1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Regex.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include <algorithm>
28 #include <iterator>
29 #include <utility>
30
31 using namespace llvm;
32
33 #define DEBUG_TYPE "subtarget-emitter"
34
35 #ifndef NDEBUG
dumpIdxVec(ArrayRef<unsigned> V)36 static void dumpIdxVec(ArrayRef<unsigned> V) {
37 for (unsigned Idx : V)
38 dbgs() << Idx << ", ";
39 }
40 #endif
41
42 namespace {
43
44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45 struct InstrsOp : public SetTheory::Operator {
apply__anon8a23da580111::InstrsOp46 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47 ArrayRef<SMLoc> Loc) override {
48 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
49 }
50 };
51
52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53 struct InstRegexOp : public SetTheory::Operator {
54 const CodeGenTarget &Target;
InstRegexOp__anon8a23da580111::InstRegexOp55 InstRegexOp(const CodeGenTarget &t): Target(t) {}
56
57 /// Remove any text inside of parentheses from S.
removeParens__anon8a23da580111::InstRegexOp58 static std::string removeParens(llvm::StringRef S) {
59 std::string Result;
60 unsigned Paren = 0;
61 // NB: We don't care about escaped parens here.
62 for (char C : S) {
63 switch (C) {
64 case '(':
65 ++Paren;
66 break;
67 case ')':
68 --Paren;
69 break;
70 default:
71 if (Paren == 0)
72 Result += C;
73 }
74 }
75 return Result;
76 }
77
apply__anon8a23da580111::InstRegexOp78 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79 ArrayRef<SMLoc> Loc) override {
80 ArrayRef<const CodeGenInstruction *> Instructions =
81 Target.getInstructionsByEnumValue();
82
83 unsigned NumGeneric = Target.getNumFixedInstructions();
84 unsigned NumPseudos = Target.getNumPseudoInstructions();
85 auto Generics = Instructions.slice(0, NumGeneric);
86 auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87 auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88
89 for (Init *Arg : Expr->getArgs()) {
90 StringInit *SI = dyn_cast<StringInit>(Arg);
91 if (!SI)
92 PrintFatalError(Loc, "instregex requires pattern string: " +
93 Expr->getAsString());
94 StringRef Original = SI->getValue();
95
96 // Extract a prefix that we can binary search on.
97 static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98 auto FirstMeta = Original.find_first_of(RegexMetachars);
99
100 // Look for top-level | or ?. We cannot optimize them to binary search.
101 if (removeParens(Original).find_first_of("|?") != std::string::npos)
102 FirstMeta = 0;
103
104 Optional<Regex> Regexpr = None;
105 StringRef Prefix = Original.substr(0, FirstMeta);
106 StringRef PatStr = Original.substr(FirstMeta);
107 if (!PatStr.empty()) {
108 // For the rest use a python-style prefix match.
109 std::string pat = std::string(PatStr);
110 if (pat[0] != '^') {
111 pat.insert(0, "^(");
112 pat.insert(pat.end(), ')');
113 }
114 Regexpr = Regex(pat);
115 }
116
117 int NumMatches = 0;
118
119 // The generic opcodes are unsorted, handle them manually.
120 for (auto *Inst : Generics) {
121 StringRef InstName = Inst->TheDef->getName();
122 if (InstName.startswith(Prefix) &&
123 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124 Elts.insert(Inst->TheDef);
125 NumMatches++;
126 }
127 }
128
129 // Target instructions are split into two ranges: pseudo instructions
130 // first, than non-pseudos. Each range is in lexicographical order
131 // sorted by name. Find the sub-ranges that start with our prefix.
132 struct Comp {
133 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134 return LHS->TheDef->getName() < RHS;
135 }
136 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137 return LHS < RHS->TheDef->getName() &&
138 !RHS->TheDef->getName().startswith(LHS);
139 }
140 };
141 auto Range1 =
142 std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143 auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144 Prefix, Comp());
145
146 // For these ranges we know that instruction names start with the prefix.
147 // Check if there's a regex that needs to be checked.
148 const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149 StringRef InstName = Inst->TheDef->getName();
150 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151 Elts.insert(Inst->TheDef);
152 NumMatches++;
153 }
154 };
155 std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156 std::for_each(Range2.first, Range2.second, HandleNonGeneric);
157
158 if (0 == NumMatches)
159 PrintFatalError(Loc, "instregex has no matches: " + Original);
160 }
161 }
162 };
163
164 } // end anonymous namespace
165
166 /// CodeGenModels ctor interprets machine model records and populates maps.
CodeGenSchedModels(RecordKeeper & RK,const CodeGenTarget & TGT)167 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168 const CodeGenTarget &TGT):
169 Records(RK), Target(TGT) {
170
171 Sets.addFieldExpander("InstRW", "Instrs");
172
173 // Allow Set evaluation to recognize the dags used in InstRW records:
174 // (instrs Op1, Op1...)
175 Sets.addOperator("instrs", std::make_unique<InstrsOp>());
176 Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
177
178 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179 // that are explicitly referenced in tablegen records. Resources associated
180 // with each processor will be derived later. Populate ProcModelMap with the
181 // CodeGenProcModel instances.
182 collectProcModels();
183
184 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185 // defined, and populate SchedReads and SchedWrites vectors. Implicit
186 // SchedReadWrites that represent sequences derived from expanded variant will
187 // be inferred later.
188 collectSchedRW();
189
190 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191 // required by an instruction definition, and populate SchedClassIdxMap. Set
192 // NumItineraryClasses to the number of explicit itinerary classes referenced
193 // by instructions. Set NumInstrSchedClasses to the number of itinerary
194 // classes plus any classes implied by instructions that derive from class
195 // Sched and provide SchedRW list. This does not infer any new classes from
196 // SchedVariant.
197 collectSchedClasses();
198
199 // Find instruction itineraries for each processor. Sort and populate
200 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201 // all itinerary classes to be discovered.
202 collectProcItins();
203
204 // Find ItinRW records for each processor and itinerary class.
205 // (For per-operand resources mapped to itinerary classes).
206 collectProcItinRW();
207
208 // Find UnsupportedFeatures records for each processor.
209 // (For per-operand resources mapped to itinerary classes).
210 collectProcUnsupportedFeatures();
211
212 // Infer new SchedClasses from SchedVariant.
213 inferSchedClasses();
214
215 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216 // ProcResourceDefs.
217 LLVM_DEBUG(
218 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219 collectProcResources();
220
221 // Collect optional processor description.
222 collectOptionalProcessorInfo();
223
224 // Check MCInstPredicate definitions.
225 checkMCInstPredicates();
226
227 // Check STIPredicate definitions.
228 checkSTIPredicates();
229
230 // Find STIPredicate definitions for each processor model, and construct
231 // STIPredicateFunction objects.
232 collectSTIPredicates();
233
234 checkCompleteness();
235 }
236
checkSTIPredicates() const237 void CodeGenSchedModels::checkSTIPredicates() const {
238 DenseMap<StringRef, const Record *> Declarations;
239
240 // There cannot be multiple declarations with the same name.
241 const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242 for (const Record *R : Decls) {
243 StringRef Name = R->getValueAsString("Name");
244 const auto It = Declarations.find(Name);
245 if (It == Declarations.end()) {
246 Declarations[Name] = R;
247 continue;
248 }
249
250 PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251 PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
252 }
253
254 // Disallow InstructionEquivalenceClasses with an empty instruction list.
255 const RecVec Defs =
256 Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
257 for (const Record *R : Defs) {
258 RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
259 if (Opcodes.empty()) {
260 PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
261 "defined with an empty opcode list.");
262 }
263 }
264 }
265
266 // Used by function `processSTIPredicate` to construct a mask of machine
267 // instruction operands.
constructOperandMask(ArrayRef<int64_t> Indices)268 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
269 APInt OperandMask;
270 if (Indices.empty())
271 return OperandMask;
272
273 int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
274 assert(MaxIndex >= 0 && "Invalid negative indices in input!");
275 OperandMask = OperandMask.zext(MaxIndex + 1);
276 for (const int64_t Index : Indices) {
277 assert(Index >= 0 && "Invalid negative indices!");
278 OperandMask.setBit(Index);
279 }
280
281 return OperandMask;
282 }
283
284 static void
processSTIPredicate(STIPredicateFunction & Fn,const ProcModelMapTy & ProcModelMap)285 processSTIPredicate(STIPredicateFunction &Fn,
286 const ProcModelMapTy &ProcModelMap) {
287 DenseMap<const Record *, unsigned> Opcode2Index;
288 using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
289 std::vector<OpcodeMapPair> OpcodeMappings;
290 std::vector<std::pair<APInt, APInt>> OpcodeMasks;
291
292 DenseMap<const Record *, unsigned> Predicate2Index;
293 unsigned NumUniquePredicates = 0;
294
295 // Number unique predicates and opcodes used by InstructionEquivalenceClass
296 // definitions. Each unique opcode will be associated with an OpcodeInfo
297 // object.
298 for (const Record *Def : Fn.getDefinitions()) {
299 RecVec Classes = Def->getValueAsListOfDefs("Classes");
300 for (const Record *EC : Classes) {
301 const Record *Pred = EC->getValueAsDef("Predicate");
302 if (Predicate2Index.find(Pred) == Predicate2Index.end())
303 Predicate2Index[Pred] = NumUniquePredicates++;
304
305 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
306 for (const Record *Opcode : Opcodes) {
307 if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
308 Opcode2Index[Opcode] = OpcodeMappings.size();
309 OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
310 }
311 }
312 }
313 }
314
315 // Initialize vector `OpcodeMasks` with default values. We want to keep track
316 // of which processors "use" which opcodes. We also want to be able to
317 // identify predicates that are used by different processors for a same
318 // opcode.
319 // This information is used later on by this algorithm to sort OpcodeMapping
320 // elements based on their processor and predicate sets.
321 OpcodeMasks.resize(OpcodeMappings.size());
322 APInt DefaultProcMask(ProcModelMap.size(), 0);
323 APInt DefaultPredMask(NumUniquePredicates, 0);
324 for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
325 MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
326
327 // Construct a OpcodeInfo object for every unique opcode declared by an
328 // InstructionEquivalenceClass definition.
329 for (const Record *Def : Fn.getDefinitions()) {
330 RecVec Classes = Def->getValueAsListOfDefs("Classes");
331 const Record *SchedModel = Def->getValueAsDef("SchedModel");
332 unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
333 APInt ProcMask(ProcModelMap.size(), 0);
334 ProcMask.setBit(ProcIndex);
335
336 for (const Record *EC : Classes) {
337 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
338
339 std::vector<int64_t> OpIndices =
340 EC->getValueAsListOfInts("OperandIndices");
341 APInt OperandMask = constructOperandMask(OpIndices);
342
343 const Record *Pred = EC->getValueAsDef("Predicate");
344 APInt PredMask(NumUniquePredicates, 0);
345 PredMask.setBit(Predicate2Index[Pred]);
346
347 for (const Record *Opcode : Opcodes) {
348 unsigned OpcodeIdx = Opcode2Index[Opcode];
349 if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
350 std::string Message =
351 "Opcode " + Opcode->getName().str() +
352 " used by multiple InstructionEquivalenceClass definitions.";
353 PrintFatalError(EC->getLoc(), Message);
354 }
355 OpcodeMasks[OpcodeIdx].first |= ProcMask;
356 OpcodeMasks[OpcodeIdx].second |= PredMask;
357 OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
358
359 OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
360 }
361 }
362 }
363
364 // Sort OpcodeMappings elements based on their CPU and predicate masks.
365 // As a last resort, order elements by opcode identifier.
366 llvm::sort(OpcodeMappings,
367 [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
368 unsigned LhsIdx = Opcode2Index[Lhs.first];
369 unsigned RhsIdx = Opcode2Index[Rhs.first];
370 const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
371 const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
372
373 auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
374 unsigned LhsCountPopulation = Lhs.countPopulation();
375 unsigned RhsCountPopulation = Rhs.countPopulation();
376 return ((LhsCountPopulation < RhsCountPopulation) ||
377 ((LhsCountPopulation == RhsCountPopulation) &&
378 (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
379 };
380
381 if (LhsMasks.first != RhsMasks.first)
382 return LessThan(LhsMasks.first, RhsMasks.first);
383
384 if (LhsMasks.second != RhsMasks.second)
385 return LessThan(LhsMasks.second, RhsMasks.second);
386
387 return LhsIdx < RhsIdx;
388 });
389
390 // Now construct opcode groups. Groups are used by the SubtargetEmitter when
391 // expanding the body of a STIPredicate function. In particular, each opcode
392 // group is expanded into a sequence of labels in a switch statement.
393 // It identifies opcodes for which different processors define same predicates
394 // and same opcode masks.
395 for (OpcodeMapPair &Info : OpcodeMappings)
396 Fn.addOpcode(Info.first, std::move(Info.second));
397 }
398
collectSTIPredicates()399 void CodeGenSchedModels::collectSTIPredicates() {
400 // Map STIPredicateDecl records to elements of vector
401 // CodeGenSchedModels::STIPredicates.
402 DenseMap<const Record *, unsigned> Decl2Index;
403
404 RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
405 for (const Record *R : RV) {
406 const Record *Decl = R->getValueAsDef("Declaration");
407
408 const auto It = Decl2Index.find(Decl);
409 if (It == Decl2Index.end()) {
410 Decl2Index[Decl] = STIPredicates.size();
411 STIPredicateFunction Predicate(Decl);
412 Predicate.addDefinition(R);
413 STIPredicates.emplace_back(std::move(Predicate));
414 continue;
415 }
416
417 STIPredicateFunction &PreviousDef = STIPredicates[It->second];
418 PreviousDef.addDefinition(R);
419 }
420
421 for (STIPredicateFunction &Fn : STIPredicates)
422 processSTIPredicate(Fn, ProcModelMap);
423 }
424
addPredicateForProcModel(const llvm::APInt & CpuMask,const llvm::APInt & OperandMask,const Record * Predicate)425 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
426 const llvm::APInt &OperandMask,
427 const Record *Predicate) {
428 auto It = llvm::find_if(
429 Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
430 return P.Predicate == Predicate && P.OperandMask == OperandMask;
431 });
432 if (It == Predicates.end()) {
433 Predicates.emplace_back(CpuMask, OperandMask, Predicate);
434 return;
435 }
436 It->ProcModelMask |= CpuMask;
437 }
438
checkMCInstPredicates() const439 void CodeGenSchedModels::checkMCInstPredicates() const {
440 RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
441 if (MCPredicates.empty())
442 return;
443
444 // A target cannot have multiple TIIPredicate definitions with a same name.
445 llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
446 for (const Record *TIIPred : MCPredicates) {
447 StringRef Name = TIIPred->getValueAsString("FunctionName");
448 StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
449 if (It == TIIPredicates.end()) {
450 TIIPredicates[Name] = TIIPred;
451 continue;
452 }
453
454 PrintError(TIIPred->getLoc(),
455 "TIIPredicate " + Name + " is multiply defined.");
456 PrintFatalNote(It->second->getLoc(),
457 " Previous definition of " + Name + " was here.");
458 }
459 }
460
collectRetireControlUnits()461 void CodeGenSchedModels::collectRetireControlUnits() {
462 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
463
464 for (Record *RCU : Units) {
465 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
466 if (PM.RetireControlUnit) {
467 PrintError(RCU->getLoc(),
468 "Expected a single RetireControlUnit definition");
469 PrintNote(PM.RetireControlUnit->getLoc(),
470 "Previous definition of RetireControlUnit was here");
471 }
472 PM.RetireControlUnit = RCU;
473 }
474 }
475
collectLoadStoreQueueInfo()476 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
477 RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
478
479 for (Record *Queue : Queues) {
480 CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
481 if (Queue->isSubClassOf("LoadQueue")) {
482 if (PM.LoadQueue) {
483 PrintError(Queue->getLoc(),
484 "Expected a single LoadQueue definition");
485 PrintNote(PM.LoadQueue->getLoc(),
486 "Previous definition of LoadQueue was here");
487 }
488
489 PM.LoadQueue = Queue;
490 }
491
492 if (Queue->isSubClassOf("StoreQueue")) {
493 if (PM.StoreQueue) {
494 PrintError(Queue->getLoc(),
495 "Expected a single StoreQueue definition");
496 PrintNote(PM.LoadQueue->getLoc(),
497 "Previous definition of StoreQueue was here");
498 }
499
500 PM.StoreQueue = Queue;
501 }
502 }
503 }
504
505 /// Collect optional processor information.
collectOptionalProcessorInfo()506 void CodeGenSchedModels::collectOptionalProcessorInfo() {
507 // Find register file definitions for each processor.
508 collectRegisterFiles();
509
510 // Collect processor RetireControlUnit descriptors if available.
511 collectRetireControlUnits();
512
513 // Collect information about load/store queues.
514 collectLoadStoreQueueInfo();
515
516 checkCompleteness();
517 }
518
519 /// Gather all processor models.
collectProcModels()520 void CodeGenSchedModels::collectProcModels() {
521 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
522 llvm::sort(ProcRecords, LessRecordFieldName());
523
524 // Reserve space because we can. Reallocation would be ok.
525 ProcModels.reserve(ProcRecords.size()+1);
526
527 // Use idx=0 for NoModel/NoItineraries.
528 Record *NoModelDef = Records.getDef("NoSchedModel");
529 Record *NoItinsDef = Records.getDef("NoItineraries");
530 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
531 ProcModelMap[NoModelDef] = 0;
532
533 // For each processor, find a unique machine model.
534 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
535 for (Record *ProcRecord : ProcRecords)
536 addProcModel(ProcRecord);
537 }
538
539 /// Get a unique processor model based on the defined MachineModel and
540 /// ProcessorItineraries.
addProcModel(Record * ProcDef)541 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
542 Record *ModelKey = getModelOrItinDef(ProcDef);
543 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
544 return;
545
546 std::string Name = std::string(ModelKey->getName());
547 if (ModelKey->isSubClassOf("SchedMachineModel")) {
548 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
549 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
550 }
551 else {
552 // An itinerary is defined without a machine model. Infer a new model.
553 if (!ModelKey->getValueAsListOfDefs("IID").empty())
554 Name = Name + "Model";
555 ProcModels.emplace_back(ProcModels.size(), Name,
556 ProcDef->getValueAsDef("SchedModel"), ModelKey);
557 }
558 LLVM_DEBUG(ProcModels.back().dump());
559 }
560
561 // Recursively find all reachable SchedReadWrite records.
scanSchedRW(Record * RWDef,RecVec & RWDefs,SmallPtrSet<Record *,16> & RWSet)562 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
563 SmallPtrSet<Record*, 16> &RWSet) {
564 if (!RWSet.insert(RWDef).second)
565 return;
566 RWDefs.push_back(RWDef);
567 // Reads don't currently have sequence records, but it can be added later.
568 if (RWDef->isSubClassOf("WriteSequence")) {
569 RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
570 for (Record *WSRec : Seq)
571 scanSchedRW(WSRec, RWDefs, RWSet);
572 }
573 else if (RWDef->isSubClassOf("SchedVariant")) {
574 // Visit each variant (guarded by a different predicate).
575 RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
576 for (Record *Variant : Vars) {
577 // Visit each RW in the sequence selected by the current variant.
578 RecVec Selected = Variant->getValueAsListOfDefs("Selected");
579 for (Record *SelDef : Selected)
580 scanSchedRW(SelDef, RWDefs, RWSet);
581 }
582 }
583 }
584
585 // Collect and sort all SchedReadWrites reachable via tablegen records.
586 // More may be inferred later when inferring new SchedClasses from variants.
collectSchedRW()587 void CodeGenSchedModels::collectSchedRW() {
588 // Reserve idx=0 for invalid writes/reads.
589 SchedWrites.resize(1);
590 SchedReads.resize(1);
591
592 SmallPtrSet<Record*, 16> RWSet;
593
594 // Find all SchedReadWrites referenced by instruction defs.
595 RecVec SWDefs, SRDefs;
596 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
597 Record *SchedDef = Inst->TheDef;
598 if (SchedDef->isValueUnset("SchedRW"))
599 continue;
600 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
601 for (Record *RW : RWs) {
602 if (RW->isSubClassOf("SchedWrite"))
603 scanSchedRW(RW, SWDefs, RWSet);
604 else {
605 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
606 scanSchedRW(RW, SRDefs, RWSet);
607 }
608 }
609 }
610 // Find all ReadWrites referenced by InstRW.
611 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
612 for (Record *InstRWDef : InstRWDefs) {
613 // For all OperandReadWrites.
614 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
615 for (Record *RWDef : RWDefs) {
616 if (RWDef->isSubClassOf("SchedWrite"))
617 scanSchedRW(RWDef, SWDefs, RWSet);
618 else {
619 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
620 scanSchedRW(RWDef, SRDefs, RWSet);
621 }
622 }
623 }
624 // Find all ReadWrites referenced by ItinRW.
625 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
626 for (Record *ItinRWDef : ItinRWDefs) {
627 // For all OperandReadWrites.
628 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
629 for (Record *RWDef : RWDefs) {
630 if (RWDef->isSubClassOf("SchedWrite"))
631 scanSchedRW(RWDef, SWDefs, RWSet);
632 else {
633 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
634 scanSchedRW(RWDef, SRDefs, RWSet);
635 }
636 }
637 }
638 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
639 // for the loop below that initializes Alias vectors.
640 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
641 llvm::sort(AliasDefs, LessRecord());
642 for (Record *ADef : AliasDefs) {
643 Record *MatchDef = ADef->getValueAsDef("MatchRW");
644 Record *AliasDef = ADef->getValueAsDef("AliasRW");
645 if (MatchDef->isSubClassOf("SchedWrite")) {
646 if (!AliasDef->isSubClassOf("SchedWrite"))
647 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
648 scanSchedRW(AliasDef, SWDefs, RWSet);
649 }
650 else {
651 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
652 if (!AliasDef->isSubClassOf("SchedRead"))
653 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
654 scanSchedRW(AliasDef, SRDefs, RWSet);
655 }
656 }
657 // Sort and add the SchedReadWrites directly referenced by instructions or
658 // itinerary resources. Index reads and writes in separate domains.
659 llvm::sort(SWDefs, LessRecord());
660 for (Record *SWDef : SWDefs) {
661 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
662 SchedWrites.emplace_back(SchedWrites.size(), SWDef);
663 }
664 llvm::sort(SRDefs, LessRecord());
665 for (Record *SRDef : SRDefs) {
666 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
667 SchedReads.emplace_back(SchedReads.size(), SRDef);
668 }
669 // Initialize WriteSequence vectors.
670 for (CodeGenSchedRW &CGRW : SchedWrites) {
671 if (!CGRW.IsSequence)
672 continue;
673 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
674 /*IsRead=*/false);
675 }
676 // Initialize Aliases vectors.
677 for (Record *ADef : AliasDefs) {
678 Record *AliasDef = ADef->getValueAsDef("AliasRW");
679 getSchedRW(AliasDef).IsAlias = true;
680 Record *MatchDef = ADef->getValueAsDef("MatchRW");
681 CodeGenSchedRW &RW = getSchedRW(MatchDef);
682 if (RW.IsAlias)
683 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
684 RW.Aliases.push_back(ADef);
685 }
686 LLVM_DEBUG(
687 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
688 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
689 dbgs() << WIdx << ": ";
690 SchedWrites[WIdx].dump();
691 dbgs() << '\n';
692 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
693 ++RIdx) {
694 dbgs() << RIdx << ": ";
695 SchedReads[RIdx].dump();
696 dbgs() << '\n';
697 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
698 for (Record *RWDef
699 : RWDefs) {
700 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
701 StringRef Name = RWDef->getName();
702 if (Name != "NoWrite" && Name != "ReadDefault")
703 dbgs() << "Unused SchedReadWrite " << Name << '\n';
704 }
705 });
706 }
707
708 /// Compute a SchedWrite name from a sequence of writes.
genRWName(ArrayRef<unsigned> Seq,bool IsRead)709 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
710 std::string Name("(");
711 ListSeparator LS("_");
712 for (unsigned I : Seq) {
713 Name += LS;
714 Name += getSchedRW(I, IsRead).Name;
715 }
716 Name += ')';
717 return Name;
718 }
719
getSchedRWIdx(const Record * Def,bool IsRead) const720 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
721 bool IsRead) const {
722 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
723 const auto I = find_if(
724 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
725 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
726 }
727
hasReadOfWrite(Record * WriteDef) const728 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
729 for (const CodeGenSchedRW &Read : SchedReads) {
730 Record *ReadDef = Read.TheDef;
731 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
732 continue;
733
734 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
735 if (is_contained(ValidWrites, WriteDef)) {
736 return true;
737 }
738 }
739 return false;
740 }
741
splitSchedReadWrites(const RecVec & RWDefs,RecVec & WriteDefs,RecVec & ReadDefs)742 static void splitSchedReadWrites(const RecVec &RWDefs,
743 RecVec &WriteDefs, RecVec &ReadDefs) {
744 for (Record *RWDef : RWDefs) {
745 if (RWDef->isSubClassOf("SchedWrite"))
746 WriteDefs.push_back(RWDef);
747 else {
748 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
749 ReadDefs.push_back(RWDef);
750 }
751 }
752 }
753
754 // Split the SchedReadWrites defs and call findRWs for each list.
findRWs(const RecVec & RWDefs,IdxVec & Writes,IdxVec & Reads) const755 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
756 IdxVec &Writes, IdxVec &Reads) const {
757 RecVec WriteDefs;
758 RecVec ReadDefs;
759 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
760 findRWs(WriteDefs, Writes, false);
761 findRWs(ReadDefs, Reads, true);
762 }
763
764 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
findRWs(const RecVec & RWDefs,IdxVec & RWs,bool IsRead) const765 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
766 bool IsRead) const {
767 for (Record *RWDef : RWDefs) {
768 unsigned Idx = getSchedRWIdx(RWDef, IsRead);
769 assert(Idx && "failed to collect SchedReadWrite");
770 RWs.push_back(Idx);
771 }
772 }
773
expandRWSequence(unsigned RWIdx,IdxVec & RWSeq,bool IsRead) const774 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
775 bool IsRead) const {
776 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
777 if (!SchedRW.IsSequence) {
778 RWSeq.push_back(RWIdx);
779 return;
780 }
781 int Repeat =
782 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
783 for (int i = 0; i < Repeat; ++i) {
784 for (unsigned I : SchedRW.Sequence) {
785 expandRWSequence(I, RWSeq, IsRead);
786 }
787 }
788 }
789
790 // Expand a SchedWrite as a sequence following any aliases that coincide with
791 // the given processor model.
expandRWSeqForProc(unsigned RWIdx,IdxVec & RWSeq,bool IsRead,const CodeGenProcModel & ProcModel) const792 void CodeGenSchedModels::expandRWSeqForProc(
793 unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
794 const CodeGenProcModel &ProcModel) const {
795
796 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
797 Record *AliasDef = nullptr;
798 for (const Record *Rec : SchedWrite.Aliases) {
799 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
800 if (Rec->getValueInit("SchedModel")->isComplete()) {
801 Record *ModelDef = Rec->getValueAsDef("SchedModel");
802 if (&getProcModel(ModelDef) != &ProcModel)
803 continue;
804 }
805 if (AliasDef)
806 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
807 "defined for processor " + ProcModel.ModelName +
808 " Ensure only one SchedAlias exists per RW.");
809 AliasDef = AliasRW.TheDef;
810 }
811 if (AliasDef) {
812 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
813 RWSeq, IsRead,ProcModel);
814 return;
815 }
816 if (!SchedWrite.IsSequence) {
817 RWSeq.push_back(RWIdx);
818 return;
819 }
820 int Repeat =
821 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
822 for (int I = 0, E = Repeat; I < E; ++I) {
823 for (unsigned Idx : SchedWrite.Sequence) {
824 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
825 }
826 }
827 }
828
829 // Find the existing SchedWrite that models this sequence of writes.
findRWForSequence(ArrayRef<unsigned> Seq,bool IsRead)830 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
831 bool IsRead) {
832 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
833
834 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
835 return makeArrayRef(RW.Sequence) == Seq;
836 });
837 // Index zero reserved for invalid RW.
838 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
839 }
840
841 /// Add this ReadWrite if it doesn't already exist.
findOrInsertRW(ArrayRef<unsigned> Seq,bool IsRead)842 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
843 bool IsRead) {
844 assert(!Seq.empty() && "cannot insert empty sequence");
845 if (Seq.size() == 1)
846 return Seq.back();
847
848 unsigned Idx = findRWForSequence(Seq, IsRead);
849 if (Idx)
850 return Idx;
851
852 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
853 unsigned RWIdx = RWVec.size();
854 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
855 RWVec.push_back(SchedRW);
856 return RWIdx;
857 }
858
859 /// Visit all the instruction definitions for this target to gather and
860 /// enumerate the itinerary classes. These are the explicitly specified
861 /// SchedClasses. More SchedClasses may be inferred.
collectSchedClasses()862 void CodeGenSchedModels::collectSchedClasses() {
863
864 // NoItinerary is always the first class at Idx=0
865 assert(SchedClasses.empty() && "Expected empty sched class");
866 SchedClasses.emplace_back(0, "NoInstrModel",
867 Records.getDef("NoItinerary"));
868 SchedClasses.back().ProcIndices.push_back(0);
869
870 // Create a SchedClass for each unique combination of itinerary class and
871 // SchedRW list.
872 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
873 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
874 IdxVec Writes, Reads;
875 if (!Inst->TheDef->isValueUnset("SchedRW"))
876 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
877
878 // ProcIdx == 0 indicates the class applies to all processors.
879 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
880 InstrClassMap[Inst->TheDef] = SCIdx;
881 }
882 // Create classes for InstRW defs.
883 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
884 llvm::sort(InstRWDefs, LessRecord());
885 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
886 for (Record *RWDef : InstRWDefs)
887 createInstRWClass(RWDef);
888
889 NumInstrSchedClasses = SchedClasses.size();
890
891 bool EnableDump = false;
892 LLVM_DEBUG(EnableDump = true);
893 if (!EnableDump)
894 return;
895
896 LLVM_DEBUG(
897 dbgs()
898 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
899 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
900 StringRef InstName = Inst->TheDef->getName();
901 unsigned SCIdx = getSchedClassIdx(*Inst);
902 if (!SCIdx) {
903 LLVM_DEBUG({
904 if (!Inst->hasNoSchedulingInfo)
905 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
906 });
907 continue;
908 }
909 CodeGenSchedClass &SC = getSchedClass(SCIdx);
910 if (SC.ProcIndices[0] != 0)
911 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
912 "must not be subtarget specific.");
913
914 IdxVec ProcIndices;
915 if (SC.ItinClassDef->getName() != "NoItinerary") {
916 ProcIndices.push_back(0);
917 dbgs() << "Itinerary for " << InstName << ": "
918 << SC.ItinClassDef->getName() << '\n';
919 }
920 if (!SC.Writes.empty()) {
921 ProcIndices.push_back(0);
922 LLVM_DEBUG({
923 dbgs() << "SchedRW machine model for " << InstName;
924 for (unsigned int Write : SC.Writes)
925 dbgs() << " " << SchedWrites[Write].Name;
926 for (unsigned int Read : SC.Reads)
927 dbgs() << " " << SchedReads[Read].Name;
928 dbgs() << '\n';
929 });
930 }
931 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
932 for (Record *RWDef : RWDefs) {
933 const CodeGenProcModel &ProcModel =
934 getProcModel(RWDef->getValueAsDef("SchedModel"));
935 ProcIndices.push_back(ProcModel.Index);
936 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
937 << InstName);
938 IdxVec Writes;
939 IdxVec Reads;
940 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
941 Writes, Reads);
942 LLVM_DEBUG({
943 for (unsigned WIdx : Writes)
944 dbgs() << " " << SchedWrites[WIdx].Name;
945 for (unsigned RIdx : Reads)
946 dbgs() << " " << SchedReads[RIdx].Name;
947 dbgs() << '\n';
948 });
949 }
950 // If ProcIndices contains zero, the class applies to all processors.
951 LLVM_DEBUG({
952 if (!llvm::is_contained(ProcIndices, 0)) {
953 for (const CodeGenProcModel &PM : ProcModels) {
954 if (!llvm::is_contained(ProcIndices, PM.Index))
955 dbgs() << "No machine model for " << Inst->TheDef->getName()
956 << " on processor " << PM.ModelName << '\n';
957 }
958 }
959 });
960 }
961 }
962
963 // Get the SchedClass index for an instruction.
964 unsigned
getSchedClassIdx(const CodeGenInstruction & Inst) const965 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
966 return InstrClassMap.lookup(Inst.TheDef);
967 }
968
969 std::string
createSchedClassName(Record * ItinClassDef,ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads)970 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
971 ArrayRef<unsigned> OperWrites,
972 ArrayRef<unsigned> OperReads) {
973
974 std::string Name;
975 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
976 Name = std::string(ItinClassDef->getName());
977 for (unsigned Idx : OperWrites) {
978 if (!Name.empty())
979 Name += '_';
980 Name += SchedWrites[Idx].Name;
981 }
982 for (unsigned Idx : OperReads) {
983 Name += '_';
984 Name += SchedReads[Idx].Name;
985 }
986 return Name;
987 }
988
createSchedClassName(const RecVec & InstDefs)989 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
990
991 std::string Name;
992 ListSeparator LS("_");
993 for (const Record *InstDef : InstDefs) {
994 Name += LS;
995 Name += InstDef->getName();
996 }
997 return Name;
998 }
999
1000 /// Add an inferred sched class from an itinerary class and per-operand list of
1001 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1002 /// processors that may utilize this class.
addSchedClass(Record * ItinClassDef,ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads,ArrayRef<unsigned> ProcIndices)1003 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1004 ArrayRef<unsigned> OperWrites,
1005 ArrayRef<unsigned> OperReads,
1006 ArrayRef<unsigned> ProcIndices) {
1007 assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1008
1009 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1010 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1011 };
1012
1013 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1014 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1015 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1016 IdxVec PI;
1017 std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1018 SchedClasses[Idx].ProcIndices.end(),
1019 ProcIndices.begin(), ProcIndices.end(),
1020 std::back_inserter(PI));
1021 SchedClasses[Idx].ProcIndices = std::move(PI);
1022 return Idx;
1023 }
1024 Idx = SchedClasses.size();
1025 SchedClasses.emplace_back(Idx,
1026 createSchedClassName(ItinClassDef, OperWrites,
1027 OperReads),
1028 ItinClassDef);
1029 CodeGenSchedClass &SC = SchedClasses.back();
1030 SC.Writes = OperWrites;
1031 SC.Reads = OperReads;
1032 SC.ProcIndices = ProcIndices;
1033
1034 return Idx;
1035 }
1036
1037 // Create classes for each set of opcodes that are in the same InstReadWrite
1038 // definition across all processors.
createInstRWClass(Record * InstRWDef)1039 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1040 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1041 // intersects with an existing class via a previous InstRWDef. Instrs that do
1042 // not intersect with an existing class refer back to their former class as
1043 // determined from ItinDef or SchedRW.
1044 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1045 // Sort Instrs into sets.
1046 const RecVec *InstDefs = Sets.expand(InstRWDef);
1047 if (InstDefs->empty())
1048 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1049
1050 for (Record *InstDef : *InstDefs) {
1051 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1052 if (Pos == InstrClassMap.end())
1053 PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1054 unsigned SCIdx = Pos->second;
1055 ClassInstrs[SCIdx].push_back(InstDef);
1056 }
1057 // For each set of Instrs, create a new class if necessary, and map or remap
1058 // the Instrs to it.
1059 for (auto &Entry : ClassInstrs) {
1060 unsigned OldSCIdx = Entry.first;
1061 ArrayRef<Record*> InstDefs = Entry.second;
1062 // If the all instrs in the current class are accounted for, then leave
1063 // them mapped to their old class.
1064 if (OldSCIdx) {
1065 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1066 if (!RWDefs.empty()) {
1067 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1068 unsigned OrigNumInstrs =
1069 count_if(*OrigInstDefs, [&](Record *OIDef) {
1070 return InstrClassMap[OIDef] == OldSCIdx;
1071 });
1072 if (OrigNumInstrs == InstDefs.size()) {
1073 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1074 "expected a generic SchedClass");
1075 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1076 // Make sure we didn't already have a InstRW containing this
1077 // instruction on this model.
1078 for (Record *RWD : RWDefs) {
1079 if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1080 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1081 assert(!InstDefs.empty()); // Checked at function start.
1082 PrintError(
1083 InstRWDef->getLoc(),
1084 "Overlapping InstRW definition for \"" +
1085 InstDefs.front()->getName() +
1086 "\" also matches previous \"" +
1087 RWD->getValue("Instrs")->getValue()->getAsString() +
1088 "\".");
1089 PrintFatalNote(RWD->getLoc(), "Previous match was here.");
1090 }
1091 }
1092 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1093 << SchedClasses[OldSCIdx].Name << " on "
1094 << RWModelDef->getName() << "\n");
1095 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1096 continue;
1097 }
1098 }
1099 }
1100 unsigned SCIdx = SchedClasses.size();
1101 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1102 CodeGenSchedClass &SC = SchedClasses.back();
1103 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1104 << InstRWDef->getValueAsDef("SchedModel")->getName()
1105 << "\n");
1106
1107 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1108 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1109 SC.Writes = SchedClasses[OldSCIdx].Writes;
1110 SC.Reads = SchedClasses[OldSCIdx].Reads;
1111 SC.ProcIndices.push_back(0);
1112 // If we had an old class, copy it's InstRWs to this new class.
1113 if (OldSCIdx) {
1114 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1115 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1116 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1117 assert(!InstDefs.empty()); // Checked at function start.
1118 PrintError(
1119 InstRWDef->getLoc(),
1120 "Overlapping InstRW definition for \"" +
1121 InstDefs.front()->getName() + "\" also matches previous \"" +
1122 OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1123 "\".");
1124 PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
1125 }
1126 assert(OldRWDef != InstRWDef &&
1127 "SchedClass has duplicate InstRW def");
1128 SC.InstRWs.push_back(OldRWDef);
1129 }
1130 }
1131 // Map each Instr to this new class.
1132 for (Record *InstDef : InstDefs)
1133 InstrClassMap[InstDef] = SCIdx;
1134 SC.InstRWs.push_back(InstRWDef);
1135 }
1136 }
1137
1138 // True if collectProcItins found anything.
hasItineraries() const1139 bool CodeGenSchedModels::hasItineraries() const {
1140 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1141 if (PM.hasItineraries())
1142 return true;
1143 return false;
1144 }
1145
1146 // Gather the processor itineraries.
collectProcItins()1147 void CodeGenSchedModels::collectProcItins() {
1148 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1149 for (CodeGenProcModel &ProcModel : ProcModels) {
1150 if (!ProcModel.hasItineraries())
1151 continue;
1152
1153 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1154 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1155
1156 // Populate ItinDefList with Itinerary records.
1157 ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1158
1159 // Insert each itinerary data record in the correct position within
1160 // the processor model's ItinDefList.
1161 for (Record *ItinData : ItinRecords) {
1162 const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1163 bool FoundClass = false;
1164
1165 for (const CodeGenSchedClass &SC :
1166 make_range(schedClassBegin(), schedClassEnd())) {
1167 // Multiple SchedClasses may share an itinerary. Update all of them.
1168 if (SC.ItinClassDef == ItinDef) {
1169 ProcModel.ItinDefList[SC.Index] = ItinData;
1170 FoundClass = true;
1171 }
1172 }
1173 if (!FoundClass) {
1174 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1175 << " missing class for itinerary "
1176 << ItinDef->getName() << '\n');
1177 }
1178 }
1179 // Check for missing itinerary entries.
1180 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1181 LLVM_DEBUG(
1182 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1183 if (!ProcModel.ItinDefList[i])
1184 dbgs() << ProcModel.ItinsDef->getName()
1185 << " missing itinerary for class " << SchedClasses[i].Name
1186 << '\n';
1187 });
1188 }
1189 }
1190
1191 // Gather the read/write types for each itinerary class.
collectProcItinRW()1192 void CodeGenSchedModels::collectProcItinRW() {
1193 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1194 llvm::sort(ItinRWDefs, LessRecord());
1195 for (Record *RWDef : ItinRWDefs) {
1196 if (!RWDef->getValueInit("SchedModel")->isComplete())
1197 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1198 Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1199 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1200 if (I == ProcModelMap.end()) {
1201 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1202 + ModelDef->getName());
1203 }
1204 ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1205 }
1206 }
1207
1208 // Gather the unsupported features for processor models.
collectProcUnsupportedFeatures()1209 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1210 for (CodeGenProcModel &ProcModel : ProcModels)
1211 append_range(
1212 ProcModel.UnsupportedFeaturesDefs,
1213 ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures"));
1214 }
1215
1216 /// Infer new classes from existing classes. In the process, this may create new
1217 /// SchedWrites from sequences of existing SchedWrites.
inferSchedClasses()1218 void CodeGenSchedModels::inferSchedClasses() {
1219 LLVM_DEBUG(
1220 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1221 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1222
1223 // Visit all existing classes and newly created classes.
1224 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1225 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1226
1227 if (SchedClasses[Idx].ItinClassDef)
1228 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1229 if (!SchedClasses[Idx].InstRWs.empty())
1230 inferFromInstRWs(Idx);
1231 if (!SchedClasses[Idx].Writes.empty()) {
1232 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1233 Idx, SchedClasses[Idx].ProcIndices);
1234 }
1235 assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1236 "too many SchedVariants");
1237 }
1238 }
1239
1240 /// Infer classes from per-processor itinerary resources.
inferFromItinClass(Record * ItinClassDef,unsigned FromClassIdx)1241 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1242 unsigned FromClassIdx) {
1243 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1244 const CodeGenProcModel &PM = ProcModels[PIdx];
1245 // For all ItinRW entries.
1246 bool HasMatch = false;
1247 for (const Record *Rec : PM.ItinRWDefs) {
1248 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1249 if (!llvm::is_contained(Matched, ItinClassDef))
1250 continue;
1251 if (HasMatch)
1252 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1253 + ItinClassDef->getName()
1254 + " in ItinResources for " + PM.ModelName);
1255 HasMatch = true;
1256 IdxVec Writes, Reads;
1257 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1258 inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1259 }
1260 }
1261 }
1262
1263 /// Infer classes from per-processor InstReadWrite definitions.
inferFromInstRWs(unsigned SCIdx)1264 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1265 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1266 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1267 Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1268 const RecVec *InstDefs = Sets.expand(Rec);
1269 RecIter II = InstDefs->begin(), IE = InstDefs->end();
1270 for (; II != IE; ++II) {
1271 if (InstrClassMap[*II] == SCIdx)
1272 break;
1273 }
1274 // If this class no longer has any instructions mapped to it, it has become
1275 // irrelevant.
1276 if (II == IE)
1277 continue;
1278 IdxVec Writes, Reads;
1279 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1280 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1281 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1282 SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
1283 }
1284 }
1285
1286 namespace {
1287
1288 // Helper for substituteVariantOperand.
1289 struct TransVariant {
1290 Record *VarOrSeqDef; // Variant or sequence.
1291 unsigned RWIdx; // Index of this variant or sequence's matched type.
1292 unsigned ProcIdx; // Processor model index or zero for any.
1293 unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1294
TransVariant__anon8a23da580a11::TransVariant1295 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1296 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1297 };
1298
1299 // Associate a predicate with the SchedReadWrite that it guards.
1300 // RWIdx is the index of the read/write variant.
1301 struct PredCheck {
1302 bool IsRead;
1303 unsigned RWIdx;
1304 Record *Predicate;
1305
PredCheck__anon8a23da580a11::PredCheck1306 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1307 };
1308
1309 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1310 struct PredTransition {
1311 // A predicate term is a conjunction of PredChecks.
1312 SmallVector<PredCheck, 4> PredTerm;
1313 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1314 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1315 unsigned ProcIndex = 0;
1316
1317 PredTransition() = default;
PredTransition__anon8a23da580a11::PredTransition1318 PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
1319 PredTerm.assign(PT.begin(), PT.end());
1320 ProcIndex = ProcId;
1321 }
1322 };
1323
1324 // Encapsulate a set of partially constructed transitions.
1325 // The results are built by repeated calls to substituteVariants.
1326 class PredTransitions {
1327 CodeGenSchedModels &SchedModels;
1328
1329 public:
1330 std::vector<PredTransition> TransVec;
1331
PredTransitions(CodeGenSchedModels & sm)1332 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1333
1334 bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1335 bool IsRead, unsigned StartIdx);
1336
1337 bool substituteVariants(const PredTransition &Trans);
1338
1339 #ifndef NDEBUG
1340 void dump() const;
1341 #endif
1342
1343 private:
1344 bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds,
1345 ArrayRef<PredCheck> Term);
1346 void getIntersectingVariants(
1347 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1348 std::vector<TransVariant> &IntersectingVariants);
1349 void pushVariant(const TransVariant &VInfo, bool IsRead);
1350 };
1351
1352 } // end anonymous namespace
1353
1354 // Return true if this predicate is mutually exclusive with a PredTerm. This
1355 // degenerates into checking if the predicate is mutually exclusive with any
1356 // predicate in the Term's conjunction.
1357 //
1358 // All predicates associated with a given SchedRW are considered mutually
1359 // exclusive. This should work even if the conditions expressed by the
1360 // predicates are not exclusive because the predicates for a given SchedWrite
1361 // are always checked in the order they are defined in the .td file. Later
1362 // conditions implicitly negate any prior condition.
mutuallyExclusive(Record * PredDef,ArrayRef<Record * > Preds,ArrayRef<PredCheck> Term)1363 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1364 ArrayRef<Record *> Preds,
1365 ArrayRef<PredCheck> Term) {
1366 for (const PredCheck &PC: Term) {
1367 if (PC.Predicate == PredDef)
1368 return false;
1369
1370 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1371 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1372 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1373 if (any_of(Variants, [PredDef](const Record *R) {
1374 return R->getValueAsDef("Predicate") == PredDef;
1375 })) {
1376 // To check if PredDef is mutually exclusive with PC we also need to
1377 // check that PC.Predicate is exclusive with all predicates from variant
1378 // we're expanding. Consider following RW sequence with two variants
1379 // (1 & 2), where A, B and C are predicates from corresponding SchedVars:
1380 //
1381 // 1:A/B - 2:C/B
1382 //
1383 // Here C is not mutually exclusive with variant (1), because A doesn't
1384 // exist in variant (2). This means we have possible transitions from A
1385 // to C and from A to B, and fully expanded sequence would look like:
1386 //
1387 // if (A & C) return ...;
1388 // if (A & B) return ...;
1389 // if (B) return ...;
1390 //
1391 // Now let's consider another sequence:
1392 //
1393 // 1:A/B - 2:A/B
1394 //
1395 // Here A in variant (2) is mutually exclusive with variant (1), because
1396 // A also exists in (2). This means A->B transition is impossible and
1397 // expanded sequence would look like:
1398 //
1399 // if (A) return ...;
1400 // if (B) return ...;
1401 if (!count(Preds, PC.Predicate))
1402 continue;
1403 return true;
1404 }
1405 }
1406 return false;
1407 }
1408
getAllPredicates(ArrayRef<TransVariant> Variants,unsigned ProcId)1409 static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants,
1410 unsigned ProcId) {
1411 std::vector<Record *> Preds;
1412 for (auto &Variant : Variants) {
1413 if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
1414 continue;
1415 Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
1416 }
1417 return Preds;
1418 }
1419
1420 // Populate IntersectingVariants with any variants or aliased sequences of the
1421 // given SchedRW whose processor indices and predicates are not mutually
1422 // exclusive with the given transition.
getIntersectingVariants(const CodeGenSchedRW & SchedRW,unsigned TransIdx,std::vector<TransVariant> & IntersectingVariants)1423 void PredTransitions::getIntersectingVariants(
1424 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1425 std::vector<TransVariant> &IntersectingVariants) {
1426
1427 bool GenericRW = false;
1428
1429 std::vector<TransVariant> Variants;
1430 if (SchedRW.HasVariants) {
1431 unsigned VarProcIdx = 0;
1432 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1433 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1434 VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1435 }
1436 if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
1437 // Push each variant. Assign TransVecIdx later.
1438 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1439 for (Record *VarDef : VarDefs)
1440 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1441 if (VarProcIdx == 0)
1442 GenericRW = true;
1443 }
1444 }
1445 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1446 AI != AE; ++AI) {
1447 // If either the SchedAlias itself or the SchedReadWrite that it aliases
1448 // to is defined within a processor model, constrain all variants to
1449 // that processor.
1450 unsigned AliasProcIdx = 0;
1451 if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1452 Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1453 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1454 }
1455 if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
1456 continue;
1457 if (!Variants.empty()) {
1458 const CodeGenProcModel &PM =
1459 *(SchedModels.procModelBegin() + AliasProcIdx);
1460 PrintFatalError((*AI)->getLoc(),
1461 "Multiple variants defined for processor " +
1462 PM.ModelName +
1463 " Ensure only one SchedAlias exists per RW.");
1464 }
1465
1466 const CodeGenSchedRW &AliasRW =
1467 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1468
1469 if (AliasRW.HasVariants) {
1470 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1471 for (Record *VD : VarDefs)
1472 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1473 }
1474 if (AliasRW.IsSequence)
1475 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1476 if (AliasProcIdx == 0)
1477 GenericRW = true;
1478 }
1479 std::vector<Record *> AllPreds =
1480 getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
1481 for (TransVariant &Variant : Variants) {
1482 // Don't expand variants if the processor models don't intersect.
1483 // A zero processor index means any processor.
1484 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1485 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1486 if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
1487 continue;
1488 }
1489
1490 if (IntersectingVariants.empty()) {
1491 // The first variant builds on the existing transition.
1492 Variant.TransVecIdx = TransIdx;
1493 IntersectingVariants.push_back(Variant);
1494 }
1495 else {
1496 // Push another copy of the current transition for more variants.
1497 Variant.TransVecIdx = TransVec.size();
1498 IntersectingVariants.push_back(Variant);
1499 TransVec.push_back(TransVec[TransIdx]);
1500 }
1501 }
1502 if (GenericRW && IntersectingVariants.empty()) {
1503 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1504 "a matching predicate on any processor");
1505 }
1506 }
1507
1508 // Push the Reads/Writes selected by this variant onto the PredTransition
1509 // specified by VInfo.
1510 void PredTransitions::
pushVariant(const TransVariant & VInfo,bool IsRead)1511 pushVariant(const TransVariant &VInfo, bool IsRead) {
1512 PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1513
1514 // If this operand transition is reached through a processor-specific alias,
1515 // then the whole transition is specific to this processor.
1516 IdxVec SelectedRWs;
1517 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1518 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1519 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1520 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1521 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1522 }
1523 else {
1524 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1525 "variant must be a SchedVariant or aliased WriteSequence");
1526 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1527 }
1528
1529 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1530
1531 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1532 ? Trans.ReadSequences : Trans.WriteSequences;
1533 if (SchedRW.IsVariadic) {
1534 unsigned OperIdx = RWSequences.size()-1;
1535 // Make N-1 copies of this transition's last sequence.
1536 RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
1537 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1538 RWSequences[OperIdx]);
1539 // Push each of the N elements of the SelectedRWs onto a copy of the last
1540 // sequence (split the current operand into N operands).
1541 // Note that write sequences should be expanded within this loop--the entire
1542 // sequence belongs to a single operand.
1543 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1544 RWI != RWE; ++RWI, ++OperIdx) {
1545 IdxVec ExpandedRWs;
1546 if (IsRead)
1547 ExpandedRWs.push_back(*RWI);
1548 else
1549 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1550 llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
1551 }
1552 assert(OperIdx == RWSequences.size() && "missed a sequence");
1553 }
1554 else {
1555 // Push this transition's expanded sequence onto this transition's last
1556 // sequence (add to the current operand's sequence).
1557 SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1558 IdxVec ExpandedRWs;
1559 for (unsigned int SelectedRW : SelectedRWs) {
1560 if (IsRead)
1561 ExpandedRWs.push_back(SelectedRW);
1562 else
1563 SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead);
1564 }
1565 llvm::append_range(Seq, ExpandedRWs);
1566 }
1567 }
1568
1569 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1570 // operand. StartIdx is an index into TransVec where partial results
1571 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1572 // of TransVec.
substituteVariantOperand(const SmallVectorImpl<unsigned> & RWSeq,bool IsRead,unsigned StartIdx)1573 bool PredTransitions::substituteVariantOperand(
1574 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1575 bool Subst = false;
1576 // Visit each original RW within the current sequence.
1577 for (unsigned int RWI : RWSeq) {
1578 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead);
1579 // Push this RW on all partial PredTransitions or distribute variants.
1580 // New PredTransitions may be pushed within this loop which should not be
1581 // revisited (TransEnd must be loop invariant).
1582 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1583 TransIdx != TransEnd; ++TransIdx) {
1584 // Distribute this partial PredTransition across intersecting variants.
1585 // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1586 std::vector<TransVariant> IntersectingVariants;
1587 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1588 // Now expand each variant on top of its copy of the transition.
1589 for (const TransVariant &IV : IntersectingVariants)
1590 pushVariant(IV, IsRead);
1591 if (IntersectingVariants.empty()) {
1592 if (IsRead)
1593 TransVec[TransIdx].ReadSequences.back().push_back(RWI);
1594 else
1595 TransVec[TransIdx].WriteSequences.back().push_back(RWI);
1596 continue;
1597 } else {
1598 Subst = true;
1599 }
1600 }
1601 }
1602 return Subst;
1603 }
1604
1605 // For each variant of a Read/Write in Trans, substitute the sequence of
1606 // Read/Writes guarded by the variant. This is exponential in the number of
1607 // variant Read/Writes, but in practice detection of mutually exclusive
1608 // predicates should result in linear growth in the total number variants.
1609 //
1610 // This is one step in a breadth-first search of nested variants.
substituteVariants(const PredTransition & Trans)1611 bool PredTransitions::substituteVariants(const PredTransition &Trans) {
1612 // Build up a set of partial results starting at the back of
1613 // PredTransitions. Remember the first new transition.
1614 unsigned StartIdx = TransVec.size();
1615 bool Subst = false;
1616 assert(Trans.ProcIndex != 0);
1617 TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
1618
1619 // Visit each original write sequence.
1620 for (const auto &WriteSequence : Trans.WriteSequences) {
1621 // Push a new (empty) write sequence onto all partial Transitions.
1622 for (std::vector<PredTransition>::iterator I =
1623 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1624 I->WriteSequences.emplace_back();
1625 }
1626 Subst |=
1627 substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx);
1628 }
1629 // Visit each original read sequence.
1630 for (const auto &ReadSequence : Trans.ReadSequences) {
1631 // Push a new (empty) read sequence onto all partial Transitions.
1632 for (std::vector<PredTransition>::iterator I =
1633 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1634 I->ReadSequences.emplace_back();
1635 }
1636 Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx);
1637 }
1638 return Subst;
1639 }
1640
addSequences(CodeGenSchedModels & SchedModels,const SmallVectorImpl<SmallVector<unsigned,4>> & Seqs,IdxVec & Result,bool IsRead)1641 static void addSequences(CodeGenSchedModels &SchedModels,
1642 const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
1643 IdxVec &Result, bool IsRead) {
1644 for (const auto &S : Seqs)
1645 if (!S.empty())
1646 Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
1647 }
1648
1649 #ifndef NDEBUG
dumpRecVec(const RecVec & RV)1650 static void dumpRecVec(const RecVec &RV) {
1651 for (const Record *R : RV)
1652 dbgs() << R->getName() << ", ";
1653 }
1654 #endif
1655
dumpTransition(const CodeGenSchedModels & SchedModels,const CodeGenSchedClass & FromSC,const CodeGenSchedTransition & SCTrans,const RecVec & Preds)1656 static void dumpTransition(const CodeGenSchedModels &SchedModels,
1657 const CodeGenSchedClass &FromSC,
1658 const CodeGenSchedTransition &SCTrans,
1659 const RecVec &Preds) {
1660 LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
1661 << FromSC.Index << ") to "
1662 << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
1663 << SCTrans.ToClassIdx << ") on pred term: (";
1664 dumpRecVec(Preds);
1665 dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
1666 }
1667 // Create a new SchedClass for each variant found by inferFromRW. Pass
inferFromTransitions(ArrayRef<PredTransition> LastTransitions,unsigned FromClassIdx,CodeGenSchedModels & SchedModels)1668 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1669 unsigned FromClassIdx,
1670 CodeGenSchedModels &SchedModels) {
1671 // For each PredTransition, create a new CodeGenSchedTransition, which usually
1672 // requires creating a new SchedClass.
1673 for (const auto &LastTransition : LastTransitions) {
1674 // Variant expansion (substituteVariants) may create unconditional
1675 // transitions. We don't need to build sched classes for them.
1676 if (LastTransition.PredTerm.empty())
1677 continue;
1678 IdxVec OperWritesVariant, OperReadsVariant;
1679 addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant,
1680 false);
1681 addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant,
1682 true);
1683 CodeGenSchedTransition SCTrans;
1684
1685 // Transition should not contain processor indices already assigned to
1686 // InstRWs in this scheduling class.
1687 const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
1688 if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex))
1689 continue;
1690 SCTrans.ProcIndex = LastTransition.ProcIndex;
1691 SCTrans.ToClassIdx =
1692 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1693 OperReadsVariant, LastTransition.ProcIndex);
1694
1695 // The final PredTerm is unique set of predicates guarding the transition.
1696 RecVec Preds;
1697 transform(LastTransition.PredTerm, std::back_inserter(Preds),
1698 [](const PredCheck &P) { return P.Predicate; });
1699 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1700 dumpTransition(SchedModels, FromSC, SCTrans, Preds);
1701 SCTrans.PredTerm = std::move(Preds);
1702 SchedModels.getSchedClass(FromClassIdx)
1703 .Transitions.push_back(std::move(SCTrans));
1704 }
1705 }
1706
getAllProcIndices() const1707 std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
1708 std::vector<unsigned> ProcIdVec;
1709 for (const auto &PM : ProcModelMap)
1710 if (PM.second != 0)
1711 ProcIdVec.push_back(PM.second);
1712 // The order of the keys (Record pointers) of ProcModelMap are not stable.
1713 // Sort to stabalize the values.
1714 llvm::sort(ProcIdVec);
1715 return ProcIdVec;
1716 }
1717
1718 static std::vector<PredTransition>
makePerProcessorTransitions(const PredTransition & Trans,ArrayRef<unsigned> ProcIndices)1719 makePerProcessorTransitions(const PredTransition &Trans,
1720 ArrayRef<unsigned> ProcIndices) {
1721 std::vector<PredTransition> PerCpuTransVec;
1722 for (unsigned ProcId : ProcIndices) {
1723 assert(ProcId != 0);
1724 PerCpuTransVec.push_back(Trans);
1725 PerCpuTransVec.back().ProcIndex = ProcId;
1726 }
1727 return PerCpuTransVec;
1728 }
1729
1730 // Create new SchedClasses for the given ReadWrite list. If any of the
1731 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1732 // of the ReadWrite list, following Aliases if necessary.
inferFromRW(ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads,unsigned FromClassIdx,ArrayRef<unsigned> ProcIndices)1733 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1734 ArrayRef<unsigned> OperReads,
1735 unsigned FromClassIdx,
1736 ArrayRef<unsigned> ProcIndices) {
1737 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1738 dbgs() << ") ");
1739 // Create a seed transition with an empty PredTerm and the expanded sequences
1740 // of SchedWrites for the current SchedClass.
1741 std::vector<PredTransition> LastTransitions;
1742 LastTransitions.emplace_back();
1743
1744 for (unsigned WriteIdx : OperWrites) {
1745 IdxVec WriteSeq;
1746 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1747 LastTransitions[0].WriteSequences.emplace_back();
1748 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1749 Seq.append(WriteSeq.begin(), WriteSeq.end());
1750 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1751 }
1752 LLVM_DEBUG(dbgs() << " Reads: ");
1753 for (unsigned ReadIdx : OperReads) {
1754 IdxVec ReadSeq;
1755 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1756 LastTransitions[0].ReadSequences.emplace_back();
1757 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1758 Seq.append(ReadSeq.begin(), ReadSeq.end());
1759 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1760 }
1761 LLVM_DEBUG(dbgs() << '\n');
1762
1763 LastTransitions = makePerProcessorTransitions(
1764 LastTransitions[0], llvm::is_contained(ProcIndices, 0)
1765 ? ArrayRef<unsigned>(getAllProcIndices())
1766 : ProcIndices);
1767 // Collect all PredTransitions for individual operands.
1768 // Iterate until no variant writes remain.
1769 bool SubstitutedAny;
1770 do {
1771 SubstitutedAny = false;
1772 PredTransitions Transitions(*this);
1773 for (const PredTransition &Trans : LastTransitions)
1774 SubstitutedAny |= Transitions.substituteVariants(Trans);
1775 LLVM_DEBUG(Transitions.dump());
1776 LastTransitions.swap(Transitions.TransVec);
1777 } while (SubstitutedAny);
1778
1779 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1780 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1781 inferFromTransitions(LastTransitions, FromClassIdx, *this);
1782 }
1783
1784 // Check if any processor resource group contains all resource records in
1785 // SubUnits.
hasSuperGroup(RecVec & SubUnits,CodeGenProcModel & PM)1786 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1787 for (Record *ProcResourceDef : PM.ProcResourceDefs) {
1788 if (!ProcResourceDef->isSubClassOf("ProcResGroup"))
1789 continue;
1790 RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources");
1791 RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1792 for ( ; RI != RE; ++RI) {
1793 if (!is_contained(SuperUnits, *RI)) {
1794 break;
1795 }
1796 }
1797 if (RI == RE)
1798 return true;
1799 }
1800 return false;
1801 }
1802
1803 // Verify that overlapping groups have a common supergroup.
verifyProcResourceGroups(CodeGenProcModel & PM)1804 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1805 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1806 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1807 continue;
1808 RecVec CheckUnits =
1809 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1810 for (unsigned j = i+1; j < e; ++j) {
1811 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1812 continue;
1813 RecVec OtherUnits =
1814 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1815 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1816 OtherUnits.begin(), OtherUnits.end())
1817 != CheckUnits.end()) {
1818 // CheckUnits and OtherUnits overlap
1819 llvm::append_range(OtherUnits, CheckUnits);
1820 if (!hasSuperGroup(OtherUnits, PM)) {
1821 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1822 "proc resource group overlaps with "
1823 + PM.ProcResourceDefs[j]->getName()
1824 + " but no supergroup contains both.");
1825 }
1826 }
1827 }
1828 }
1829 }
1830
1831 // Collect all the RegisterFile definitions available in this target.
collectRegisterFiles()1832 void CodeGenSchedModels::collectRegisterFiles() {
1833 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1834
1835 // RegisterFiles is the vector of CodeGenRegisterFile.
1836 for (Record *RF : RegisterFileDefs) {
1837 // For each register file definition, construct a CodeGenRegisterFile object
1838 // and add it to the appropriate scheduling model.
1839 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1840 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1841 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1842 CGRF.MaxMovesEliminatedPerCycle =
1843 RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1844 CGRF.AllowZeroMoveEliminationOnly =
1845 RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1846
1847 // Now set the number of physical registers as well as the cost of registers
1848 // in each register class.
1849 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1850 if (!CGRF.NumPhysRegs) {
1851 PrintFatalError(RF->getLoc(),
1852 "Invalid RegisterFile with zero physical registers");
1853 }
1854
1855 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1856 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1857 ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1858 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1859 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1860
1861 bool AllowMoveElim = false;
1862 if (MoveElimInfo->size() > I) {
1863 BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1864 AllowMoveElim = Val->getValue();
1865 }
1866
1867 CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1868 }
1869 }
1870 }
1871
1872 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
collectProcResources()1873 void CodeGenSchedModels::collectProcResources() {
1874 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1875 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1876
1877 // Add any subtarget-specific SchedReadWrites that are directly associated
1878 // with processor resources. Refer to the parent SchedClass's ProcIndices to
1879 // determine which processors they apply to.
1880 for (const CodeGenSchedClass &SC :
1881 make_range(schedClassBegin(), schedClassEnd())) {
1882 if (SC.ItinClassDef) {
1883 collectItinProcResources(SC.ItinClassDef);
1884 continue;
1885 }
1886
1887 // This class may have a default ReadWrite list which can be overriden by
1888 // InstRW definitions.
1889 for (Record *RW : SC.InstRWs) {
1890 Record *RWModelDef = RW->getValueAsDef("SchedModel");
1891 unsigned PIdx = getProcModel(RWModelDef).Index;
1892 IdxVec Writes, Reads;
1893 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1894 collectRWResources(Writes, Reads, PIdx);
1895 }
1896
1897 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1898 }
1899 // Add resources separately defined by each subtarget.
1900 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1901 for (Record *WR : WRDefs) {
1902 Record *ModelDef = WR->getValueAsDef("SchedModel");
1903 addWriteRes(WR, getProcModel(ModelDef).Index);
1904 }
1905 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1906 for (Record *SWR : SWRDefs) {
1907 Record *ModelDef = SWR->getValueAsDef("SchedModel");
1908 addWriteRes(SWR, getProcModel(ModelDef).Index);
1909 }
1910 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1911 for (Record *RA : RADefs) {
1912 Record *ModelDef = RA->getValueAsDef("SchedModel");
1913 addReadAdvance(RA, getProcModel(ModelDef).Index);
1914 }
1915 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1916 for (Record *SRA : SRADefs) {
1917 if (SRA->getValueInit("SchedModel")->isComplete()) {
1918 Record *ModelDef = SRA->getValueAsDef("SchedModel");
1919 addReadAdvance(SRA, getProcModel(ModelDef).Index);
1920 }
1921 }
1922 // Add ProcResGroups that are defined within this processor model, which may
1923 // not be directly referenced but may directly specify a buffer size.
1924 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1925 for (Record *PRG : ProcResGroups) {
1926 if (!PRG->getValueInit("SchedModel")->isComplete())
1927 continue;
1928 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1929 if (!is_contained(PM.ProcResourceDefs, PRG))
1930 PM.ProcResourceDefs.push_back(PRG);
1931 }
1932 // Add ProcResourceUnits unconditionally.
1933 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1934 if (!PRU->getValueInit("SchedModel")->isComplete())
1935 continue;
1936 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1937 if (!is_contained(PM.ProcResourceDefs, PRU))
1938 PM.ProcResourceDefs.push_back(PRU);
1939 }
1940 // Finalize each ProcModel by sorting the record arrays.
1941 for (CodeGenProcModel &PM : ProcModels) {
1942 llvm::sort(PM.WriteResDefs, LessRecord());
1943 llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1944 llvm::sort(PM.ProcResourceDefs, LessRecord());
1945 LLVM_DEBUG(
1946 PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef
1947 : PM.WriteResDefs) {
1948 if (WriteResDef->isSubClassOf("WriteRes"))
1949 dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " ";
1950 else
1951 dbgs() << WriteResDef->getName() << " ";
1952 } dbgs() << "\nReadAdvanceDefs: ";
1953 for (Record *ReadAdvanceDef
1954 : PM.ReadAdvanceDefs) {
1955 if (ReadAdvanceDef->isSubClassOf("ReadAdvance"))
1956 dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName()
1957 << " ";
1958 else
1959 dbgs() << ReadAdvanceDef->getName() << " ";
1960 } dbgs()
1961 << "\nProcResourceDefs: ";
1962 for (Record *ProcResourceDef
1963 : PM.ProcResourceDefs) {
1964 dbgs() << ProcResourceDef->getName() << " ";
1965 } dbgs()
1966 << '\n');
1967 verifyProcResourceGroups(PM);
1968 }
1969
1970 ProcResourceDefs.clear();
1971 ProcResGroups.clear();
1972 }
1973
checkCompleteness()1974 void CodeGenSchedModels::checkCompleteness() {
1975 bool Complete = true;
1976 bool HadCompleteModel = false;
1977 for (const CodeGenProcModel &ProcModel : procModels()) {
1978 const bool HasItineraries = ProcModel.hasItineraries();
1979 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1980 continue;
1981 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1982 if (Inst->hasNoSchedulingInfo)
1983 continue;
1984 if (ProcModel.isUnsupported(*Inst))
1985 continue;
1986 unsigned SCIdx = getSchedClassIdx(*Inst);
1987 if (!SCIdx) {
1988 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1989 PrintError(Inst->TheDef->getLoc(),
1990 "No schedule information for instruction '" +
1991 Inst->TheDef->getName() + "' in SchedMachineModel '" +
1992 ProcModel.ModelDef->getName() + "'");
1993 Complete = false;
1994 }
1995 continue;
1996 }
1997
1998 const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1999 if (!SC.Writes.empty())
2000 continue;
2001 if (HasItineraries && SC.ItinClassDef != nullptr &&
2002 SC.ItinClassDef->getName() != "NoItinerary")
2003 continue;
2004
2005 const RecVec &InstRWs = SC.InstRWs;
2006 auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
2007 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
2008 });
2009 if (I == InstRWs.end()) {
2010 PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
2011 "' lacks information for '" +
2012 Inst->TheDef->getName() + "'");
2013 Complete = false;
2014 }
2015 }
2016 HadCompleteModel = true;
2017 }
2018 if (!Complete) {
2019 errs() << "\n\nIncomplete schedule models found.\n"
2020 << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
2021 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
2022 << "- Instructions should usually have Sched<[...]> as a superclass, "
2023 "you may temporarily use an empty list.\n"
2024 << "- Instructions related to unsupported features can be excluded with "
2025 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
2026 "processor model.\n\n";
2027 PrintFatalError("Incomplete schedule model");
2028 }
2029 }
2030
2031 // Collect itinerary class resources for each processor.
collectItinProcResources(Record * ItinClassDef)2032 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
2033 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
2034 const CodeGenProcModel &PM = ProcModels[PIdx];
2035 // For all ItinRW entries.
2036 bool HasMatch = false;
2037 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
2038 II != IE; ++II) {
2039 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
2040 if (!llvm::is_contained(Matched, ItinClassDef))
2041 continue;
2042 if (HasMatch)
2043 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
2044 + ItinClassDef->getName()
2045 + " in ItinResources for " + PM.ModelName);
2046 HasMatch = true;
2047 IdxVec Writes, Reads;
2048 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2049 collectRWResources(Writes, Reads, PIdx);
2050 }
2051 }
2052 }
2053
collectRWResources(unsigned RWIdx,bool IsRead,ArrayRef<unsigned> ProcIndices)2054 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2055 ArrayRef<unsigned> ProcIndices) {
2056 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2057 if (SchedRW.TheDef) {
2058 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2059 for (unsigned Idx : ProcIndices)
2060 addWriteRes(SchedRW.TheDef, Idx);
2061 }
2062 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2063 for (unsigned Idx : ProcIndices)
2064 addReadAdvance(SchedRW.TheDef, Idx);
2065 }
2066 }
2067 for (auto *Alias : SchedRW.Aliases) {
2068 IdxVec AliasProcIndices;
2069 if (Alias->getValueInit("SchedModel")->isComplete()) {
2070 AliasProcIndices.push_back(
2071 getProcModel(Alias->getValueAsDef("SchedModel")).Index);
2072 } else
2073 AliasProcIndices = ProcIndices;
2074 const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW"));
2075 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2076
2077 IdxVec ExpandedRWs;
2078 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2079 for (unsigned int ExpandedRW : ExpandedRWs) {
2080 collectRWResources(ExpandedRW, IsRead, AliasProcIndices);
2081 }
2082 }
2083 }
2084
2085 // Collect resources for a set of read/write types and processor indices.
collectRWResources(ArrayRef<unsigned> Writes,ArrayRef<unsigned> Reads,ArrayRef<unsigned> ProcIndices)2086 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2087 ArrayRef<unsigned> Reads,
2088 ArrayRef<unsigned> ProcIndices) {
2089 for (unsigned Idx : Writes)
2090 collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2091
2092 for (unsigned Idx : Reads)
2093 collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2094 }
2095
2096 // Find the processor's resource units for this kind of resource.
findProcResUnits(Record * ProcResKind,const CodeGenProcModel & PM,ArrayRef<SMLoc> Loc) const2097 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2098 const CodeGenProcModel &PM,
2099 ArrayRef<SMLoc> Loc) const {
2100 if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2101 return ProcResKind;
2102
2103 Record *ProcUnitDef = nullptr;
2104 assert(!ProcResourceDefs.empty());
2105 assert(!ProcResGroups.empty());
2106
2107 for (Record *ProcResDef : ProcResourceDefs) {
2108 if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2109 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2110 if (ProcUnitDef) {
2111 PrintFatalError(Loc,
2112 "Multiple ProcessorResourceUnits associated with "
2113 + ProcResKind->getName());
2114 }
2115 ProcUnitDef = ProcResDef;
2116 }
2117 }
2118 for (Record *ProcResGroup : ProcResGroups) {
2119 if (ProcResGroup == ProcResKind
2120 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2121 if (ProcUnitDef) {
2122 PrintFatalError(Loc,
2123 "Multiple ProcessorResourceUnits associated with "
2124 + ProcResKind->getName());
2125 }
2126 ProcUnitDef = ProcResGroup;
2127 }
2128 }
2129 if (!ProcUnitDef) {
2130 PrintFatalError(Loc,
2131 "No ProcessorResources associated with "
2132 + ProcResKind->getName());
2133 }
2134 return ProcUnitDef;
2135 }
2136
2137 // Iteratively add a resource and its super resources.
addProcResource(Record * ProcResKind,CodeGenProcModel & PM,ArrayRef<SMLoc> Loc)2138 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2139 CodeGenProcModel &PM,
2140 ArrayRef<SMLoc> Loc) {
2141 while (true) {
2142 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2143
2144 // See if this ProcResource is already associated with this processor.
2145 if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2146 return;
2147
2148 PM.ProcResourceDefs.push_back(ProcResUnits);
2149 if (ProcResUnits->isSubClassOf("ProcResGroup"))
2150 return;
2151
2152 if (!ProcResUnits->getValueInit("Super")->isComplete())
2153 return;
2154
2155 ProcResKind = ProcResUnits->getValueAsDef("Super");
2156 }
2157 }
2158
2159 // Add resources for a SchedWrite to this processor if they don't exist.
addWriteRes(Record * ProcWriteResDef,unsigned PIdx)2160 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2161 assert(PIdx && "don't add resources to an invalid Processor model");
2162
2163 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2164 if (is_contained(WRDefs, ProcWriteResDef))
2165 return;
2166 WRDefs.push_back(ProcWriteResDef);
2167
2168 // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2169 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2170 for (auto *ProcResDef : ProcResDefs) {
2171 addProcResource(ProcResDef, ProcModels[PIdx], ProcWriteResDef->getLoc());
2172 }
2173 }
2174
2175 // Add resources for a ReadAdvance to this processor if they don't exist.
addReadAdvance(Record * ProcReadAdvanceDef,unsigned PIdx)2176 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2177 unsigned PIdx) {
2178 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2179 if (is_contained(RADefs, ProcReadAdvanceDef))
2180 return;
2181 RADefs.push_back(ProcReadAdvanceDef);
2182 }
2183
getProcResourceIdx(Record * PRDef) const2184 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2185 RecIter PRPos = find(ProcResourceDefs, PRDef);
2186 if (PRPos == ProcResourceDefs.end())
2187 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2188 "the ProcResources list for " + ModelName);
2189 // Idx=0 is reserved for invalid.
2190 return 1 + (PRPos - ProcResourceDefs.begin());
2191 }
2192
isUnsupported(const CodeGenInstruction & Inst) const2193 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2194 for (const Record *TheDef : UnsupportedFeaturesDefs) {
2195 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2196 if (TheDef->getName() == PredDef->getName())
2197 return true;
2198 }
2199 }
2200 return false;
2201 }
2202
2203 #ifndef NDEBUG
dump() const2204 void CodeGenProcModel::dump() const {
2205 dbgs() << Index << ": " << ModelName << " "
2206 << (ModelDef ? ModelDef->getName() : "inferred") << " "
2207 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2208 }
2209
dump() const2210 void CodeGenSchedRW::dump() const {
2211 dbgs() << Name << (IsVariadic ? " (V) " : " ");
2212 if (IsSequence) {
2213 dbgs() << "(";
2214 dumpIdxVec(Sequence);
2215 dbgs() << ")";
2216 }
2217 }
2218
dump(const CodeGenSchedModels * SchedModels) const2219 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2220 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2221 << " Writes: ";
2222 for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2223 SchedModels->getSchedWrite(Writes[i]).dump();
2224 if (i < N-1) {
2225 dbgs() << '\n';
2226 dbgs().indent(10);
2227 }
2228 }
2229 dbgs() << "\n Reads: ";
2230 for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2231 SchedModels->getSchedRead(Reads[i]).dump();
2232 if (i < N-1) {
2233 dbgs() << '\n';
2234 dbgs().indent(10);
2235 }
2236 }
2237 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices);
2238 if (!Transitions.empty()) {
2239 dbgs() << "\n Transitions for Proc ";
2240 for (const CodeGenSchedTransition &Transition : Transitions) {
2241 dbgs() << Transition.ProcIndex << ", ";
2242 }
2243 }
2244 dbgs() << '\n';
2245 }
2246
dump() const2247 void PredTransitions::dump() const {
2248 dbgs() << "Expanded Variants:\n";
2249 for (const auto &TI : TransVec) {
2250 dbgs() << "{";
2251 ListSeparator LS;
2252 for (const PredCheck &PC : TI.PredTerm)
2253 dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":"
2254 << PC.Predicate->getName();
2255 dbgs() << "},\n => {";
2256 for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator
2257 WSI = TI.WriteSequences.begin(),
2258 WSE = TI.WriteSequences.end();
2259 WSI != WSE; ++WSI) {
2260 dbgs() << "(";
2261 ListSeparator LS;
2262 for (unsigned N : *WSI)
2263 dbgs() << LS << SchedModels.getSchedWrite(N).Name;
2264 dbgs() << "),";
2265 }
2266 dbgs() << "}\n";
2267 }
2268 }
2269 #endif // NDEBUG
2270