1 //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates n-ary add expressions and eliminates the redundancy
10 // exposed by the reassociation.
11 //
12 // A motivating example:
13 //
14 //   void foo(int a, int b) {
15 //     bar(a + b);
16 //     bar((a + 2) + b);
17 //   }
18 //
19 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
20 // the above code to
21 //
22 //   int t = a + b;
23 //   bar(t);
24 //   bar(t + 2);
25 //
26 // However, the Reassociate pass is unable to do that because it processes each
27 // instruction individually and believes (a + 2) + b is the best form according
28 // to its rank system.
29 //
30 // To address this limitation, NaryReassociate reassociates an expression in a
31 // form that reuses existing instructions. As a result, NaryReassociate can
32 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
33 // (a + b) is computed before.
34 //
35 // NaryReassociate works as follows. For every instruction in the form of (a +
36 // b) + c, it checks whether a + c or b + c is already computed by a dominating
37 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
38 // c) + a and removes the redundancy accordingly. To efficiently look up whether
39 // an expression is computed before, we store each instruction seen and its SCEV
40 // into an SCEV-to-instruction map.
41 //
42 // Although the algorithm pattern-matches only ternary additions, it
43 // automatically handles many >3-ary expressions by walking through the function
44 // in the depth-first order. For example, given
45 //
46 //   (a + c) + d
47 //   ((a + b) + c) + d
48 //
49 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
50 // ((a + c) + b) + d into ((a + c) + d) + b.
51 //
52 // Finally, the above dominator-based algorithm may need to be run multiple
53 // iterations before emitting optimal code. One source of this need is that we
54 // only split an operand when it is used only once. The above algorithm can
55 // eliminate an instruction and decrease the usage count of its operands. As a
56 // result, an instruction that previously had multiple uses may become a
57 // single-use instruction and thus eligible for split consideration. For
58 // example,
59 //
60 //   ac = a + c
61 //   ab = a + b
62 //   abc = ab + c
63 //   ab2 = ab + b
64 //   ab2c = ab2 + c
65 //
66 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
67 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
68 // result, ab2 becomes dead and ab will be used only once in the second
69 // iteration.
70 //
71 // Limitations and TODO items:
72 //
73 // 1) We only considers n-ary adds and muls for now. This should be extended
74 // and generalized.
75 //
76 //===----------------------------------------------------------------------===//
77 
78 #include "llvm/Transforms/Scalar/NaryReassociate.h"
79 #include "llvm/ADT/DepthFirstIterator.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/Analysis/AssumptionCache.h"
82 #include "llvm/Analysis/ScalarEvolution.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/TargetTransformInfo.h"
86 #include "llvm/Analysis/ValueTracking.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/Constants.h"
89 #include "llvm/IR/DataLayout.h"
90 #include "llvm/IR/DerivedTypes.h"
91 #include "llvm/IR/Dominators.h"
92 #include "llvm/IR/Function.h"
93 #include "llvm/IR/GetElementPtrTypeIterator.h"
94 #include "llvm/IR/IRBuilder.h"
95 #include "llvm/IR/InstrTypes.h"
96 #include "llvm/IR/Instruction.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Operator.h"
100 #include "llvm/IR/PatternMatch.h"
101 #include "llvm/IR/Type.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
111 #include <cassert>
112 #include <cstdint>
113 
114 using namespace llvm;
115 using namespace PatternMatch;
116 
117 #define DEBUG_TYPE "nary-reassociate"
118 
119 namespace {
120 
121 class NaryReassociateLegacyPass : public FunctionPass {
122 public:
123   static char ID;
124 
NaryReassociateLegacyPass()125   NaryReassociateLegacyPass() : FunctionPass(ID) {
126     initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
127   }
128 
doInitialization(Module & M)129   bool doInitialization(Module &M) override {
130     return false;
131   }
132 
133   bool runOnFunction(Function &F) override;
134 
getAnalysisUsage(AnalysisUsage & AU) const135   void getAnalysisUsage(AnalysisUsage &AU) const override {
136     AU.addPreserved<DominatorTreeWrapperPass>();
137     AU.addPreserved<ScalarEvolutionWrapperPass>();
138     AU.addPreserved<TargetLibraryInfoWrapperPass>();
139     AU.addRequired<AssumptionCacheTracker>();
140     AU.addRequired<DominatorTreeWrapperPass>();
141     AU.addRequired<ScalarEvolutionWrapperPass>();
142     AU.addRequired<TargetLibraryInfoWrapperPass>();
143     AU.addRequired<TargetTransformInfoWrapperPass>();
144     AU.setPreservesCFG();
145   }
146 
147 private:
148   NaryReassociatePass Impl;
149 };
150 
151 } // end anonymous namespace
152 
153 char NaryReassociateLegacyPass::ID = 0;
154 
155 INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
156                       "Nary reassociation", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)157 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
158 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
159 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
160 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
162 INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
163                     "Nary reassociation", false, false)
164 
165 FunctionPass *llvm::createNaryReassociatePass() {
166   return new NaryReassociateLegacyPass();
167 }
168 
runOnFunction(Function & F)169 bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
170   if (skipFunction(F))
171     return false;
172 
173   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
174   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
175   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
176   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
177   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
178 
179   return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
180 }
181 
run(Function & F,FunctionAnalysisManager & AM)182 PreservedAnalyses NaryReassociatePass::run(Function &F,
183                                            FunctionAnalysisManager &AM) {
184   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
185   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
186   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
187   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
188   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
189 
190   if (!runImpl(F, AC, DT, SE, TLI, TTI))
191     return PreservedAnalyses::all();
192 
193   PreservedAnalyses PA;
194   PA.preserveSet<CFGAnalyses>();
195   PA.preserve<ScalarEvolutionAnalysis>();
196   return PA;
197 }
198 
runImpl(Function & F,AssumptionCache * AC_,DominatorTree * DT_,ScalarEvolution * SE_,TargetLibraryInfo * TLI_,TargetTransformInfo * TTI_)199 bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
200                                   DominatorTree *DT_, ScalarEvolution *SE_,
201                                   TargetLibraryInfo *TLI_,
202                                   TargetTransformInfo *TTI_) {
203   AC = AC_;
204   DT = DT_;
205   SE = SE_;
206   TLI = TLI_;
207   TTI = TTI_;
208   DL = &F.getParent()->getDataLayout();
209 
210   bool Changed = false, ChangedInThisIteration;
211   do {
212     ChangedInThisIteration = doOneIteration(F);
213     Changed |= ChangedInThisIteration;
214   } while (ChangedInThisIteration);
215   return Changed;
216 }
217 
doOneIteration(Function & F)218 bool NaryReassociatePass::doOneIteration(Function &F) {
219   bool Changed = false;
220   SeenExprs.clear();
221   // Process the basic blocks in a depth first traversal of the dominator
222   // tree. This order ensures that all bases of a candidate are in Candidates
223   // when we process it.
224   SmallVector<WeakTrackingVH, 16> DeadInsts;
225   for (const auto Node : depth_first(DT)) {
226     BasicBlock *BB = Node->getBlock();
227     for (Instruction &OrigI : *BB) {
228       const SCEV *OrigSCEV = nullptr;
229       if (Instruction *NewI = tryReassociate(&OrigI, OrigSCEV)) {
230         Changed = true;
231         OrigI.replaceAllUsesWith(NewI);
232 
233         // Add 'OrigI' to the list of dead instructions.
234         DeadInsts.push_back(WeakTrackingVH(&OrigI));
235         // Add the rewritten instruction to SeenExprs; the original
236         // instruction is deleted.
237         const SCEV *NewSCEV = SE->getSCEV(NewI);
238         SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI));
239 
240         // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
241         // is equivalent to I. However, ScalarEvolution::getSCEV may
242         // weaken nsw causing NewSCEV not to equal OldSCEV. For example,
243         // suppose we reassociate
244         //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
245         // to
246         //   NewI = &a[sext(i)] + sext(j).
247         //
248         // ScalarEvolution computes
249         //   getSCEV(I)    = a + 4 * sext(i + j)
250         //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
251         // which are different SCEVs.
252         //
253         // To alleviate this issue of ScalarEvolution not always capturing
254         // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
255         // map both SCEV before and after tryReassociate(I) to I.
256         //
257         // This improvement is exercised in @reassociate_gep_nsw in
258         // nary-gep.ll.
259         if (NewSCEV != OrigSCEV)
260           SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI));
261       } else if (OrigSCEV)
262         SeenExprs[OrigSCEV].push_back(WeakTrackingVH(&OrigI));
263     }
264   }
265   // Delete all dead instructions from 'DeadInsts'.
266   // Please note ScalarEvolution is updated along the way.
267   RecursivelyDeleteTriviallyDeadInstructionsPermissive(
268       DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); });
269 
270   return Changed;
271 }
272 
273 template <typename PredT>
274 Instruction *
matchAndReassociateMinOrMax(Instruction * I,const SCEV * & OrigSCEV)275 NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I,
276                                                  const SCEV *&OrigSCEV) {
277   Value *LHS = nullptr;
278   Value *RHS = nullptr;
279 
280   auto MinMaxMatcher =
281       MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>(
282           m_Value(LHS), m_Value(RHS));
283   if (match(I, MinMaxMatcher)) {
284     OrigSCEV = SE->getSCEV(I);
285     return dyn_cast_or_null<Instruction>(
286         tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS));
287   }
288   return nullptr;
289 }
290 
tryReassociate(Instruction * I,const SCEV * & OrigSCEV)291 Instruction *NaryReassociatePass::tryReassociate(Instruction * I,
292                                                  const SCEV *&OrigSCEV) {
293 
294   if (!SE->isSCEVable(I->getType()))
295     return nullptr;
296 
297   switch (I->getOpcode()) {
298   case Instruction::Add:
299   case Instruction::Mul:
300     OrigSCEV = SE->getSCEV(I);
301     return tryReassociateBinaryOp(cast<BinaryOperator>(I));
302   case Instruction::GetElementPtr:
303     OrigSCEV = SE->getSCEV(I);
304     return tryReassociateGEP(cast<GetElementPtrInst>(I));
305   default:
306     break;
307   }
308 
309   // Try to match signed/unsigned Min/Max.
310   Instruction *ResI = nullptr;
311   // TODO: Currently min/max reassociation is restricted to integer types only
312   // due to use of SCEVExpander which my introduce incompatible forms of min/max
313   // for pointer types.
314   if (I->getType()->isIntegerTy())
315     if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) ||
316         (ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) ||
317         (ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) ||
318         (ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV)))
319       return ResI;
320 
321   return nullptr;
322 }
323 
isGEPFoldable(GetElementPtrInst * GEP,const TargetTransformInfo * TTI)324 static bool isGEPFoldable(GetElementPtrInst *GEP,
325                           const TargetTransformInfo *TTI) {
326   SmallVector<const Value *, 4> Indices(GEP->indices());
327   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
328                          Indices) == TargetTransformInfo::TCC_Free;
329 }
330 
tryReassociateGEP(GetElementPtrInst * GEP)331 Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
332   // Not worth reassociating GEP if it is foldable.
333   if (isGEPFoldable(GEP, TTI))
334     return nullptr;
335 
336   gep_type_iterator GTI = gep_type_begin(*GEP);
337   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
338     if (GTI.isSequential()) {
339       if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
340                                                   GTI.getIndexedType())) {
341         return NewGEP;
342       }
343     }
344   }
345   return nullptr;
346 }
347 
requiresSignExtension(Value * Index,GetElementPtrInst * GEP)348 bool NaryReassociatePass::requiresSignExtension(Value *Index,
349                                                 GetElementPtrInst *GEP) {
350   unsigned PointerSizeInBits =
351       DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
352   return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
353 }
354 
355 GetElementPtrInst *
tryReassociateGEPAtIndex(GetElementPtrInst * GEP,unsigned I,Type * IndexedType)356 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
357                                               unsigned I, Type *IndexedType) {
358   Value *IndexToSplit = GEP->getOperand(I + 1);
359   if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
360     IndexToSplit = SExt->getOperand(0);
361   } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
362     // zext can be treated as sext if the source is non-negative.
363     if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
364       IndexToSplit = ZExt->getOperand(0);
365   }
366 
367   if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
368     // If the I-th index needs sext and the underlying add is not equipped with
369     // nsw, we cannot split the add because
370     //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
371     if (requiresSignExtension(IndexToSplit, GEP) &&
372         computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
373             OverflowResult::NeverOverflows)
374       return nullptr;
375 
376     Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
377     // IndexToSplit = LHS + RHS.
378     if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
379       return NewGEP;
380     // Symmetrically, try IndexToSplit = RHS + LHS.
381     if (LHS != RHS) {
382       if (auto *NewGEP =
383               tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
384         return NewGEP;
385     }
386   }
387   return nullptr;
388 }
389 
390 GetElementPtrInst *
tryReassociateGEPAtIndex(GetElementPtrInst * GEP,unsigned I,Value * LHS,Value * RHS,Type * IndexedType)391 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
392                                               unsigned I, Value *LHS,
393                                               Value *RHS, Type *IndexedType) {
394   // Look for GEP's closest dominator that has the same SCEV as GEP except that
395   // the I-th index is replaced with LHS.
396   SmallVector<const SCEV *, 4> IndexExprs;
397   for (Use &Index : GEP->indices())
398     IndexExprs.push_back(SE->getSCEV(Index));
399   // Replace the I-th index with LHS.
400   IndexExprs[I] = SE->getSCEV(LHS);
401   if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
402       DL->getTypeSizeInBits(LHS->getType()).getFixedSize() <
403           DL->getTypeSizeInBits(GEP->getOperand(I)->getType()).getFixedSize()) {
404     // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
405     // zext if the source operand is proved non-negative. We should do that
406     // consistently so that CandidateExpr more likely appears before. See
407     // @reassociate_gep_assume for an example of this canonicalization.
408     IndexExprs[I] =
409         SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
410   }
411   const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
412                                              IndexExprs);
413 
414   Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
415   if (Candidate == nullptr)
416     return nullptr;
417 
418   IRBuilder<> Builder(GEP);
419   // Candidate does not necessarily have the same pointer type as GEP. Use
420   // bitcast or pointer cast to make sure they have the same type, so that the
421   // later RAUW doesn't complain.
422   Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
423   assert(Candidate->getType() == GEP->getType());
424 
425   // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
426   uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
427   Type *ElementType = GEP->getResultElementType();
428   uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
429   // Another less rare case: because I is not necessarily the last index of the
430   // GEP, the size of the type at the I-th index (IndexedSize) is not
431   // necessarily divisible by ElementSize. For example,
432   //
433   // #pragma pack(1)
434   // struct S {
435   //   int a[3];
436   //   int64 b[8];
437   // };
438   // #pragma pack()
439   //
440   // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
441   //
442   // TODO: bail out on this case for now. We could emit uglygep.
443   if (IndexedSize % ElementSize != 0)
444     return nullptr;
445 
446   // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
447   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
448   if (RHS->getType() != IntPtrTy)
449     RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
450   if (IndexedSize != ElementSize) {
451     RHS = Builder.CreateMul(
452         RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
453   }
454   GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
455       Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
456   NewGEP->setIsInBounds(GEP->isInBounds());
457   NewGEP->takeName(GEP);
458   return NewGEP;
459 }
460 
tryReassociateBinaryOp(BinaryOperator * I)461 Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
462   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
463   // There is no need to reassociate 0.
464   if (SE->getSCEV(I)->isZero())
465     return nullptr;
466   if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
467     return NewI;
468   if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
469     return NewI;
470   return nullptr;
471 }
472 
tryReassociateBinaryOp(Value * LHS,Value * RHS,BinaryOperator * I)473 Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
474                                                          BinaryOperator *I) {
475   Value *A = nullptr, *B = nullptr;
476   // To be conservative, we reassociate I only when it is the only user of (A op
477   // B).
478   if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
479     // I = (A op B) op RHS
480     //   = (A op RHS) op B or (B op RHS) op A
481     const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
482     const SCEV *RHSExpr = SE->getSCEV(RHS);
483     if (BExpr != RHSExpr) {
484       if (auto *NewI =
485               tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
486         return NewI;
487     }
488     if (AExpr != RHSExpr) {
489       if (auto *NewI =
490               tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
491         return NewI;
492     }
493   }
494   return nullptr;
495 }
496 
tryReassociatedBinaryOp(const SCEV * LHSExpr,Value * RHS,BinaryOperator * I)497 Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
498                                                           Value *RHS,
499                                                           BinaryOperator *I) {
500   // Look for the closest dominator LHS of I that computes LHSExpr, and replace
501   // I with LHS op RHS.
502   auto *LHS = findClosestMatchingDominator(LHSExpr, I);
503   if (LHS == nullptr)
504     return nullptr;
505 
506   Instruction *NewI = nullptr;
507   switch (I->getOpcode()) {
508   case Instruction::Add:
509     NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
510     break;
511   case Instruction::Mul:
512     NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
513     break;
514   default:
515     llvm_unreachable("Unexpected instruction.");
516   }
517   NewI->takeName(I);
518   return NewI;
519 }
520 
matchTernaryOp(BinaryOperator * I,Value * V,Value * & Op1,Value * & Op2)521 bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
522                                          Value *&Op1, Value *&Op2) {
523   switch (I->getOpcode()) {
524   case Instruction::Add:
525     return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
526   case Instruction::Mul:
527     return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
528   default:
529     llvm_unreachable("Unexpected instruction.");
530   }
531   return false;
532 }
533 
getBinarySCEV(BinaryOperator * I,const SCEV * LHS,const SCEV * RHS)534 const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
535                                                const SCEV *LHS,
536                                                const SCEV *RHS) {
537   switch (I->getOpcode()) {
538   case Instruction::Add:
539     return SE->getAddExpr(LHS, RHS);
540   case Instruction::Mul:
541     return SE->getMulExpr(LHS, RHS);
542   default:
543     llvm_unreachable("Unexpected instruction.");
544   }
545   return nullptr;
546 }
547 
548 Instruction *
findClosestMatchingDominator(const SCEV * CandidateExpr,Instruction * Dominatee)549 NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
550                                                   Instruction *Dominatee) {
551   auto Pos = SeenExprs.find(CandidateExpr);
552   if (Pos == SeenExprs.end())
553     return nullptr;
554 
555   auto &Candidates = Pos->second;
556   // Because we process the basic blocks in pre-order of the dominator tree, a
557   // candidate that doesn't dominate the current instruction won't dominate any
558   // future instruction either. Therefore, we pop it out of the stack. This
559   // optimization makes the algorithm O(n).
560   while (!Candidates.empty()) {
561     // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
562     // removed
563     // during rewriting.
564     if (Value *Candidate = Candidates.back()) {
565       Instruction *CandidateInstruction = cast<Instruction>(Candidate);
566       if (DT->dominates(CandidateInstruction, Dominatee))
567         return CandidateInstruction;
568     }
569     Candidates.pop_back();
570   }
571   return nullptr;
572 }
573 
convertToSCEVype(MaxMinT & MM)574 template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) {
575   if (std::is_same<smax_pred_ty, typename MaxMinT::PredType>::value)
576     return scSMaxExpr;
577   else if (std::is_same<umax_pred_ty, typename MaxMinT::PredType>::value)
578     return scUMaxExpr;
579   else if (std::is_same<smin_pred_ty, typename MaxMinT::PredType>::value)
580     return scSMinExpr;
581   else if (std::is_same<umin_pred_ty, typename MaxMinT::PredType>::value)
582     return scUMinExpr;
583 
584   llvm_unreachable("Can't convert MinMax pattern to SCEV type");
585   return scUnknown;
586 }
587 
588 // Parameters:
589 //  I - instruction matched by MaxMinMatch matcher
590 //  MaxMinMatch - min/max idiom matcher
591 //  LHS - first operand of I
592 //  RHS - second operand of I
593 template <typename MaxMinT>
tryReassociateMinOrMax(Instruction * I,MaxMinT MaxMinMatch,Value * LHS,Value * RHS)594 Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I,
595                                                    MaxMinT MaxMinMatch,
596                                                    Value *LHS, Value *RHS) {
597   Value *A = nullptr, *B = nullptr;
598   MaxMinT m_MaxMin(m_Value(A), m_Value(B));
599   for (unsigned int i = 0; i < 2; ++i) {
600     if (!LHS->hasNUsesOrMore(3) && match(LHS, m_MaxMin)) {
601       const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
602       const SCEV *RHSExpr = SE->getSCEV(RHS);
603       for (unsigned int j = 0; j < 2; ++j) {
604         if (j == 0) {
605           if (BExpr == RHSExpr)
606             continue;
607           // Transform 'I = (A op B) op RHS' to 'I = (A op RHS) op B' on the
608           // first iteration.
609           std::swap(BExpr, RHSExpr);
610         } else {
611           if (AExpr == RHSExpr)
612             continue;
613           // Transform 'I = (A op RHS) op B' 'I = (B op RHS) op A' on the second
614           // iteration.
615           std::swap(AExpr, RHSExpr);
616         }
617 
618         // The optimization is profitable only if LHS can be removed in the end.
619         // In other words LHS should be used (directly or indirectly) by I only.
620         if (llvm::any_of(LHS->users(), [&](auto *U) {
621               return U != I && !(U->hasOneUser() && *U->users().begin() == I);
622             }))
623           continue;
624 
625         SCEVExpander Expander(*SE, *DL, "nary-reassociate");
626         SmallVector<const SCEV *, 2> Ops1{ BExpr, AExpr };
627         const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin);
628         const SCEV *R1Expr = SE->getMinMaxExpr(SCEVType, Ops1);
629 
630         Instruction *R1MinMax = findClosestMatchingDominator(R1Expr, I);
631 
632         if (!R1MinMax)
633           continue;
634 
635         LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax
636                           << "\n");
637 
638         R1Expr = SE->getUnknown(R1MinMax);
639         SmallVector<const SCEV *, 2> Ops2{ RHSExpr, R1Expr };
640         const SCEV *R2Expr = SE->getMinMaxExpr(SCEVType, Ops2);
641 
642         Value *NewMinMax = Expander.expandCodeFor(R2Expr, I->getType(), I);
643         NewMinMax->setName(Twine(I->getName()).concat(".nary"));
644 
645         LLVM_DEBUG(dbgs() << "NARY: Deleting:  " << *I << "\n"
646                           << "NARY: Inserting: " << *NewMinMax << "\n");
647         return NewMinMax;
648       }
649     }
650     std::swap(LHS, RHS);
651   }
652   return nullptr;
653 }
654