1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Regex.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include <algorithm>
28 #include <iterator>
29 #include <utility>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "subtarget-emitter"
34 
35 #ifndef NDEBUG
dumpIdxVec(ArrayRef<unsigned> V)36 static void dumpIdxVec(ArrayRef<unsigned> V) {
37   for (unsigned Idx : V)
38     dbgs() << Idx << ", ";
39 }
40 #endif
41 
42 namespace {
43 
44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45 struct InstrsOp : public SetTheory::Operator {
apply__anon8a23da580111::InstrsOp46   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47              ArrayRef<SMLoc> Loc) override {
48     ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
49   }
50 };
51 
52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53 struct InstRegexOp : public SetTheory::Operator {
54   const CodeGenTarget &Target;
InstRegexOp__anon8a23da580111::InstRegexOp55   InstRegexOp(const CodeGenTarget &t): Target(t) {}
56 
57   /// Remove any text inside of parentheses from S.
removeParens__anon8a23da580111::InstRegexOp58   static std::string removeParens(llvm::StringRef S) {
59     std::string Result;
60     unsigned Paren = 0;
61     // NB: We don't care about escaped parens here.
62     for (char C : S) {
63       switch (C) {
64       case '(':
65         ++Paren;
66         break;
67       case ')':
68         --Paren;
69         break;
70       default:
71         if (Paren == 0)
72           Result += C;
73       }
74     }
75     return Result;
76   }
77 
apply__anon8a23da580111::InstRegexOp78   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79              ArrayRef<SMLoc> Loc) override {
80     ArrayRef<const CodeGenInstruction *> Instructions =
81         Target.getInstructionsByEnumValue();
82 
83     unsigned NumGeneric = Target.getNumFixedInstructions();
84     unsigned NumPseudos = Target.getNumPseudoInstructions();
85     auto Generics = Instructions.slice(0, NumGeneric);
86     auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87     auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88 
89     for (Init *Arg : Expr->getArgs()) {
90       StringInit *SI = dyn_cast<StringInit>(Arg);
91       if (!SI)
92         PrintFatalError(Loc, "instregex requires pattern string: " +
93                                  Expr->getAsString());
94       StringRef Original = SI->getValue();
95 
96       // Extract a prefix that we can binary search on.
97       static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98       auto FirstMeta = Original.find_first_of(RegexMetachars);
99 
100       // Look for top-level | or ?. We cannot optimize them to binary search.
101       if (removeParens(Original).find_first_of("|?") != std::string::npos)
102         FirstMeta = 0;
103 
104       Optional<Regex> Regexpr = None;
105       StringRef Prefix = Original.substr(0, FirstMeta);
106       StringRef PatStr = Original.substr(FirstMeta);
107       if (!PatStr.empty()) {
108         // For the rest use a python-style prefix match.
109         std::string pat = std::string(PatStr);
110         if (pat[0] != '^') {
111           pat.insert(0, "^(");
112           pat.insert(pat.end(), ')');
113         }
114         Regexpr = Regex(pat);
115       }
116 
117       int NumMatches = 0;
118 
119       // The generic opcodes are unsorted, handle them manually.
120       for (auto *Inst : Generics) {
121         StringRef InstName = Inst->TheDef->getName();
122         if (InstName.startswith(Prefix) &&
123             (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124           Elts.insert(Inst->TheDef);
125           NumMatches++;
126         }
127       }
128 
129       // Target instructions are split into two ranges: pseudo instructions
130       // first, than non-pseudos. Each range is in lexicographical order
131       // sorted by name. Find the sub-ranges that start with our prefix.
132       struct Comp {
133         bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134           return LHS->TheDef->getName() < RHS;
135         }
136         bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137           return LHS < RHS->TheDef->getName() &&
138                  !RHS->TheDef->getName().startswith(LHS);
139         }
140       };
141       auto Range1 =
142           std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143       auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144                                      Prefix, Comp());
145 
146       // For these ranges we know that instruction names start with the prefix.
147       // Check if there's a regex that needs to be checked.
148       const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149         StringRef InstName = Inst->TheDef->getName();
150         if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151           Elts.insert(Inst->TheDef);
152           NumMatches++;
153         }
154       };
155       std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156       std::for_each(Range2.first, Range2.second, HandleNonGeneric);
157 
158       if (0 == NumMatches)
159         PrintFatalError(Loc, "instregex has no matches: " + Original);
160     }
161   }
162 };
163 
164 } // end anonymous namespace
165 
166 /// CodeGenModels ctor interprets machine model records and populates maps.
CodeGenSchedModels(RecordKeeper & RK,const CodeGenTarget & TGT)167 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168                                        const CodeGenTarget &TGT):
169   Records(RK), Target(TGT) {
170 
171   Sets.addFieldExpander("InstRW", "Instrs");
172 
173   // Allow Set evaluation to recognize the dags used in InstRW records:
174   // (instrs Op1, Op1...)
175   Sets.addOperator("instrs", std::make_unique<InstrsOp>());
176   Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
177 
178   // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179   // that are explicitly referenced in tablegen records. Resources associated
180   // with each processor will be derived later. Populate ProcModelMap with the
181   // CodeGenProcModel instances.
182   collectProcModels();
183 
184   // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185   // defined, and populate SchedReads and SchedWrites vectors. Implicit
186   // SchedReadWrites that represent sequences derived from expanded variant will
187   // be inferred later.
188   collectSchedRW();
189 
190   // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191   // required by an instruction definition, and populate SchedClassIdxMap. Set
192   // NumItineraryClasses to the number of explicit itinerary classes referenced
193   // by instructions. Set NumInstrSchedClasses to the number of itinerary
194   // classes plus any classes implied by instructions that derive from class
195   // Sched and provide SchedRW list. This does not infer any new classes from
196   // SchedVariant.
197   collectSchedClasses();
198 
199   // Find instruction itineraries for each processor. Sort and populate
200   // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201   // all itinerary classes to be discovered.
202   collectProcItins();
203 
204   // Find ItinRW records for each processor and itinerary class.
205   // (For per-operand resources mapped to itinerary classes).
206   collectProcItinRW();
207 
208   // Find UnsupportedFeatures records for each processor.
209   // (For per-operand resources mapped to itinerary classes).
210   collectProcUnsupportedFeatures();
211 
212   // Infer new SchedClasses from SchedVariant.
213   inferSchedClasses();
214 
215   // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216   // ProcResourceDefs.
217   LLVM_DEBUG(
218       dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219   collectProcResources();
220 
221   // Collect optional processor description.
222   collectOptionalProcessorInfo();
223 
224   // Check MCInstPredicate definitions.
225   checkMCInstPredicates();
226 
227   // Check STIPredicate definitions.
228   checkSTIPredicates();
229 
230   // Find STIPredicate definitions for each processor model, and construct
231   // STIPredicateFunction objects.
232   collectSTIPredicates();
233 
234   checkCompleteness();
235 }
236 
checkSTIPredicates() const237 void CodeGenSchedModels::checkSTIPredicates() const {
238   DenseMap<StringRef, const Record *> Declarations;
239 
240   // There cannot be multiple declarations with the same name.
241   const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242   for (const Record *R : Decls) {
243     StringRef Name = R->getValueAsString("Name");
244     const auto It = Declarations.find(Name);
245     if (It == Declarations.end()) {
246       Declarations[Name] = R;
247       continue;
248     }
249 
250     PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251     PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
252   }
253 
254   // Disallow InstructionEquivalenceClasses with an empty instruction list.
255   const RecVec Defs =
256       Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
257   for (const Record *R : Defs) {
258     RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
259     if (Opcodes.empty()) {
260       PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
261                                    "defined with an empty opcode list.");
262     }
263   }
264 }
265 
266 // Used by function `processSTIPredicate` to construct a mask of machine
267 // instruction operands.
constructOperandMask(ArrayRef<int64_t> Indices)268 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
269   APInt OperandMask;
270   if (Indices.empty())
271     return OperandMask;
272 
273   int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
274   assert(MaxIndex >= 0 && "Invalid negative indices in input!");
275   OperandMask = OperandMask.zext(MaxIndex + 1);
276   for (const int64_t Index : Indices) {
277     assert(Index >= 0 && "Invalid negative indices!");
278     OperandMask.setBit(Index);
279   }
280 
281   return OperandMask;
282 }
283 
284 static void
processSTIPredicate(STIPredicateFunction & Fn,const ProcModelMapTy & ProcModelMap)285 processSTIPredicate(STIPredicateFunction &Fn,
286                     const ProcModelMapTy &ProcModelMap) {
287   DenseMap<const Record *, unsigned> Opcode2Index;
288   using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
289   std::vector<OpcodeMapPair> OpcodeMappings;
290   std::vector<std::pair<APInt, APInt>> OpcodeMasks;
291 
292   DenseMap<const Record *, unsigned> Predicate2Index;
293   unsigned NumUniquePredicates = 0;
294 
295   // Number unique predicates and opcodes used by InstructionEquivalenceClass
296   // definitions. Each unique opcode will be associated with an OpcodeInfo
297   // object.
298   for (const Record *Def : Fn.getDefinitions()) {
299     RecVec Classes = Def->getValueAsListOfDefs("Classes");
300     for (const Record *EC : Classes) {
301       const Record *Pred = EC->getValueAsDef("Predicate");
302       if (Predicate2Index.find(Pred) == Predicate2Index.end())
303         Predicate2Index[Pred] = NumUniquePredicates++;
304 
305       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
306       for (const Record *Opcode : Opcodes) {
307         if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
308           Opcode2Index[Opcode] = OpcodeMappings.size();
309           OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
310         }
311       }
312     }
313   }
314 
315   // Initialize vector `OpcodeMasks` with default values.  We want to keep track
316   // of which processors "use" which opcodes.  We also want to be able to
317   // identify predicates that are used by different processors for a same
318   // opcode.
319   // This information is used later on by this algorithm to sort OpcodeMapping
320   // elements based on their processor and predicate sets.
321   OpcodeMasks.resize(OpcodeMappings.size());
322   APInt DefaultProcMask(ProcModelMap.size(), 0);
323   APInt DefaultPredMask(NumUniquePredicates, 0);
324   for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
325     MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
326 
327   // Construct a OpcodeInfo object for every unique opcode declared by an
328   // InstructionEquivalenceClass definition.
329   for (const Record *Def : Fn.getDefinitions()) {
330     RecVec Classes = Def->getValueAsListOfDefs("Classes");
331     const Record *SchedModel = Def->getValueAsDef("SchedModel");
332     unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
333     APInt ProcMask(ProcModelMap.size(), 0);
334     ProcMask.setBit(ProcIndex);
335 
336     for (const Record *EC : Classes) {
337       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
338 
339       std::vector<int64_t> OpIndices =
340           EC->getValueAsListOfInts("OperandIndices");
341       APInt OperandMask = constructOperandMask(OpIndices);
342 
343       const Record *Pred = EC->getValueAsDef("Predicate");
344       APInt PredMask(NumUniquePredicates, 0);
345       PredMask.setBit(Predicate2Index[Pred]);
346 
347       for (const Record *Opcode : Opcodes) {
348         unsigned OpcodeIdx = Opcode2Index[Opcode];
349         if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
350           std::string Message =
351               "Opcode " + Opcode->getName().str() +
352               " used by multiple InstructionEquivalenceClass definitions.";
353           PrintFatalError(EC->getLoc(), Message);
354         }
355         OpcodeMasks[OpcodeIdx].first |= ProcMask;
356         OpcodeMasks[OpcodeIdx].second |= PredMask;
357         OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
358 
359         OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
360       }
361     }
362   }
363 
364   // Sort OpcodeMappings elements based on their CPU and predicate masks.
365   // As a last resort, order elements by opcode identifier.
366   llvm::sort(OpcodeMappings,
367              [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
368                unsigned LhsIdx = Opcode2Index[Lhs.first];
369                unsigned RhsIdx = Opcode2Index[Rhs.first];
370                const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
371                const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
372 
373                auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
374                  unsigned LhsCountPopulation = Lhs.countPopulation();
375                  unsigned RhsCountPopulation = Rhs.countPopulation();
376                  return ((LhsCountPopulation < RhsCountPopulation) ||
377                          ((LhsCountPopulation == RhsCountPopulation) &&
378                           (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
379                };
380 
381                if (LhsMasks.first != RhsMasks.first)
382                  return LessThan(LhsMasks.first, RhsMasks.first);
383 
384                if (LhsMasks.second != RhsMasks.second)
385                  return LessThan(LhsMasks.second, RhsMasks.second);
386 
387                return LhsIdx < RhsIdx;
388              });
389 
390   // Now construct opcode groups. Groups are used by the SubtargetEmitter when
391   // expanding the body of a STIPredicate function. In particular, each opcode
392   // group is expanded into a sequence of labels in a switch statement.
393   // It identifies opcodes for which different processors define same predicates
394   // and same opcode masks.
395   for (OpcodeMapPair &Info : OpcodeMappings)
396     Fn.addOpcode(Info.first, std::move(Info.second));
397 }
398 
collectSTIPredicates()399 void CodeGenSchedModels::collectSTIPredicates() {
400   // Map STIPredicateDecl records to elements of vector
401   // CodeGenSchedModels::STIPredicates.
402   DenseMap<const Record *, unsigned> Decl2Index;
403 
404   RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
405   for (const Record *R : RV) {
406     const Record *Decl = R->getValueAsDef("Declaration");
407 
408     const auto It = Decl2Index.find(Decl);
409     if (It == Decl2Index.end()) {
410       Decl2Index[Decl] = STIPredicates.size();
411       STIPredicateFunction Predicate(Decl);
412       Predicate.addDefinition(R);
413       STIPredicates.emplace_back(std::move(Predicate));
414       continue;
415     }
416 
417     STIPredicateFunction &PreviousDef = STIPredicates[It->second];
418     PreviousDef.addDefinition(R);
419   }
420 
421   for (STIPredicateFunction &Fn : STIPredicates)
422     processSTIPredicate(Fn, ProcModelMap);
423 }
424 
addPredicateForProcModel(const llvm::APInt & CpuMask,const llvm::APInt & OperandMask,const Record * Predicate)425 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
426                                           const llvm::APInt &OperandMask,
427                                           const Record *Predicate) {
428   auto It = llvm::find_if(
429       Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
430         return P.Predicate == Predicate && P.OperandMask == OperandMask;
431       });
432   if (It == Predicates.end()) {
433     Predicates.emplace_back(CpuMask, OperandMask, Predicate);
434     return;
435   }
436   It->ProcModelMask |= CpuMask;
437 }
438 
checkMCInstPredicates() const439 void CodeGenSchedModels::checkMCInstPredicates() const {
440   RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
441   if (MCPredicates.empty())
442     return;
443 
444   // A target cannot have multiple TIIPredicate definitions with a same name.
445   llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
446   for (const Record *TIIPred : MCPredicates) {
447     StringRef Name = TIIPred->getValueAsString("FunctionName");
448     StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
449     if (It == TIIPredicates.end()) {
450       TIIPredicates[Name] = TIIPred;
451       continue;
452     }
453 
454     PrintError(TIIPred->getLoc(),
455                "TIIPredicate " + Name + " is multiply defined.");
456     PrintFatalNote(It->second->getLoc(),
457                    " Previous definition of " + Name + " was here.");
458   }
459 }
460 
collectRetireControlUnits()461 void CodeGenSchedModels::collectRetireControlUnits() {
462   RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
463 
464   for (Record *RCU : Units) {
465     CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
466     if (PM.RetireControlUnit) {
467       PrintError(RCU->getLoc(),
468                  "Expected a single RetireControlUnit definition");
469       PrintNote(PM.RetireControlUnit->getLoc(),
470                 "Previous definition of RetireControlUnit was here");
471     }
472     PM.RetireControlUnit = RCU;
473   }
474 }
475 
collectLoadStoreQueueInfo()476 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
477   RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
478 
479   for (Record *Queue : Queues) {
480     CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
481     if (Queue->isSubClassOf("LoadQueue")) {
482       if (PM.LoadQueue) {
483         PrintError(Queue->getLoc(),
484                    "Expected a single LoadQueue definition");
485         PrintNote(PM.LoadQueue->getLoc(),
486                   "Previous definition of LoadQueue was here");
487       }
488 
489       PM.LoadQueue = Queue;
490     }
491 
492     if (Queue->isSubClassOf("StoreQueue")) {
493       if (PM.StoreQueue) {
494         PrintError(Queue->getLoc(),
495                    "Expected a single StoreQueue definition");
496         PrintNote(PM.LoadQueue->getLoc(),
497                   "Previous definition of StoreQueue was here");
498       }
499 
500       PM.StoreQueue = Queue;
501     }
502   }
503 }
504 
505 /// Collect optional processor information.
collectOptionalProcessorInfo()506 void CodeGenSchedModels::collectOptionalProcessorInfo() {
507   // Find register file definitions for each processor.
508   collectRegisterFiles();
509 
510   // Collect processor RetireControlUnit descriptors if available.
511   collectRetireControlUnits();
512 
513   // Collect information about load/store queues.
514   collectLoadStoreQueueInfo();
515 
516   checkCompleteness();
517 }
518 
519 /// Gather all processor models.
collectProcModels()520 void CodeGenSchedModels::collectProcModels() {
521   RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
522   llvm::sort(ProcRecords, LessRecordFieldName());
523 
524   // Reserve space because we can. Reallocation would be ok.
525   ProcModels.reserve(ProcRecords.size()+1);
526 
527   // Use idx=0 for NoModel/NoItineraries.
528   Record *NoModelDef = Records.getDef("NoSchedModel");
529   Record *NoItinsDef = Records.getDef("NoItineraries");
530   ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
531   ProcModelMap[NoModelDef] = 0;
532 
533   // For each processor, find a unique machine model.
534   LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
535   for (Record *ProcRecord : ProcRecords)
536     addProcModel(ProcRecord);
537 }
538 
539 /// Get a unique processor model based on the defined MachineModel and
540 /// ProcessorItineraries.
addProcModel(Record * ProcDef)541 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
542   Record *ModelKey = getModelOrItinDef(ProcDef);
543   if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
544     return;
545 
546   std::string Name = std::string(ModelKey->getName());
547   if (ModelKey->isSubClassOf("SchedMachineModel")) {
548     Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
549     ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
550   }
551   else {
552     // An itinerary is defined without a machine model. Infer a new model.
553     if (!ModelKey->getValueAsListOfDefs("IID").empty())
554       Name = Name + "Model";
555     ProcModels.emplace_back(ProcModels.size(), Name,
556                             ProcDef->getValueAsDef("SchedModel"), ModelKey);
557   }
558   LLVM_DEBUG(ProcModels.back().dump());
559 }
560 
561 // Recursively find all reachable SchedReadWrite records.
scanSchedRW(Record * RWDef,RecVec & RWDefs,SmallPtrSet<Record *,16> & RWSet)562 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
563                         SmallPtrSet<Record*, 16> &RWSet) {
564   if (!RWSet.insert(RWDef).second)
565     return;
566   RWDefs.push_back(RWDef);
567   // Reads don't currently have sequence records, but it can be added later.
568   if (RWDef->isSubClassOf("WriteSequence")) {
569     RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
570     for (Record *WSRec : Seq)
571       scanSchedRW(WSRec, RWDefs, RWSet);
572   }
573   else if (RWDef->isSubClassOf("SchedVariant")) {
574     // Visit each variant (guarded by a different predicate).
575     RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
576     for (Record *Variant : Vars) {
577       // Visit each RW in the sequence selected by the current variant.
578       RecVec Selected = Variant->getValueAsListOfDefs("Selected");
579       for (Record *SelDef : Selected)
580         scanSchedRW(SelDef, RWDefs, RWSet);
581     }
582   }
583 }
584 
585 // Collect and sort all SchedReadWrites reachable via tablegen records.
586 // More may be inferred later when inferring new SchedClasses from variants.
collectSchedRW()587 void CodeGenSchedModels::collectSchedRW() {
588   // Reserve idx=0 for invalid writes/reads.
589   SchedWrites.resize(1);
590   SchedReads.resize(1);
591 
592   SmallPtrSet<Record*, 16> RWSet;
593 
594   // Find all SchedReadWrites referenced by instruction defs.
595   RecVec SWDefs, SRDefs;
596   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
597     Record *SchedDef = Inst->TheDef;
598     if (SchedDef->isValueUnset("SchedRW"))
599       continue;
600     RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
601     for (Record *RW : RWs) {
602       if (RW->isSubClassOf("SchedWrite"))
603         scanSchedRW(RW, SWDefs, RWSet);
604       else {
605         assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
606         scanSchedRW(RW, SRDefs, RWSet);
607       }
608     }
609   }
610   // Find all ReadWrites referenced by InstRW.
611   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
612   for (Record *InstRWDef : InstRWDefs) {
613     // For all OperandReadWrites.
614     RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
615     for (Record *RWDef : RWDefs) {
616       if (RWDef->isSubClassOf("SchedWrite"))
617         scanSchedRW(RWDef, SWDefs, RWSet);
618       else {
619         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
620         scanSchedRW(RWDef, SRDefs, RWSet);
621       }
622     }
623   }
624   // Find all ReadWrites referenced by ItinRW.
625   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
626   for (Record *ItinRWDef : ItinRWDefs) {
627     // For all OperandReadWrites.
628     RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
629     for (Record *RWDef : RWDefs) {
630       if (RWDef->isSubClassOf("SchedWrite"))
631         scanSchedRW(RWDef, SWDefs, RWSet);
632       else {
633         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
634         scanSchedRW(RWDef, SRDefs, RWSet);
635       }
636     }
637   }
638   // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
639   // for the loop below that initializes Alias vectors.
640   RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
641   llvm::sort(AliasDefs, LessRecord());
642   for (Record *ADef : AliasDefs) {
643     Record *MatchDef = ADef->getValueAsDef("MatchRW");
644     Record *AliasDef = ADef->getValueAsDef("AliasRW");
645     if (MatchDef->isSubClassOf("SchedWrite")) {
646       if (!AliasDef->isSubClassOf("SchedWrite"))
647         PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
648       scanSchedRW(AliasDef, SWDefs, RWSet);
649     }
650     else {
651       assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
652       if (!AliasDef->isSubClassOf("SchedRead"))
653         PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
654       scanSchedRW(AliasDef, SRDefs, RWSet);
655     }
656   }
657   // Sort and add the SchedReadWrites directly referenced by instructions or
658   // itinerary resources. Index reads and writes in separate domains.
659   llvm::sort(SWDefs, LessRecord());
660   for (Record *SWDef : SWDefs) {
661     assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
662     SchedWrites.emplace_back(SchedWrites.size(), SWDef);
663   }
664   llvm::sort(SRDefs, LessRecord());
665   for (Record *SRDef : SRDefs) {
666     assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
667     SchedReads.emplace_back(SchedReads.size(), SRDef);
668   }
669   // Initialize WriteSequence vectors.
670   for (CodeGenSchedRW &CGRW : SchedWrites) {
671     if (!CGRW.IsSequence)
672       continue;
673     findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
674             /*IsRead=*/false);
675   }
676   // Initialize Aliases vectors.
677   for (Record *ADef : AliasDefs) {
678     Record *AliasDef = ADef->getValueAsDef("AliasRW");
679     getSchedRW(AliasDef).IsAlias = true;
680     Record *MatchDef = ADef->getValueAsDef("MatchRW");
681     CodeGenSchedRW &RW = getSchedRW(MatchDef);
682     if (RW.IsAlias)
683       PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
684     RW.Aliases.push_back(ADef);
685   }
686   LLVM_DEBUG(
687       dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
688       for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
689         dbgs() << WIdx << ": ";
690         SchedWrites[WIdx].dump();
691         dbgs() << '\n';
692       } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
693              ++RIdx) {
694         dbgs() << RIdx << ": ";
695         SchedReads[RIdx].dump();
696         dbgs() << '\n';
697       } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
698       for (Record *RWDef
699            : RWDefs) {
700         if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
701           StringRef Name = RWDef->getName();
702           if (Name != "NoWrite" && Name != "ReadDefault")
703             dbgs() << "Unused SchedReadWrite " << Name << '\n';
704         }
705       });
706 }
707 
708 /// Compute a SchedWrite name from a sequence of writes.
genRWName(ArrayRef<unsigned> Seq,bool IsRead)709 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
710   std::string Name("(");
711   ListSeparator LS("_");
712   for (unsigned I : Seq) {
713     Name += LS;
714     Name += getSchedRW(I, IsRead).Name;
715   }
716   Name += ')';
717   return Name;
718 }
719 
getSchedRWIdx(const Record * Def,bool IsRead) const720 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
721                                            bool IsRead) const {
722   const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
723   const auto I = find_if(
724       RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
725   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
726 }
727 
hasReadOfWrite(Record * WriteDef) const728 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
729   for (const CodeGenSchedRW &Read : SchedReads) {
730     Record *ReadDef = Read.TheDef;
731     if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
732       continue;
733 
734     RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
735     if (is_contained(ValidWrites, WriteDef)) {
736       return true;
737     }
738   }
739   return false;
740 }
741 
splitSchedReadWrites(const RecVec & RWDefs,RecVec & WriteDefs,RecVec & ReadDefs)742 static void splitSchedReadWrites(const RecVec &RWDefs,
743                                  RecVec &WriteDefs, RecVec &ReadDefs) {
744   for (Record *RWDef : RWDefs) {
745     if (RWDef->isSubClassOf("SchedWrite"))
746       WriteDefs.push_back(RWDef);
747     else {
748       assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
749       ReadDefs.push_back(RWDef);
750     }
751   }
752 }
753 
754 // Split the SchedReadWrites defs and call findRWs for each list.
findRWs(const RecVec & RWDefs,IdxVec & Writes,IdxVec & Reads) const755 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
756                                  IdxVec &Writes, IdxVec &Reads) const {
757   RecVec WriteDefs;
758   RecVec ReadDefs;
759   splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
760   findRWs(WriteDefs, Writes, false);
761   findRWs(ReadDefs, Reads, true);
762 }
763 
764 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
findRWs(const RecVec & RWDefs,IdxVec & RWs,bool IsRead) const765 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
766                                  bool IsRead) const {
767   for (Record *RWDef : RWDefs) {
768     unsigned Idx = getSchedRWIdx(RWDef, IsRead);
769     assert(Idx && "failed to collect SchedReadWrite");
770     RWs.push_back(Idx);
771   }
772 }
773 
expandRWSequence(unsigned RWIdx,IdxVec & RWSeq,bool IsRead) const774 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
775                                           bool IsRead) const {
776   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
777   if (!SchedRW.IsSequence) {
778     RWSeq.push_back(RWIdx);
779     return;
780   }
781   int Repeat =
782     SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
783   for (int i = 0; i < Repeat; ++i) {
784     for (unsigned I : SchedRW.Sequence) {
785       expandRWSequence(I, RWSeq, IsRead);
786     }
787   }
788 }
789 
790 // Expand a SchedWrite as a sequence following any aliases that coincide with
791 // the given processor model.
expandRWSeqForProc(unsigned RWIdx,IdxVec & RWSeq,bool IsRead,const CodeGenProcModel & ProcModel) const792 void CodeGenSchedModels::expandRWSeqForProc(
793   unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
794   const CodeGenProcModel &ProcModel) const {
795 
796   const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
797   Record *AliasDef = nullptr;
798   for (const Record *Rec : SchedWrite.Aliases) {
799     const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
800     if (Rec->getValueInit("SchedModel")->isComplete()) {
801       Record *ModelDef = Rec->getValueAsDef("SchedModel");
802       if (&getProcModel(ModelDef) != &ProcModel)
803         continue;
804     }
805     if (AliasDef)
806       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
807                       "defined for processor " + ProcModel.ModelName +
808                       " Ensure only one SchedAlias exists per RW.");
809     AliasDef = AliasRW.TheDef;
810   }
811   if (AliasDef) {
812     expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
813                        RWSeq, IsRead,ProcModel);
814     return;
815   }
816   if (!SchedWrite.IsSequence) {
817     RWSeq.push_back(RWIdx);
818     return;
819   }
820   int Repeat =
821     SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
822   for (int I = 0, E = Repeat; I < E; ++I) {
823     for (unsigned Idx : SchedWrite.Sequence) {
824       expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
825     }
826   }
827 }
828 
829 // Find the existing SchedWrite that models this sequence of writes.
findRWForSequence(ArrayRef<unsigned> Seq,bool IsRead)830 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
831                                                bool IsRead) {
832   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
833 
834   auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
835     return makeArrayRef(RW.Sequence) == Seq;
836   });
837   // Index zero reserved for invalid RW.
838   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
839 }
840 
841 /// Add this ReadWrite if it doesn't already exist.
findOrInsertRW(ArrayRef<unsigned> Seq,bool IsRead)842 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
843                                             bool IsRead) {
844   assert(!Seq.empty() && "cannot insert empty sequence");
845   if (Seq.size() == 1)
846     return Seq.back();
847 
848   unsigned Idx = findRWForSequence(Seq, IsRead);
849   if (Idx)
850     return Idx;
851 
852   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
853   unsigned RWIdx = RWVec.size();
854   CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
855   RWVec.push_back(SchedRW);
856   return RWIdx;
857 }
858 
859 /// Visit all the instruction definitions for this target to gather and
860 /// enumerate the itinerary classes. These are the explicitly specified
861 /// SchedClasses. More SchedClasses may be inferred.
collectSchedClasses()862 void CodeGenSchedModels::collectSchedClasses() {
863 
864   // NoItinerary is always the first class at Idx=0
865   assert(SchedClasses.empty() && "Expected empty sched class");
866   SchedClasses.emplace_back(0, "NoInstrModel",
867                             Records.getDef("NoItinerary"));
868   SchedClasses.back().ProcIndices.push_back(0);
869 
870   // Create a SchedClass for each unique combination of itinerary class and
871   // SchedRW list.
872   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
873     Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
874     IdxVec Writes, Reads;
875     if (!Inst->TheDef->isValueUnset("SchedRW"))
876       findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
877 
878     // ProcIdx == 0 indicates the class applies to all processors.
879     unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
880     InstrClassMap[Inst->TheDef] = SCIdx;
881   }
882   // Create classes for InstRW defs.
883   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
884   llvm::sort(InstRWDefs, LessRecord());
885   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
886   for (Record *RWDef : InstRWDefs)
887     createInstRWClass(RWDef);
888 
889   NumInstrSchedClasses = SchedClasses.size();
890 
891   bool EnableDump = false;
892   LLVM_DEBUG(EnableDump = true);
893   if (!EnableDump)
894     return;
895 
896   LLVM_DEBUG(
897       dbgs()
898       << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
899   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
900     StringRef InstName = Inst->TheDef->getName();
901     unsigned SCIdx = getSchedClassIdx(*Inst);
902     if (!SCIdx) {
903       LLVM_DEBUG({
904         if (!Inst->hasNoSchedulingInfo)
905           dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
906       });
907       continue;
908     }
909     CodeGenSchedClass &SC = getSchedClass(SCIdx);
910     if (SC.ProcIndices[0] != 0)
911       PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
912                       "must not be subtarget specific.");
913 
914     IdxVec ProcIndices;
915     if (SC.ItinClassDef->getName() != "NoItinerary") {
916       ProcIndices.push_back(0);
917       dbgs() << "Itinerary for " << InstName << ": "
918              << SC.ItinClassDef->getName() << '\n';
919     }
920     if (!SC.Writes.empty()) {
921       ProcIndices.push_back(0);
922       LLVM_DEBUG({
923         dbgs() << "SchedRW machine model for " << InstName;
924         for (unsigned int Write : SC.Writes)
925           dbgs() << " " << SchedWrites[Write].Name;
926         for (unsigned int Read : SC.Reads)
927           dbgs() << " " << SchedReads[Read].Name;
928         dbgs() << '\n';
929       });
930     }
931     const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
932     for (Record *RWDef : RWDefs) {
933       const CodeGenProcModel &ProcModel =
934           getProcModel(RWDef->getValueAsDef("SchedModel"));
935       ProcIndices.push_back(ProcModel.Index);
936       LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
937                         << InstName);
938       IdxVec Writes;
939       IdxVec Reads;
940       findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
941               Writes, Reads);
942       LLVM_DEBUG({
943         for (unsigned WIdx : Writes)
944           dbgs() << " " << SchedWrites[WIdx].Name;
945         for (unsigned RIdx : Reads)
946           dbgs() << " " << SchedReads[RIdx].Name;
947         dbgs() << '\n';
948       });
949     }
950     // If ProcIndices contains zero, the class applies to all processors.
951     LLVM_DEBUG({
952       if (!llvm::is_contained(ProcIndices, 0)) {
953         for (const CodeGenProcModel &PM : ProcModels) {
954           if (!llvm::is_contained(ProcIndices, PM.Index))
955             dbgs() << "No machine model for " << Inst->TheDef->getName()
956                    << " on processor " << PM.ModelName << '\n';
957         }
958       }
959     });
960   }
961 }
962 
963 // Get the SchedClass index for an instruction.
964 unsigned
getSchedClassIdx(const CodeGenInstruction & Inst) const965 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
966   return InstrClassMap.lookup(Inst.TheDef);
967 }
968 
969 std::string
createSchedClassName(Record * ItinClassDef,ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads)970 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
971                                          ArrayRef<unsigned> OperWrites,
972                                          ArrayRef<unsigned> OperReads) {
973 
974   std::string Name;
975   if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
976     Name = std::string(ItinClassDef->getName());
977   for (unsigned Idx : OperWrites) {
978     if (!Name.empty())
979       Name += '_';
980     Name += SchedWrites[Idx].Name;
981   }
982   for (unsigned Idx : OperReads) {
983     Name += '_';
984     Name += SchedReads[Idx].Name;
985   }
986   return Name;
987 }
988 
createSchedClassName(const RecVec & InstDefs)989 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
990 
991   std::string Name;
992   ListSeparator LS("_");
993   for (const Record *InstDef : InstDefs) {
994     Name += LS;
995     Name += InstDef->getName();
996   }
997   return Name;
998 }
999 
1000 /// Add an inferred sched class from an itinerary class and per-operand list of
1001 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1002 /// processors that may utilize this class.
addSchedClass(Record * ItinClassDef,ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads,ArrayRef<unsigned> ProcIndices)1003 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1004                                            ArrayRef<unsigned> OperWrites,
1005                                            ArrayRef<unsigned> OperReads,
1006                                            ArrayRef<unsigned> ProcIndices) {
1007   assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1008 
1009   auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1010                      return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1011                    };
1012 
1013   auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1014   unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1015   if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1016     IdxVec PI;
1017     std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1018                    SchedClasses[Idx].ProcIndices.end(),
1019                    ProcIndices.begin(), ProcIndices.end(),
1020                    std::back_inserter(PI));
1021     SchedClasses[Idx].ProcIndices = std::move(PI);
1022     return Idx;
1023   }
1024   Idx = SchedClasses.size();
1025   SchedClasses.emplace_back(Idx,
1026                             createSchedClassName(ItinClassDef, OperWrites,
1027                                                  OperReads),
1028                             ItinClassDef);
1029   CodeGenSchedClass &SC = SchedClasses.back();
1030   SC.Writes = OperWrites;
1031   SC.Reads = OperReads;
1032   SC.ProcIndices = ProcIndices;
1033 
1034   return Idx;
1035 }
1036 
1037 // Create classes for each set of opcodes that are in the same InstReadWrite
1038 // definition across all processors.
createInstRWClass(Record * InstRWDef)1039 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1040   // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1041   // intersects with an existing class via a previous InstRWDef. Instrs that do
1042   // not intersect with an existing class refer back to their former class as
1043   // determined from ItinDef or SchedRW.
1044   SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1045   // Sort Instrs into sets.
1046   const RecVec *InstDefs = Sets.expand(InstRWDef);
1047   if (InstDefs->empty())
1048     PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1049 
1050   for (Record *InstDef : *InstDefs) {
1051     InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1052     if (Pos == InstrClassMap.end())
1053       PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1054     unsigned SCIdx = Pos->second;
1055     ClassInstrs[SCIdx].push_back(InstDef);
1056   }
1057   // For each set of Instrs, create a new class if necessary, and map or remap
1058   // the Instrs to it.
1059   for (auto &Entry : ClassInstrs) {
1060     unsigned OldSCIdx = Entry.first;
1061     ArrayRef<Record*> InstDefs = Entry.second;
1062     // If the all instrs in the current class are accounted for, then leave
1063     // them mapped to their old class.
1064     if (OldSCIdx) {
1065       const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1066       if (!RWDefs.empty()) {
1067         const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1068         unsigned OrigNumInstrs =
1069           count_if(*OrigInstDefs, [&](Record *OIDef) {
1070                      return InstrClassMap[OIDef] == OldSCIdx;
1071                    });
1072         if (OrigNumInstrs == InstDefs.size()) {
1073           assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1074                  "expected a generic SchedClass");
1075           Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1076           // Make sure we didn't already have a InstRW containing this
1077           // instruction on this model.
1078           for (Record *RWD : RWDefs) {
1079             if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1080                 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1081               assert(!InstDefs.empty()); // Checked at function start.
1082               PrintError(
1083                   InstRWDef->getLoc(),
1084                   "Overlapping InstRW definition for \"" +
1085                       InstDefs.front()->getName() +
1086                       "\" also matches previous \"" +
1087                       RWD->getValue("Instrs")->getValue()->getAsString() +
1088                       "\".");
1089               PrintFatalNote(RWD->getLoc(), "Previous match was here.");
1090             }
1091           }
1092           LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1093                             << SchedClasses[OldSCIdx].Name << " on "
1094                             << RWModelDef->getName() << "\n");
1095           SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1096           continue;
1097         }
1098       }
1099     }
1100     unsigned SCIdx = SchedClasses.size();
1101     SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1102     CodeGenSchedClass &SC = SchedClasses.back();
1103     LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1104                       << InstRWDef->getValueAsDef("SchedModel")->getName()
1105                       << "\n");
1106 
1107     // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1108     SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1109     SC.Writes = SchedClasses[OldSCIdx].Writes;
1110     SC.Reads = SchedClasses[OldSCIdx].Reads;
1111     SC.ProcIndices.push_back(0);
1112     // If we had an old class, copy it's InstRWs to this new class.
1113     if (OldSCIdx) {
1114       Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1115       for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1116         if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1117           assert(!InstDefs.empty()); // Checked at function start.
1118           PrintError(
1119               InstRWDef->getLoc(),
1120               "Overlapping InstRW definition for \"" +
1121                   InstDefs.front()->getName() + "\" also matches previous \"" +
1122                   OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1123                   "\".");
1124           PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
1125         }
1126         assert(OldRWDef != InstRWDef &&
1127                "SchedClass has duplicate InstRW def");
1128         SC.InstRWs.push_back(OldRWDef);
1129       }
1130     }
1131     // Map each Instr to this new class.
1132     for (Record *InstDef : InstDefs)
1133       InstrClassMap[InstDef] = SCIdx;
1134     SC.InstRWs.push_back(InstRWDef);
1135   }
1136 }
1137 
1138 // True if collectProcItins found anything.
hasItineraries() const1139 bool CodeGenSchedModels::hasItineraries() const {
1140   for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1141     if (PM.hasItineraries())
1142       return true;
1143   return false;
1144 }
1145 
1146 // Gather the processor itineraries.
collectProcItins()1147 void CodeGenSchedModels::collectProcItins() {
1148   LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1149   for (CodeGenProcModel &ProcModel : ProcModels) {
1150     if (!ProcModel.hasItineraries())
1151       continue;
1152 
1153     RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1154     assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1155 
1156     // Populate ItinDefList with Itinerary records.
1157     ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1158 
1159     // Insert each itinerary data record in the correct position within
1160     // the processor model's ItinDefList.
1161     for (Record *ItinData : ItinRecords) {
1162       const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1163       bool FoundClass = false;
1164 
1165       for (const CodeGenSchedClass &SC :
1166            make_range(schedClassBegin(), schedClassEnd())) {
1167         // Multiple SchedClasses may share an itinerary. Update all of them.
1168         if (SC.ItinClassDef == ItinDef) {
1169           ProcModel.ItinDefList[SC.Index] = ItinData;
1170           FoundClass = true;
1171         }
1172       }
1173       if (!FoundClass) {
1174         LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1175                           << " missing class for itinerary "
1176                           << ItinDef->getName() << '\n');
1177       }
1178     }
1179     // Check for missing itinerary entries.
1180     assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1181     LLVM_DEBUG(
1182         for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1183           if (!ProcModel.ItinDefList[i])
1184             dbgs() << ProcModel.ItinsDef->getName()
1185                    << " missing itinerary for class " << SchedClasses[i].Name
1186                    << '\n';
1187         });
1188   }
1189 }
1190 
1191 // Gather the read/write types for each itinerary class.
collectProcItinRW()1192 void CodeGenSchedModels::collectProcItinRW() {
1193   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1194   llvm::sort(ItinRWDefs, LessRecord());
1195   for (Record *RWDef  : ItinRWDefs) {
1196     if (!RWDef->getValueInit("SchedModel")->isComplete())
1197       PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1198     Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1199     ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1200     if (I == ProcModelMap.end()) {
1201       PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1202                     + ModelDef->getName());
1203     }
1204     ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1205   }
1206 }
1207 
1208 // Gather the unsupported features for processor models.
collectProcUnsupportedFeatures()1209 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1210   for (CodeGenProcModel &ProcModel : ProcModels)
1211     append_range(
1212         ProcModel.UnsupportedFeaturesDefs,
1213         ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures"));
1214 }
1215 
1216 /// Infer new classes from existing classes. In the process, this may create new
1217 /// SchedWrites from sequences of existing SchedWrites.
inferSchedClasses()1218 void CodeGenSchedModels::inferSchedClasses() {
1219   LLVM_DEBUG(
1220       dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1221   LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1222 
1223   // Visit all existing classes and newly created classes.
1224   for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1225     assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1226 
1227     if (SchedClasses[Idx].ItinClassDef)
1228       inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1229     if (!SchedClasses[Idx].InstRWs.empty())
1230       inferFromInstRWs(Idx);
1231     if (!SchedClasses[Idx].Writes.empty()) {
1232       inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1233                   Idx, SchedClasses[Idx].ProcIndices);
1234     }
1235     assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1236            "too many SchedVariants");
1237   }
1238 }
1239 
1240 /// Infer classes from per-processor itinerary resources.
inferFromItinClass(Record * ItinClassDef,unsigned FromClassIdx)1241 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1242                                             unsigned FromClassIdx) {
1243   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1244     const CodeGenProcModel &PM = ProcModels[PIdx];
1245     // For all ItinRW entries.
1246     bool HasMatch = false;
1247     for (const Record *Rec : PM.ItinRWDefs) {
1248       RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1249       if (!llvm::is_contained(Matched, ItinClassDef))
1250         continue;
1251       if (HasMatch)
1252         PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1253                       + ItinClassDef->getName()
1254                       + " in ItinResources for " + PM.ModelName);
1255       HasMatch = true;
1256       IdxVec Writes, Reads;
1257       findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1258       inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1259     }
1260   }
1261 }
1262 
1263 /// Infer classes from per-processor InstReadWrite definitions.
inferFromInstRWs(unsigned SCIdx)1264 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1265   for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1266     assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1267     Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1268     const RecVec *InstDefs = Sets.expand(Rec);
1269     RecIter II = InstDefs->begin(), IE = InstDefs->end();
1270     for (; II != IE; ++II) {
1271       if (InstrClassMap[*II] == SCIdx)
1272         break;
1273     }
1274     // If this class no longer has any instructions mapped to it, it has become
1275     // irrelevant.
1276     if (II == IE)
1277       continue;
1278     IdxVec Writes, Reads;
1279     findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1280     unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1281     inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1282     SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
1283   }
1284 }
1285 
1286 namespace {
1287 
1288 // Helper for substituteVariantOperand.
1289 struct TransVariant {
1290   Record *VarOrSeqDef;  // Variant or sequence.
1291   unsigned RWIdx;       // Index of this variant or sequence's matched type.
1292   unsigned ProcIdx;     // Processor model index or zero for any.
1293   unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1294 
TransVariant__anon8a23da580a11::TransVariant1295   TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1296     VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1297 };
1298 
1299 // Associate a predicate with the SchedReadWrite that it guards.
1300 // RWIdx is the index of the read/write variant.
1301 struct PredCheck {
1302   bool IsRead;
1303   unsigned RWIdx;
1304   Record *Predicate;
1305 
PredCheck__anon8a23da580a11::PredCheck1306   PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1307 };
1308 
1309 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1310 struct PredTransition {
1311   // A predicate term is a conjunction of PredChecks.
1312   SmallVector<PredCheck, 4> PredTerm;
1313   SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1314   SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1315   unsigned ProcIndex = 0;
1316 
1317   PredTransition() = default;
PredTransition__anon8a23da580a11::PredTransition1318   PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
1319     PredTerm.assign(PT.begin(), PT.end());
1320     ProcIndex = ProcId;
1321   }
1322 };
1323 
1324 // Encapsulate a set of partially constructed transitions.
1325 // The results are built by repeated calls to substituteVariants.
1326 class PredTransitions {
1327   CodeGenSchedModels &SchedModels;
1328 
1329 public:
1330   std::vector<PredTransition> TransVec;
1331 
PredTransitions(CodeGenSchedModels & sm)1332   PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1333 
1334   bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1335                                 bool IsRead, unsigned StartIdx);
1336 
1337   bool substituteVariants(const PredTransition &Trans);
1338 
1339 #ifndef NDEBUG
1340   void dump() const;
1341 #endif
1342 
1343 private:
1344   bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds,
1345                          ArrayRef<PredCheck> Term);
1346   void getIntersectingVariants(
1347     const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1348     std::vector<TransVariant> &IntersectingVariants);
1349   void pushVariant(const TransVariant &VInfo, bool IsRead);
1350 };
1351 
1352 } // end anonymous namespace
1353 
1354 // Return true if this predicate is mutually exclusive with a PredTerm. This
1355 // degenerates into checking if the predicate is mutually exclusive with any
1356 // predicate in the Term's conjunction.
1357 //
1358 // All predicates associated with a given SchedRW are considered mutually
1359 // exclusive. This should work even if the conditions expressed by the
1360 // predicates are not exclusive because the predicates for a given SchedWrite
1361 // are always checked in the order they are defined in the .td file. Later
1362 // conditions implicitly negate any prior condition.
mutuallyExclusive(Record * PredDef,ArrayRef<Record * > Preds,ArrayRef<PredCheck> Term)1363 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1364                                         ArrayRef<Record *> Preds,
1365                                         ArrayRef<PredCheck> Term) {
1366   for (const PredCheck &PC: Term) {
1367     if (PC.Predicate == PredDef)
1368       return false;
1369 
1370     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1371     assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1372     RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1373     if (any_of(Variants, [PredDef](const Record *R) {
1374           return R->getValueAsDef("Predicate") == PredDef;
1375         })) {
1376       // To check if PredDef is mutually exclusive with PC we also need to
1377       // check that PC.Predicate is exclusive with all predicates from variant
1378       // we're expanding. Consider following RW sequence with two variants
1379       // (1 & 2), where A, B and C are predicates from corresponding SchedVars:
1380       //
1381       // 1:A/B - 2:C/B
1382       //
1383       // Here C is not mutually exclusive with variant (1), because A doesn't
1384       // exist in variant (2). This means we have possible transitions from A
1385       // to C and from A to B, and fully expanded sequence would look like:
1386       //
1387       // if (A & C) return ...;
1388       // if (A & B) return ...;
1389       // if (B) return ...;
1390       //
1391       // Now let's consider another sequence:
1392       //
1393       // 1:A/B - 2:A/B
1394       //
1395       // Here A in variant (2) is mutually exclusive with variant (1), because
1396       // A also exists in (2). This means A->B transition is impossible and
1397       // expanded sequence would look like:
1398       //
1399       // if (A) return ...;
1400       // if (B) return ...;
1401       if (!count(Preds, PC.Predicate))
1402         continue;
1403       return true;
1404     }
1405   }
1406   return false;
1407 }
1408 
getAllPredicates(ArrayRef<TransVariant> Variants,unsigned ProcId)1409 static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants,
1410                                               unsigned ProcId) {
1411   std::vector<Record *> Preds;
1412   for (auto &Variant : Variants) {
1413     if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
1414       continue;
1415     Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
1416   }
1417   return Preds;
1418 }
1419 
1420 // Populate IntersectingVariants with any variants or aliased sequences of the
1421 // given SchedRW whose processor indices and predicates are not mutually
1422 // exclusive with the given transition.
getIntersectingVariants(const CodeGenSchedRW & SchedRW,unsigned TransIdx,std::vector<TransVariant> & IntersectingVariants)1423 void PredTransitions::getIntersectingVariants(
1424   const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1425   std::vector<TransVariant> &IntersectingVariants) {
1426 
1427   bool GenericRW = false;
1428 
1429   std::vector<TransVariant> Variants;
1430   if (SchedRW.HasVariants) {
1431     unsigned VarProcIdx = 0;
1432     if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1433       Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1434       VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1435     }
1436     if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
1437       // Push each variant. Assign TransVecIdx later.
1438       const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1439       for (Record *VarDef : VarDefs)
1440         Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1441       if (VarProcIdx == 0)
1442         GenericRW = true;
1443     }
1444   }
1445   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1446        AI != AE; ++AI) {
1447     // If either the SchedAlias itself or the SchedReadWrite that it aliases
1448     // to is defined within a processor model, constrain all variants to
1449     // that processor.
1450     unsigned AliasProcIdx = 0;
1451     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1452       Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1453       AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1454     }
1455     if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
1456       continue;
1457     if (!Variants.empty()) {
1458       const CodeGenProcModel &PM =
1459           *(SchedModels.procModelBegin() + AliasProcIdx);
1460       PrintFatalError((*AI)->getLoc(),
1461                       "Multiple variants defined for processor " +
1462                           PM.ModelName +
1463                           " Ensure only one SchedAlias exists per RW.");
1464     }
1465 
1466     const CodeGenSchedRW &AliasRW =
1467       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1468 
1469     if (AliasRW.HasVariants) {
1470       const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1471       for (Record *VD : VarDefs)
1472         Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1473     }
1474     if (AliasRW.IsSequence)
1475       Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1476     if (AliasProcIdx == 0)
1477       GenericRW = true;
1478   }
1479   std::vector<Record *> AllPreds =
1480       getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
1481   for (TransVariant &Variant : Variants) {
1482     // Don't expand variants if the processor models don't intersect.
1483     // A zero processor index means any processor.
1484     if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1485       Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1486       if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
1487         continue;
1488     }
1489 
1490     if (IntersectingVariants.empty()) {
1491       // The first variant builds on the existing transition.
1492       Variant.TransVecIdx = TransIdx;
1493       IntersectingVariants.push_back(Variant);
1494     }
1495     else {
1496       // Push another copy of the current transition for more variants.
1497       Variant.TransVecIdx = TransVec.size();
1498       IntersectingVariants.push_back(Variant);
1499       TransVec.push_back(TransVec[TransIdx]);
1500     }
1501   }
1502   if (GenericRW && IntersectingVariants.empty()) {
1503     PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1504                     "a matching predicate on any processor");
1505   }
1506 }
1507 
1508 // Push the Reads/Writes selected by this variant onto the PredTransition
1509 // specified by VInfo.
1510 void PredTransitions::
pushVariant(const TransVariant & VInfo,bool IsRead)1511 pushVariant(const TransVariant &VInfo, bool IsRead) {
1512   PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1513 
1514   // If this operand transition is reached through a processor-specific alias,
1515   // then the whole transition is specific to this processor.
1516   IdxVec SelectedRWs;
1517   if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1518     Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1519     Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1520     RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1521     SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1522   }
1523   else {
1524     assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1525            "variant must be a SchedVariant or aliased WriteSequence");
1526     SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1527   }
1528 
1529   const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1530 
1531   SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1532     ? Trans.ReadSequences : Trans.WriteSequences;
1533   if (SchedRW.IsVariadic) {
1534     unsigned OperIdx = RWSequences.size()-1;
1535     // Make N-1 copies of this transition's last sequence.
1536     RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
1537     RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1538                        RWSequences[OperIdx]);
1539     // Push each of the N elements of the SelectedRWs onto a copy of the last
1540     // sequence (split the current operand into N operands).
1541     // Note that write sequences should be expanded within this loop--the entire
1542     // sequence belongs to a single operand.
1543     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1544          RWI != RWE; ++RWI, ++OperIdx) {
1545       IdxVec ExpandedRWs;
1546       if (IsRead)
1547         ExpandedRWs.push_back(*RWI);
1548       else
1549         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1550       llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
1551     }
1552     assert(OperIdx == RWSequences.size() && "missed a sequence");
1553   }
1554   else {
1555     // Push this transition's expanded sequence onto this transition's last
1556     // sequence (add to the current operand's sequence).
1557     SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1558     IdxVec ExpandedRWs;
1559     for (unsigned int SelectedRW : SelectedRWs) {
1560       if (IsRead)
1561         ExpandedRWs.push_back(SelectedRW);
1562       else
1563         SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead);
1564     }
1565     llvm::append_range(Seq, ExpandedRWs);
1566   }
1567 }
1568 
1569 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1570 // operand. StartIdx is an index into TransVec where partial results
1571 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1572 // of TransVec.
substituteVariantOperand(const SmallVectorImpl<unsigned> & RWSeq,bool IsRead,unsigned StartIdx)1573 bool PredTransitions::substituteVariantOperand(
1574     const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1575   bool Subst = false;
1576   // Visit each original RW within the current sequence.
1577   for (unsigned int RWI : RWSeq) {
1578     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead);
1579     // Push this RW on all partial PredTransitions or distribute variants.
1580     // New PredTransitions may be pushed within this loop which should not be
1581     // revisited (TransEnd must be loop invariant).
1582     for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1583          TransIdx != TransEnd; ++TransIdx) {
1584       // Distribute this partial PredTransition across intersecting variants.
1585       // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1586       std::vector<TransVariant> IntersectingVariants;
1587       getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1588       // Now expand each variant on top of its copy of the transition.
1589       for (const TransVariant &IV : IntersectingVariants)
1590         pushVariant(IV, IsRead);
1591       if (IntersectingVariants.empty()) {
1592         if (IsRead)
1593           TransVec[TransIdx].ReadSequences.back().push_back(RWI);
1594         else
1595           TransVec[TransIdx].WriteSequences.back().push_back(RWI);
1596         continue;
1597       } else {
1598         Subst = true;
1599       }
1600     }
1601   }
1602   return Subst;
1603 }
1604 
1605 // For each variant of a Read/Write in Trans, substitute the sequence of
1606 // Read/Writes guarded by the variant. This is exponential in the number of
1607 // variant Read/Writes, but in practice detection of mutually exclusive
1608 // predicates should result in linear growth in the total number variants.
1609 //
1610 // This is one step in a breadth-first search of nested variants.
substituteVariants(const PredTransition & Trans)1611 bool PredTransitions::substituteVariants(const PredTransition &Trans) {
1612   // Build up a set of partial results starting at the back of
1613   // PredTransitions. Remember the first new transition.
1614   unsigned StartIdx = TransVec.size();
1615   bool Subst = false;
1616   assert(Trans.ProcIndex != 0);
1617   TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
1618 
1619   // Visit each original write sequence.
1620   for (const auto &WriteSequence : Trans.WriteSequences) {
1621     // Push a new (empty) write sequence onto all partial Transitions.
1622     for (std::vector<PredTransition>::iterator I =
1623            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1624       I->WriteSequences.emplace_back();
1625     }
1626     Subst |=
1627         substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx);
1628   }
1629   // Visit each original read sequence.
1630   for (const auto &ReadSequence : Trans.ReadSequences) {
1631     // Push a new (empty) read sequence onto all partial Transitions.
1632     for (std::vector<PredTransition>::iterator I =
1633            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1634       I->ReadSequences.emplace_back();
1635     }
1636     Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx);
1637   }
1638   return Subst;
1639 }
1640 
addSequences(CodeGenSchedModels & SchedModels,const SmallVectorImpl<SmallVector<unsigned,4>> & Seqs,IdxVec & Result,bool IsRead)1641 static void addSequences(CodeGenSchedModels &SchedModels,
1642                          const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
1643                          IdxVec &Result, bool IsRead) {
1644   for (const auto &S : Seqs)
1645     if (!S.empty())
1646       Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
1647 }
1648 
1649 #ifndef NDEBUG
dumpRecVec(const RecVec & RV)1650 static void dumpRecVec(const RecVec &RV) {
1651   for (const Record *R : RV)
1652     dbgs() << R->getName() << ", ";
1653 }
1654 #endif
1655 
dumpTransition(const CodeGenSchedModels & SchedModels,const CodeGenSchedClass & FromSC,const CodeGenSchedTransition & SCTrans,const RecVec & Preds)1656 static void dumpTransition(const CodeGenSchedModels &SchedModels,
1657                            const CodeGenSchedClass &FromSC,
1658                            const CodeGenSchedTransition &SCTrans,
1659                            const RecVec &Preds) {
1660   LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
1661                     << FromSC.Index << ") to "
1662                     << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
1663                     << SCTrans.ToClassIdx << ") on pred term: (";
1664              dumpRecVec(Preds);
1665              dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
1666 }
1667 // Create a new SchedClass for each variant found by inferFromRW. Pass
inferFromTransitions(ArrayRef<PredTransition> LastTransitions,unsigned FromClassIdx,CodeGenSchedModels & SchedModels)1668 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1669                                  unsigned FromClassIdx,
1670                                  CodeGenSchedModels &SchedModels) {
1671   // For each PredTransition, create a new CodeGenSchedTransition, which usually
1672   // requires creating a new SchedClass.
1673   for (const auto &LastTransition : LastTransitions) {
1674     // Variant expansion (substituteVariants) may create unconditional
1675     // transitions. We don't need to build sched classes for them.
1676     if (LastTransition.PredTerm.empty())
1677       continue;
1678     IdxVec OperWritesVariant, OperReadsVariant;
1679     addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant,
1680                  false);
1681     addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant,
1682                  true);
1683     CodeGenSchedTransition SCTrans;
1684 
1685     // Transition should not contain processor indices already assigned to
1686     // InstRWs in this scheduling class.
1687     const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
1688     if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex))
1689       continue;
1690     SCTrans.ProcIndex = LastTransition.ProcIndex;
1691     SCTrans.ToClassIdx =
1692         SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1693                                   OperReadsVariant, LastTransition.ProcIndex);
1694 
1695     // The final PredTerm is unique set of predicates guarding the transition.
1696     RecVec Preds;
1697     transform(LastTransition.PredTerm, std::back_inserter(Preds),
1698               [](const PredCheck &P) { return P.Predicate; });
1699     Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1700     dumpTransition(SchedModels, FromSC, SCTrans, Preds);
1701     SCTrans.PredTerm = std::move(Preds);
1702     SchedModels.getSchedClass(FromClassIdx)
1703         .Transitions.push_back(std::move(SCTrans));
1704   }
1705 }
1706 
getAllProcIndices() const1707 std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
1708   std::vector<unsigned> ProcIdVec;
1709   for (const auto &PM : ProcModelMap)
1710     if (PM.second != 0)
1711       ProcIdVec.push_back(PM.second);
1712   // The order of the keys (Record pointers) of ProcModelMap are not stable.
1713   // Sort to stabalize the values.
1714   llvm::sort(ProcIdVec);
1715   return ProcIdVec;
1716 }
1717 
1718 static std::vector<PredTransition>
makePerProcessorTransitions(const PredTransition & Trans,ArrayRef<unsigned> ProcIndices)1719 makePerProcessorTransitions(const PredTransition &Trans,
1720                             ArrayRef<unsigned> ProcIndices) {
1721   std::vector<PredTransition> PerCpuTransVec;
1722   for (unsigned ProcId : ProcIndices) {
1723     assert(ProcId != 0);
1724     PerCpuTransVec.push_back(Trans);
1725     PerCpuTransVec.back().ProcIndex = ProcId;
1726   }
1727   return PerCpuTransVec;
1728 }
1729 
1730 // Create new SchedClasses for the given ReadWrite list. If any of the
1731 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1732 // of the ReadWrite list, following Aliases if necessary.
inferFromRW(ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads,unsigned FromClassIdx,ArrayRef<unsigned> ProcIndices)1733 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1734                                      ArrayRef<unsigned> OperReads,
1735                                      unsigned FromClassIdx,
1736                                      ArrayRef<unsigned> ProcIndices) {
1737   LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1738              dbgs() << ") ");
1739   // Create a seed transition with an empty PredTerm and the expanded sequences
1740   // of SchedWrites for the current SchedClass.
1741   std::vector<PredTransition> LastTransitions;
1742   LastTransitions.emplace_back();
1743 
1744   for (unsigned WriteIdx : OperWrites) {
1745     IdxVec WriteSeq;
1746     expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1747     LastTransitions[0].WriteSequences.emplace_back();
1748     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1749     Seq.append(WriteSeq.begin(), WriteSeq.end());
1750     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1751   }
1752   LLVM_DEBUG(dbgs() << " Reads: ");
1753   for (unsigned ReadIdx : OperReads) {
1754     IdxVec ReadSeq;
1755     expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1756     LastTransitions[0].ReadSequences.emplace_back();
1757     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1758     Seq.append(ReadSeq.begin(), ReadSeq.end());
1759     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1760   }
1761   LLVM_DEBUG(dbgs() << '\n');
1762 
1763   LastTransitions = makePerProcessorTransitions(
1764       LastTransitions[0], llvm::is_contained(ProcIndices, 0)
1765                               ? ArrayRef<unsigned>(getAllProcIndices())
1766                               : ProcIndices);
1767   // Collect all PredTransitions for individual operands.
1768   // Iterate until no variant writes remain.
1769   bool SubstitutedAny;
1770   do {
1771     SubstitutedAny = false;
1772     PredTransitions Transitions(*this);
1773     for (const PredTransition &Trans : LastTransitions)
1774       SubstitutedAny |= Transitions.substituteVariants(Trans);
1775     LLVM_DEBUG(Transitions.dump());
1776     LastTransitions.swap(Transitions.TransVec);
1777   } while (SubstitutedAny);
1778 
1779   // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1780   // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1781   inferFromTransitions(LastTransitions, FromClassIdx, *this);
1782 }
1783 
1784 // Check if any processor resource group contains all resource records in
1785 // SubUnits.
hasSuperGroup(RecVec & SubUnits,CodeGenProcModel & PM)1786 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1787   for (Record *ProcResourceDef : PM.ProcResourceDefs) {
1788     if (!ProcResourceDef->isSubClassOf("ProcResGroup"))
1789       continue;
1790     RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources");
1791     RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1792     for ( ; RI != RE; ++RI) {
1793       if (!is_contained(SuperUnits, *RI)) {
1794         break;
1795       }
1796     }
1797     if (RI == RE)
1798       return true;
1799   }
1800   return false;
1801 }
1802 
1803 // Verify that overlapping groups have a common supergroup.
verifyProcResourceGroups(CodeGenProcModel & PM)1804 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1805   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1806     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1807       continue;
1808     RecVec CheckUnits =
1809       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1810     for (unsigned j = i+1; j < e; ++j) {
1811       if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1812         continue;
1813       RecVec OtherUnits =
1814         PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1815       if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1816                              OtherUnits.begin(), OtherUnits.end())
1817           != CheckUnits.end()) {
1818         // CheckUnits and OtherUnits overlap
1819         llvm::append_range(OtherUnits, CheckUnits);
1820         if (!hasSuperGroup(OtherUnits, PM)) {
1821           PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1822                           "proc resource group overlaps with "
1823                           + PM.ProcResourceDefs[j]->getName()
1824                           + " but no supergroup contains both.");
1825         }
1826       }
1827     }
1828   }
1829 }
1830 
1831 // Collect all the RegisterFile definitions available in this target.
collectRegisterFiles()1832 void CodeGenSchedModels::collectRegisterFiles() {
1833   RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1834 
1835   // RegisterFiles is the vector of CodeGenRegisterFile.
1836   for (Record *RF : RegisterFileDefs) {
1837     // For each register file definition, construct a CodeGenRegisterFile object
1838     // and add it to the appropriate scheduling model.
1839     CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1840     PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1841     CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1842     CGRF.MaxMovesEliminatedPerCycle =
1843         RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1844     CGRF.AllowZeroMoveEliminationOnly =
1845         RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1846 
1847     // Now set the number of physical registers as well as the cost of registers
1848     // in each register class.
1849     CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1850     if (!CGRF.NumPhysRegs) {
1851       PrintFatalError(RF->getLoc(),
1852                       "Invalid RegisterFile with zero physical registers");
1853     }
1854 
1855     RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1856     std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1857     ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1858     for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1859       int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1860 
1861       bool AllowMoveElim = false;
1862       if (MoveElimInfo->size() > I) {
1863         BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1864         AllowMoveElim = Val->getValue();
1865       }
1866 
1867       CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1868     }
1869   }
1870 }
1871 
1872 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
collectProcResources()1873 void CodeGenSchedModels::collectProcResources() {
1874   ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1875   ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1876 
1877   // Add any subtarget-specific SchedReadWrites that are directly associated
1878   // with processor resources. Refer to the parent SchedClass's ProcIndices to
1879   // determine which processors they apply to.
1880   for (const CodeGenSchedClass &SC :
1881        make_range(schedClassBegin(), schedClassEnd())) {
1882     if (SC.ItinClassDef) {
1883       collectItinProcResources(SC.ItinClassDef);
1884       continue;
1885     }
1886 
1887     // This class may have a default ReadWrite list which can be overriden by
1888     // InstRW definitions.
1889     for (Record *RW : SC.InstRWs) {
1890       Record *RWModelDef = RW->getValueAsDef("SchedModel");
1891       unsigned PIdx = getProcModel(RWModelDef).Index;
1892       IdxVec Writes, Reads;
1893       findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1894       collectRWResources(Writes, Reads, PIdx);
1895     }
1896 
1897     collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1898   }
1899   // Add resources separately defined by each subtarget.
1900   RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1901   for (Record *WR : WRDefs) {
1902     Record *ModelDef = WR->getValueAsDef("SchedModel");
1903     addWriteRes(WR, getProcModel(ModelDef).Index);
1904   }
1905   RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1906   for (Record *SWR : SWRDefs) {
1907     Record *ModelDef = SWR->getValueAsDef("SchedModel");
1908     addWriteRes(SWR, getProcModel(ModelDef).Index);
1909   }
1910   RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1911   for (Record *RA : RADefs) {
1912     Record *ModelDef = RA->getValueAsDef("SchedModel");
1913     addReadAdvance(RA, getProcModel(ModelDef).Index);
1914   }
1915   RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1916   for (Record *SRA : SRADefs) {
1917     if (SRA->getValueInit("SchedModel")->isComplete()) {
1918       Record *ModelDef = SRA->getValueAsDef("SchedModel");
1919       addReadAdvance(SRA, getProcModel(ModelDef).Index);
1920     }
1921   }
1922   // Add ProcResGroups that are defined within this processor model, which may
1923   // not be directly referenced but may directly specify a buffer size.
1924   RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1925   for (Record *PRG : ProcResGroups) {
1926     if (!PRG->getValueInit("SchedModel")->isComplete())
1927       continue;
1928     CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1929     if (!is_contained(PM.ProcResourceDefs, PRG))
1930       PM.ProcResourceDefs.push_back(PRG);
1931   }
1932   // Add ProcResourceUnits unconditionally.
1933   for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1934     if (!PRU->getValueInit("SchedModel")->isComplete())
1935       continue;
1936     CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1937     if (!is_contained(PM.ProcResourceDefs, PRU))
1938       PM.ProcResourceDefs.push_back(PRU);
1939   }
1940   // Finalize each ProcModel by sorting the record arrays.
1941   for (CodeGenProcModel &PM : ProcModels) {
1942     llvm::sort(PM.WriteResDefs, LessRecord());
1943     llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1944     llvm::sort(PM.ProcResourceDefs, LessRecord());
1945     LLVM_DEBUG(
1946         PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef
1947                                                     : PM.WriteResDefs) {
1948           if (WriteResDef->isSubClassOf("WriteRes"))
1949             dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " ";
1950           else
1951             dbgs() << WriteResDef->getName() << " ";
1952         } dbgs() << "\nReadAdvanceDefs: ";
1953         for (Record *ReadAdvanceDef
1954              : PM.ReadAdvanceDefs) {
1955           if (ReadAdvanceDef->isSubClassOf("ReadAdvance"))
1956             dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName()
1957                    << " ";
1958           else
1959             dbgs() << ReadAdvanceDef->getName() << " ";
1960         } dbgs()
1961         << "\nProcResourceDefs: ";
1962         for (Record *ProcResourceDef
1963              : PM.ProcResourceDefs) {
1964           dbgs() << ProcResourceDef->getName() << " ";
1965         } dbgs()
1966         << '\n');
1967     verifyProcResourceGroups(PM);
1968   }
1969 
1970   ProcResourceDefs.clear();
1971   ProcResGroups.clear();
1972 }
1973 
checkCompleteness()1974 void CodeGenSchedModels::checkCompleteness() {
1975   bool Complete = true;
1976   bool HadCompleteModel = false;
1977   for (const CodeGenProcModel &ProcModel : procModels()) {
1978     const bool HasItineraries = ProcModel.hasItineraries();
1979     if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1980       continue;
1981     for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1982       if (Inst->hasNoSchedulingInfo)
1983         continue;
1984       if (ProcModel.isUnsupported(*Inst))
1985         continue;
1986       unsigned SCIdx = getSchedClassIdx(*Inst);
1987       if (!SCIdx) {
1988         if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1989           PrintError(Inst->TheDef->getLoc(),
1990                      "No schedule information for instruction '" +
1991                          Inst->TheDef->getName() + "' in SchedMachineModel '" +
1992                      ProcModel.ModelDef->getName() + "'");
1993           Complete = false;
1994         }
1995         continue;
1996       }
1997 
1998       const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1999       if (!SC.Writes.empty())
2000         continue;
2001       if (HasItineraries && SC.ItinClassDef != nullptr &&
2002           SC.ItinClassDef->getName() != "NoItinerary")
2003         continue;
2004 
2005       const RecVec &InstRWs = SC.InstRWs;
2006       auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
2007         return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
2008       });
2009       if (I == InstRWs.end()) {
2010         PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
2011                                                "' lacks information for '" +
2012                                                Inst->TheDef->getName() + "'");
2013         Complete = false;
2014       }
2015     }
2016     HadCompleteModel = true;
2017   }
2018   if (!Complete) {
2019     errs() << "\n\nIncomplete schedule models found.\n"
2020       << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
2021       << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
2022       << "- Instructions should usually have Sched<[...]> as a superclass, "
2023          "you may temporarily use an empty list.\n"
2024       << "- Instructions related to unsupported features can be excluded with "
2025          "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
2026          "processor model.\n\n";
2027     PrintFatalError("Incomplete schedule model");
2028   }
2029 }
2030 
2031 // Collect itinerary class resources for each processor.
collectItinProcResources(Record * ItinClassDef)2032 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
2033   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
2034     const CodeGenProcModel &PM = ProcModels[PIdx];
2035     // For all ItinRW entries.
2036     bool HasMatch = false;
2037     for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
2038          II != IE; ++II) {
2039       RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
2040       if (!llvm::is_contained(Matched, ItinClassDef))
2041         continue;
2042       if (HasMatch)
2043         PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
2044                         + ItinClassDef->getName()
2045                         + " in ItinResources for " + PM.ModelName);
2046       HasMatch = true;
2047       IdxVec Writes, Reads;
2048       findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2049       collectRWResources(Writes, Reads, PIdx);
2050     }
2051   }
2052 }
2053 
collectRWResources(unsigned RWIdx,bool IsRead,ArrayRef<unsigned> ProcIndices)2054 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2055                                             ArrayRef<unsigned> ProcIndices) {
2056   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2057   if (SchedRW.TheDef) {
2058     if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2059       for (unsigned Idx : ProcIndices)
2060         addWriteRes(SchedRW.TheDef, Idx);
2061     }
2062     else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2063       for (unsigned Idx : ProcIndices)
2064         addReadAdvance(SchedRW.TheDef, Idx);
2065     }
2066   }
2067   for (auto *Alias : SchedRW.Aliases) {
2068     IdxVec AliasProcIndices;
2069     if (Alias->getValueInit("SchedModel")->isComplete()) {
2070       AliasProcIndices.push_back(
2071           getProcModel(Alias->getValueAsDef("SchedModel")).Index);
2072     } else
2073       AliasProcIndices = ProcIndices;
2074     const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW"));
2075     assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2076 
2077     IdxVec ExpandedRWs;
2078     expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2079     for (unsigned int ExpandedRW : ExpandedRWs) {
2080       collectRWResources(ExpandedRW, IsRead, AliasProcIndices);
2081     }
2082   }
2083 }
2084 
2085 // Collect resources for a set of read/write types and processor indices.
collectRWResources(ArrayRef<unsigned> Writes,ArrayRef<unsigned> Reads,ArrayRef<unsigned> ProcIndices)2086 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2087                                             ArrayRef<unsigned> Reads,
2088                                             ArrayRef<unsigned> ProcIndices) {
2089   for (unsigned Idx : Writes)
2090     collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2091 
2092   for (unsigned Idx : Reads)
2093     collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2094 }
2095 
2096 // Find the processor's resource units for this kind of resource.
findProcResUnits(Record * ProcResKind,const CodeGenProcModel & PM,ArrayRef<SMLoc> Loc) const2097 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2098                                              const CodeGenProcModel &PM,
2099                                              ArrayRef<SMLoc> Loc) const {
2100   if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2101     return ProcResKind;
2102 
2103   Record *ProcUnitDef = nullptr;
2104   assert(!ProcResourceDefs.empty());
2105   assert(!ProcResGroups.empty());
2106 
2107   for (Record *ProcResDef : ProcResourceDefs) {
2108     if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2109         && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2110       if (ProcUnitDef) {
2111         PrintFatalError(Loc,
2112                         "Multiple ProcessorResourceUnits associated with "
2113                         + ProcResKind->getName());
2114       }
2115       ProcUnitDef = ProcResDef;
2116     }
2117   }
2118   for (Record *ProcResGroup : ProcResGroups) {
2119     if (ProcResGroup == ProcResKind
2120         && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2121       if (ProcUnitDef) {
2122         PrintFatalError(Loc,
2123                         "Multiple ProcessorResourceUnits associated with "
2124                         + ProcResKind->getName());
2125       }
2126       ProcUnitDef = ProcResGroup;
2127     }
2128   }
2129   if (!ProcUnitDef) {
2130     PrintFatalError(Loc,
2131                     "No ProcessorResources associated with "
2132                     + ProcResKind->getName());
2133   }
2134   return ProcUnitDef;
2135 }
2136 
2137 // Iteratively add a resource and its super resources.
addProcResource(Record * ProcResKind,CodeGenProcModel & PM,ArrayRef<SMLoc> Loc)2138 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2139                                          CodeGenProcModel &PM,
2140                                          ArrayRef<SMLoc> Loc) {
2141   while (true) {
2142     Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2143 
2144     // See if this ProcResource is already associated with this processor.
2145     if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2146       return;
2147 
2148     PM.ProcResourceDefs.push_back(ProcResUnits);
2149     if (ProcResUnits->isSubClassOf("ProcResGroup"))
2150       return;
2151 
2152     if (!ProcResUnits->getValueInit("Super")->isComplete())
2153       return;
2154 
2155     ProcResKind = ProcResUnits->getValueAsDef("Super");
2156   }
2157 }
2158 
2159 // Add resources for a SchedWrite to this processor if they don't exist.
addWriteRes(Record * ProcWriteResDef,unsigned PIdx)2160 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2161   assert(PIdx && "don't add resources to an invalid Processor model");
2162 
2163   RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2164   if (is_contained(WRDefs, ProcWriteResDef))
2165     return;
2166   WRDefs.push_back(ProcWriteResDef);
2167 
2168   // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2169   RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2170   for (auto *ProcResDef : ProcResDefs) {
2171     addProcResource(ProcResDef, ProcModels[PIdx], ProcWriteResDef->getLoc());
2172   }
2173 }
2174 
2175 // Add resources for a ReadAdvance to this processor if they don't exist.
addReadAdvance(Record * ProcReadAdvanceDef,unsigned PIdx)2176 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2177                                         unsigned PIdx) {
2178   RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2179   if (is_contained(RADefs, ProcReadAdvanceDef))
2180     return;
2181   RADefs.push_back(ProcReadAdvanceDef);
2182 }
2183 
getProcResourceIdx(Record * PRDef) const2184 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2185   RecIter PRPos = find(ProcResourceDefs, PRDef);
2186   if (PRPos == ProcResourceDefs.end())
2187     PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2188                     "the ProcResources list for " + ModelName);
2189   // Idx=0 is reserved for invalid.
2190   return 1 + (PRPos - ProcResourceDefs.begin());
2191 }
2192 
isUnsupported(const CodeGenInstruction & Inst) const2193 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2194   for (const Record *TheDef : UnsupportedFeaturesDefs) {
2195     for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2196       if (TheDef->getName() == PredDef->getName())
2197         return true;
2198     }
2199   }
2200   return false;
2201 }
2202 
2203 #ifndef NDEBUG
dump() const2204 void CodeGenProcModel::dump() const {
2205   dbgs() << Index << ": " << ModelName << " "
2206          << (ModelDef ? ModelDef->getName() : "inferred") << " "
2207          << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2208 }
2209 
dump() const2210 void CodeGenSchedRW::dump() const {
2211   dbgs() << Name << (IsVariadic ? " (V) " : " ");
2212   if (IsSequence) {
2213     dbgs() << "(";
2214     dumpIdxVec(Sequence);
2215     dbgs() << ")";
2216   }
2217 }
2218 
dump(const CodeGenSchedModels * SchedModels) const2219 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2220   dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2221          << "  Writes: ";
2222   for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2223     SchedModels->getSchedWrite(Writes[i]).dump();
2224     if (i < N-1) {
2225       dbgs() << '\n';
2226       dbgs().indent(10);
2227     }
2228   }
2229   dbgs() << "\n  Reads: ";
2230   for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2231     SchedModels->getSchedRead(Reads[i]).dump();
2232     if (i < N-1) {
2233       dbgs() << '\n';
2234       dbgs().indent(10);
2235     }
2236   }
2237   dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices);
2238   if (!Transitions.empty()) {
2239     dbgs() << "\n Transitions for Proc ";
2240     for (const CodeGenSchedTransition &Transition : Transitions) {
2241       dbgs() << Transition.ProcIndex << ", ";
2242     }
2243   }
2244   dbgs() << '\n';
2245 }
2246 
dump() const2247 void PredTransitions::dump() const {
2248   dbgs() << "Expanded Variants:\n";
2249   for (const auto &TI : TransVec) {
2250     dbgs() << "{";
2251     ListSeparator LS;
2252     for (const PredCheck &PC : TI.PredTerm)
2253       dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":"
2254              << PC.Predicate->getName();
2255     dbgs() << "},\n  => {";
2256     for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator
2257              WSI = TI.WriteSequences.begin(),
2258              WSE = TI.WriteSequences.end();
2259          WSI != WSE; ++WSI) {
2260       dbgs() << "(";
2261       ListSeparator LS;
2262       for (unsigned N : *WSI)
2263         dbgs() << LS << SchedModels.getSchedWrite(N).Name;
2264       dbgs() << "),";
2265     }
2266     dbgs() << "}\n";
2267   }
2268 }
2269 #endif // NDEBUG
2270