4560   InstructionCost::CostType SplitFactor =
4561       *std::max(IdxsLT.first, SrcLT.first).getValue();
4562   if (SplitFactor > 1) {
4563     // Handle splitting of vector of pointers
4564     auto *SplitSrcTy =
4565         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4566     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4567                                          AddressSpace);
4568   }
4569 
4570   // The gather / scatter cost is given by Intel architects. It is a rough
4571   // number since we are looking at one instruction in a time.
4572   const int GSOverhead = (Opcode == Instruction::Load)
4573                              ? getGatherOverhead()
4574                              : getScatterOverhead();
4575   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4576                                            MaybeAlign(Alignment), AddressSpace,
4577                                            TTI::TCK_RecipThroughput);
4578 }
4579 
4580 /// Return the cost of full scalarization of gather / scatter operation.
4581 ///
4582 /// Opcode - Load or Store instruction.
4583 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4584 /// VariableMask - The mask is non-constant at compile time.
4585 /// Alignment - Alignment for one element.
4586 /// AddressSpace - pointer[s] address space.
4587 ///
4588 /// FIXME: Add TargetCostKind support.
getGSScalarCost(unsigned Opcode,Type * SrcVTy,bool VariableMask,Align Alignment,unsigned AddressSpace)4589 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4590                                             bool VariableMask, Align Alignment,
4591                                             unsigned AddressSpace) {
4592   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4593   APInt DemandedElts = APInt::getAllOnesValue(VF);
4594   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4595 
4596   InstructionCost MaskUnpackCost = 0;
4597   if (VariableMask) {
4598     auto *MaskTy =
4599         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4600     MaskUnpackCost =
4601         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4602     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4603         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4604         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4605     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4606     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4607   }
4608 
4609   // The cost of the scalar loads/stores.
4610   InstructionCost MemoryOpCost =
4611       VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4612                            MaybeAlign(Alignment), AddressSpace, CostKind);
4613 
4614   InstructionCost InsertExtractCost = 0;
4615   if (Opcode == Instruction::Load)
4616     for (unsigned i = 0; i < VF; ++i)
4617       // Add the cost of inserting each scalar load into the vector
4618       InsertExtractCost +=
4619         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
4620   else
4621     for (unsigned i = 0; i < VF; ++i)
4622       // Add the cost of extracting each element out of the data vector
4623       InsertExtractCost +=
4624         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
4625 
4626   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4627 }
4628 
4629 /// Calculate the cost of Gather / Scatter operation
getGatherScatterOpCost(unsigned Opcode,Type * SrcVTy,const Value * Ptr,bool VariableMask,Align Alignment,TTI::TargetCostKind CostKind,const Instruction * I=nullptr)4630 InstructionCost X86TTIImpl::getGatherScatterOpCost(
4631     unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
4632     Align Alignment, TTI::TargetCostKind CostKind,
4633     const Instruction *I = nullptr) {
4634   if (CostKind != TTI::TCK_RecipThroughput) {
4635     if ((Opcode == Instruction::Load &&
4636          isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4637         (Opcode == Instruction::Store &&
4638          isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4639       return 1;
4640     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
4641                                          Alignment, CostKind, I);
4642   }
4643 
4644   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4645   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4646   if (!PtrTy && Ptr->getType()->isVectorTy())
4647     PtrTy = dyn_cast<PointerType>(
4648         cast<VectorType>(Ptr->getType())->getElementType());
4649   assert(PtrTy && "Unexpected type for Ptr argument");
4650   unsigned AddressSpace = PtrTy->getAddressSpace();
4651 
4652   if ((Opcode == Instruction::Load &&
4653        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4654       (Opcode == Instruction::Store &&
4655        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4656     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4657                            AddressSpace);
4658 
4659   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4660 }
4661 
isLSRCostLess(TargetTransformInfo::LSRCost & C1,TargetTransformInfo::LSRCost & C2)4662 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4663                                TargetTransformInfo::LSRCost &C2) {
4664     // X86 specific here are "instruction number 1st priority".
4665     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4666                     C1.NumIVMuls, C1.NumBaseAdds,
4667                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4668            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4669                     C2.NumIVMuls, C2.NumBaseAdds,
4670                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4671 }
4672 
canMacroFuseCmp()4673 bool X86TTIImpl::canMacroFuseCmp() {
4674   return ST->hasMacroFusion() || ST->hasBranchFusion();
4675 }
4676 
isLegalMaskedLoad(Type * DataTy,Align Alignment)4677 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4678   if (!ST->hasAVX())
4679     return false;
4680 
4681   // The backend can't handle a single element vector.
4682   if (isa<VectorType>(DataTy) &&
4683       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4684     return false;
4685   Type *ScalarTy = DataTy->getScalarType();
4686 
4687   if (ScalarTy->isPointerTy())
4688     return true;
4689 
4690   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4691     return true;
4692 
4693   if (!ScalarTy->isIntegerTy())
4694     return false;
4695 
4696   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4697   return IntWidth == 32 || IntWidth == 64 ||
4698          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4699 }
4700 
isLegalMaskedStore(Type * DataType,Align Alignment)4701 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4702   return isLegalMaskedLoad(DataType, Alignment);
4703 }
4704 
isLegalNTLoad(Type * DataType,Align Alignment)4705 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4706   unsigned DataSize = DL.getTypeStoreSize(DataType);
4707   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4708   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4709   // (the equivalent stores only require AVX).
4710   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4711     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4712 
4713   return false;
4714 }
4715 
isLegalNTStore(Type * DataType,Align Alignment)4716 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4717   unsigned DataSize = DL.getTypeStoreSize(DataType);
4718 
4719   // SSE4A supports nontemporal stores of float and double at arbitrary
4720   // alignment.
4721   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4722     return true;
4723 
4724   // Besides the SSE4A subtarget exception above, only aligned stores are
4725   // available nontemporaly on any other subtarget.  And only stores with a size
4726   // of 4..32 bytes (powers of 2, only) are permitted.
4727   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4728       !isPowerOf2_32(DataSize))
4729     return false;
4730 
4731   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4732   // loads require AVX2).
4733   if (DataSize == 32)
4734     return ST->hasAVX();
4735   else if (DataSize == 16)
4736     return ST->hasSSE1();
4737   return true;
4738 }
4739 
isLegalMaskedExpandLoad(Type * DataTy)4740 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4741   if (!isa<VectorType>(DataTy))
4742     return false;
4743 
4744   if (!ST->hasAVX512())
4745     return false;
4746 
4747   // The backend can't handle a single element vector.
4748   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4749     return false;
4750 
4751   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4752 
4753   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4754     return true;
4755 
4756   if (!ScalarTy->isIntegerTy())
4757     return false;
4758 
4759   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4760   return IntWidth == 32 || IntWidth == 64 ||
4761          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4762 }
4763 
isLegalMaskedCompressStore(Type * DataTy)4764 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4765   return isLegalMaskedExpandLoad(DataTy);
4766 }
4767 
isLegalMaskedGather(Type * DataTy,Align Alignment)4768 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4769   // Some CPUs have better gather performance than others.
4770   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4771   // enable gather with a -march.
4772   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4773     return false;
4774 
4775   // This function is called now in two cases: from the Loop Vectorizer
4776   // and from the Scalarizer.
4777   // When the Loop Vectorizer asks about legality of the feature,
4778   // the vectorization factor is not calculated yet. The Loop Vectorizer
4779   // sends a scalar type and the decision is based on the width of the
4780   // scalar element.
4781   // Later on, the cost model will estimate usage this intrinsic based on
4782   // the vector type.
4783   // The Scalarizer asks again about legality. It sends a vector type.
4784   // In this case we can reject non-power-of-2 vectors.
4785   // We also reject single element vectors as the type legalizer can't
4786   // scalarize it.
4787   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4788     unsigned NumElts = DataVTy->getNumElements();
4789     if (NumElts == 1)
4790       return false;
4791     // Gather / Scatter for vector 2 is not profitable on KNL / SKX
4792     // Vector-4 of gather/scatter instruction does not exist on KNL.
4793     // We can extend it to 8 elements, but zeroing upper bits of
4794     // the mask vector will add more instructions. Right now we give the scalar
4795     // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter
4796     // instruction is better in the VariableMask case.
4797     if (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())))
4798       return false;
4799   }
4800   Type *ScalarTy = DataTy->getScalarType();
4801   if (ScalarTy->isPointerTy())
4802     return true;
4803 
4804   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4805     return true;
4806 
4807   if (!ScalarTy->isIntegerTy())
4808     return false;
4809 
4810   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4811   return IntWidth == 32 || IntWidth == 64;
4812 }
4813 
isLegalMaskedScatter(Type * DataType,Align Alignment)4814 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4815   // AVX2 doesn't support scatter
4816   if (!ST->hasAVX512())
4817     return false;
4818   return isLegalMaskedGather(DataType, Alignment);
4819 }
4820 
hasDivRemOp(Type * DataType,bool IsSigned)4821 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4822   EVT VT = TLI->getValueType(DL, DataType);
4823   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4824 }
4825 
isFCmpOrdCheaperThanFCmpZero(Type * Ty)4826 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4827   return false;
4828 }
4829 
areInlineCompatible(const Function * Caller,const Function * Callee) const4830 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4831                                      const Function *Callee) const {
4832   const TargetMachine &TM = getTLI()->getTargetMachine();
4833 
4834   // Work this as a subsetting of subtarget features.
4835   const FeatureBitset &CallerBits =
4836       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4837   const FeatureBitset &CalleeBits =
4838       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4839 
4840   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4841   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4842   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4843 }
4844 
areFunctionArgsABICompatible(const Function * Caller,const Function * Callee,SmallPtrSetImpl<Argument * > & Args) const4845 bool X86TTIImpl::areFunctionArgsABICompatible(
4846     const Function *Caller, const Function *Callee,
4847     SmallPtrSetImpl<Argument *> &Args) const {
4848   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4849     return false;
4850 
4851   // If we get here, we know the target features match. If one function
4852   // considers 512-bit vectors legal and the other does not, consider them
4853   // incompatible.
4854   const TargetMachine &TM = getTLI()->getTargetMachine();
4855 
4856   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4857       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4858     return true;
4859 
4860   // Consider the arguments compatible if they aren't vectors or aggregates.
4861   // FIXME: Look at the size of vectors.
4862   // FIXME: Look at the element types of aggregates to see if there are vectors.
4863   // FIXME: The API of this function seems intended to allow arguments
4864   // to be removed from the set, but the caller doesn't check if the set
4865   // becomes empty so that may not work in practice.
4866   return llvm::none_of(Args, [](Argument *A) {
4867     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4868     return EltTy->isVectorTy() || EltTy->isAggregateType();
4869   });
4870 }
4871 
4872 X86TTIImpl::TTI::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const4873 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4874   TTI::MemCmpExpansionOptions Options;
4875   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4876   Options.NumLoadsPerBlock = 2;
4877   // All GPR and vector loads can be unaligned.
4878   Options.AllowOverlappingLoads = true;
4879   if (IsZeroCmp) {
4880     // Only enable vector loads for equality comparison. Right now the vector
4881     // version is not as fast for three way compare (see #33329).
4882     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4883     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4884     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4885     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4886   }
4887   if (ST->is64Bit()) {
4888     Options.LoadSizes.push_back(8);
4889   }
4890   Options.LoadSizes.push_back(4);
4891   Options.LoadSizes.push_back(2);
4892   Options.LoadSizes.push_back(1);
4893   return Options;
4894 }
4895 
enableInterleavedAccessVectorization()4896 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4897   // TODO: We expect this to be beneficial regardless of arch,
4898   // but there are currently some unexplained performance artifacts on Atom.
4899   // As a temporary solution, disable on Atom.
4900   return !(ST->isAtom());
4901 }
4902 
4903 // Get estimation for interleaved load/store operations for AVX2.
4904 // \p Factor is the interleaved-access factor (stride) - number of
4905 // (interleaved) elements in the group.
4906 // \p Indices contains the indices for a strided load: when the
4907 // interleaved load has gaps they indicate which elements are used.
4908 // If Indices is empty (or if the number of indices is equal to the size
4909 // of the interleaved-access as given in \p Factor) the access has no gaps.
4910 //
4911 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4912 // computing the cost using a generic formula as a function of generic
4913 // shuffles. We therefore use a lookup table instead, filled according to
4914 // the instruction sequences that codegen currently generates.
getInterleavedMemoryOpCostAVX2(unsigned Opcode,FixedVectorType * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)4915 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4916     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4917     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4918     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4919 
4920   if (UseMaskForCond || UseMaskForGaps)
4921     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4922                                              Alignment, AddressSpace, CostKind,
4923                                              UseMaskForCond, UseMaskForGaps);
4924 
4925   // We currently Support only fully-interleaved groups, with no gaps.
4926   // TODO: Support also strided loads (interleaved-groups with gaps).
4927   if (Indices.size() && Indices.size() != Factor)
4928     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4929                                              Alignment, AddressSpace, CostKind);
4930 
4931   // VecTy for interleave memop is <VF*Factor x Elt>.
4932   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4933   // VecTy = <12 x i32>.
4934   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4935 
4936   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4937   // the VF=2, while v2i128 is an unsupported MVT vector type
4938   // (see MachineValueType.h::getVectorVT()).
4939   if (!LegalVT.isVector())
4940     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4941                                              Alignment, AddressSpace, CostKind);
4942 
4943   unsigned VF = VecTy->getNumElements() / Factor;
4944   Type *ScalarTy = VecTy->getElementType();
4945   // Deduplicate entries, model floats/pointers as appropriately-sized integers.
4946   if (!ScalarTy->isIntegerTy())
4947     ScalarTy =
4948         Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
4949 
4950   // Get the cost of all the memory operations.
4951   InstructionCost MemOpCosts = getMemoryOpCost(
4952       Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
4953 
4954   auto *VT = FixedVectorType::get(ScalarTy, VF);
4955   EVT ETy = TLI->getValueType(DL, VT);
4956   if (!ETy.isSimple())
4957     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4958                                              Alignment, AddressSpace, CostKind);
4959 
4960   // TODO: Complete for other data-types and strides.
4961   // Each combination of Stride, element bit width and VF results in a different
4962   // sequence; The cost tables are therefore accessed with:
4963   // Factor (stride) and VectorType=VFxiN.
4964   // The Cost accounts only for the shuffle sequence;
4965   // The cost of the loads/stores is accounted for separately.
4966   //
4967   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4968       {2, MVT::v4i64, 6}, // (load 8i64 and) deinterleave into 2 x 4i64
4969 
4970       {3, MVT::v2i8, 10},  // (load 6i8 and) deinterleave into 3 x 2i8
4971       {3, MVT::v4i8, 4},   // (load 12i8 and) deinterleave into 3 x 4i8
4972       {3, MVT::v8i8, 9},   // (load 24i8 and) deinterleave into 3 x 8i8
4973       {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
4974       {3, MVT::v32i8, 13}, // (load 96i8 and) deinterleave into 3 x 32i8
4975 
4976       {3, MVT::v8i32, 17}, // (load 24i32 and) deinterleave into 3 x 8i32
4977 
4978       {4, MVT::v2i8, 12},  // (load 8i8 and) deinterleave into 4 x 2i8
4979       {4, MVT::v4i8, 4},   // (load 16i8 and) deinterleave into 4 x 4i8
4980       {4, MVT::v8i8, 20},  // (load 32i8 and) deinterleave into 4 x 8i8
4981       {4, MVT::v16i8, 39}, // (load 64i8 and) deinterleave into 4 x 16i8
4982       {4, MVT::v32i8, 80}, // (load 128i8 and) deinterleave into 4 x 32i8
4983 
4984       {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
4985   };
4986 
4987   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4988       {2, MVT::v4i64, 6}, // interleave 2 x 4i64 into 8i64 (and store)
4989 
4990       {3, MVT::v2i8, 7},   // interleave 3 x 2i8 into 6i8 (and store)
4991       {3, MVT::v4i8, 8},   // interleave 3 x 4i8 into 12i8 (and store)
4992       {3, MVT::v8i8, 11},  // interleave 3 x 8i8 into 24i8 (and store)
4993       {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
4994       {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
4995 
4996       {4, MVT::v2i8, 12},  // interleave 4 x 2i8 into 8i8 (and store)
4997       {4, MVT::v4i8, 9},   // interleave 4 x 4i8 into 16i8 (and store)
4998       {4, MVT::v8i8, 10},  // interleave 4 x 8i8 into 32i8 (and store)
4999       {4, MVT::v16i8, 10}, // interleave 4 x 16i8 into 64i8 (and store)
5000       {4, MVT::v32i8, 12}  // interleave 4 x 32i8 into 128i8 (and store)
5001   };
5002 
5003   if (Opcode == Instruction::Load) {
5004     if (const auto *Entry =
5005             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
5006       return MemOpCosts + Entry->Cost;
5007   } else {
5008     assert(Opcode == Instruction::Store &&
5009            "Expected Store Instruction at this  point");
5010     if (const auto *Entry =
5011             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
5012       return MemOpCosts + Entry->Cost;
5013   }
5014 
5015   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5016                                            Alignment, AddressSpace, CostKind);
5017 }
5018 
5019 // Get estimation for interleaved load/store operations and strided load.
5020 // \p Indices contains indices for strided load.
5021 // \p Factor - the factor of interleaving.
5022 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
getInterleavedMemoryOpCostAVX512(unsigned Opcode,FixedVectorType * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)5023 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
5024     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
5025     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
5026     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
5027 
5028   if (UseMaskForCond || UseMaskForGaps)
5029     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5030                                              Alignment, AddressSpace, CostKind,
5031                                              UseMaskForCond, UseMaskForGaps);
5032 
5033   // VecTy for interleave memop is <VF*Factor x Elt>.
5034   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5035   // VecTy = <12 x i32>.
5036 
5037   // Calculate the number of memory operations (NumOfMemOps), required
5038   // for load/store the VecTy.
5039   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5040   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
5041   unsigned LegalVTSize = LegalVT.getStoreSize();
5042   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
5043 
5044   // Get the cost of one memory operation.
5045   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
5046                                              LegalVT.getVectorNumElements());
5047   InstructionCost MemOpCost = getMemoryOpCost(
5048       Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind);
5049 
5050   unsigned VF = VecTy->getNumElements() / Factor;
5051   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
5052 
5053   if (Opcode == Instruction::Load) {
5054     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
5055     // contain the cost of the optimized shuffle sequence that the
5056     // X86InterleavedAccess pass will generate.
5057     // The cost of loads and stores are computed separately from the table.
5058 
5059     // X86InterleavedAccess support only the following interleaved-access group.
5060     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
5061         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
5062         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
5063         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
5064     };
5065 
5066     if (const auto *Entry =
5067             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
5068       return NumOfMemOps * MemOpCost + Entry->Cost;
5069     //If an entry does not exist, fallback to the default implementation.
5070 
5071     // Kind of shuffle depends on number of loaded values.
5072     // If we load the entire data in one register, we can use a 1-src shuffle.
5073     // Otherwise, we'll merge 2 sources in each operation.
5074     TTI::ShuffleKind ShuffleKind =
5075         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
5076 
5077     InstructionCost ShuffleCost =
5078         getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
5079 
5080     unsigned NumOfLoadsInInterleaveGrp =
5081         Indices.size() ? Indices.size() : Factor;
5082     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
5083                                           VecTy->getNumElements() / Factor);
5084     InstructionCost NumOfResults =
5085         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
5086         NumOfLoadsInInterleaveGrp;
5087 
5088     // About a half of the loads may be folded in shuffles when we have only
5089     // one result. If we have more than one result, we do not fold loads at all.
5090     unsigned NumOfUnfoldedLoads =
5091         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
5092 
5093     // Get a number of shuffle operations per result.
5094     unsigned NumOfShufflesPerResult =
5095         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
5096 
5097     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5098     // When we have more than one destination, we need additional instructions
5099     // to keep sources.
5100     InstructionCost NumOfMoves = 0;
5101     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
5102       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
5103 
5104     InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
5105                            NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
5106 
5107     return Cost;
5108   }
5109 
5110   // Store.
5111   assert(Opcode == Instruction::Store &&
5112          "Expected Store Instruction at this  point");
5113   // X86InterleavedAccess support only the following interleaved-access group.
5114   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
5115       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
5116       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
5117       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
5118 
5119       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
5120       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
5121       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
5122       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
5123   };
5124 
5125   if (const auto *Entry =
5126           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
5127     return NumOfMemOps * MemOpCost + Entry->Cost;
5128   //If an entry does not exist, fallback to the default implementation.
5129 
5130   // There is no strided stores meanwhile. And store can't be folded in
5131   // shuffle.
5132   unsigned NumOfSources = Factor; // The number of values to be merged.
5133   InstructionCost ShuffleCost =
5134       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
5135   unsigned NumOfShufflesPerStore = NumOfSources - 1;
5136 
5137   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5138   // We need additional instructions to keep sources.
5139   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
5140   InstructionCost Cost =
5141       NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
5142       NumOfMoves;
5143   return Cost;
5144 }
5145 
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)5146 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
5147     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
5148     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
5149     bool UseMaskForCond, bool UseMaskForGaps) {
5150   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
5151     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
5152     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
5153         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
5154       return true;
5155     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
5156       return HasBW;
5157     return false;
5158   };
5159   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
5160     return getInterleavedMemoryOpCostAVX512(
5161         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
5162         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5163   if (ST->hasAVX2())
5164     return getInterleavedMemoryOpCostAVX2(
5165         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
5166         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5167 
5168   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5169                                            Alignment, AddressSpace, CostKind,
5170                                            UseMaskForCond, UseMaskForGaps);
5171 }
5172