1;;;; the usual place for DEF-IR1-TRANSLATOR forms (and their 2;;;; close personal friends) 3 4;;;; This software is part of the SBCL system. See the README file for 5;;;; more information. 6;;;; 7;;;; This software is derived from the CMU CL system, which was 8;;;; written at Carnegie Mellon University and released into the 9;;;; public domain. The software is in the public domain and is 10;;;; provided with absolutely no warranty. See the COPYING and CREDITS 11;;;; files for more information. 12 13(in-package "SB!C") 14 15;;;; special forms for control 16 17(def-ir1-translator progn ((&rest forms) start next result) 18 #!+sb-doc 19 "PROGN form* 20 21Evaluates each FORM in order, returning the values of the last form. With no 22forms, returns NIL." 23 (ir1-convert-progn-body start next result forms)) 24 25(def-ir1-translator if ((test then &optional else) start next result) 26 #!+sb-doc 27 "IF predicate then [else] 28 29If PREDICATE evaluates to true, evaluate THEN and return its values, 30otherwise evaluate ELSE and return its values. ELSE defaults to NIL." 31 (let* ((pred-ctran (make-ctran)) 32 (pred-lvar (make-lvar)) 33 (then-ctran (make-ctran)) 34 (then-block (ctran-starts-block then-ctran)) 35 (else-ctran (make-ctran)) 36 (else-block (ctran-starts-block else-ctran)) 37 (maybe-instrument *instrument-if-for-code-coverage*) 38 (*instrument-if-for-code-coverage* t) 39 (node (make-if :test pred-lvar 40 :consequent then-block 41 :alternative else-block))) 42 ;; IR1-CONVERT-MAYBE-PREDICATE requires DEST to be CIF, so the 43 ;; order of the following two forms is important 44 (setf (lvar-dest pred-lvar) node) 45 (multiple-value-bind (context count) (possible-rest-arg-context test) 46 (if context 47 (ir1-convert start pred-ctran pred-lvar `(%rest-true ,test ,context ,count)) 48 (ir1-convert start pred-ctran pred-lvar test))) 49 (link-node-to-previous-ctran node pred-ctran) 50 51 (let ((start-block (ctran-block pred-ctran))) 52 (setf (block-last start-block) node) 53 (ctran-starts-block next) 54 55 (link-blocks start-block then-block) 56 (link-blocks start-block else-block)) 57 58 (let ((path (best-sub-source-path test))) 59 (ir1-convert (if (and path maybe-instrument) 60 (let ((*current-path* path)) 61 (instrument-coverage then-ctran :then test)) 62 then-ctran) 63 next result then) 64 (ir1-convert (if (and path maybe-instrument) 65 (let ((*current-path* path)) 66 (instrument-coverage else-ctran :else test)) 67 else-ctran) 68 next result else)))) 69 70;;; To get even remotely sensible results for branch coverage 71;;; tracking, we need good source paths. If the macroexpansions 72;;; interfere enough the TEST of the conditional doesn't actually have 73;;; an original source location (e.g. (UNLESS FOO ...) -> (IF (NOT 74;;; FOO) ...). Look through the form, and try to find some subform 75;;; that has one. 76(defun best-sub-source-path (form) 77 (if (policy *lexenv* (= store-coverage-data 0)) 78 nil 79 (labels ((sub (form) 80 (or (get-source-path form) 81 (when (consp form) 82 (unless (eq 'quote (car form)) 83 (somesub form))))) 84 (somesub (forms) 85 (when (consp forms) 86 (or (sub (car forms)) 87 (somesub (cdr forms)))))) 88 (sub form)))) 89 90;;;; BLOCK and TAGBODY 91 92;;;; We make an ENTRY node to mark the start and a :ENTRY cleanup to 93;;;; mark its extent. When doing GO or RETURN-FROM, we emit an EXIT 94;;;; node. 95 96;;; Make a :ENTRY cleanup and emit an ENTRY node, then convert the 97;;; body in the modified environment. We make NEXT start a block now, 98;;; since if it was done later, the block would be in the wrong 99;;; environment. 100(def-ir1-translator block ((name &rest forms) start next result) 101 #!+sb-doc 102 "BLOCK name form* 103 104Evaluate the FORMS as a PROGN. Within the lexical scope of the body, 105RETURN-FROM can be used to exit the form." 106 (unless (symbolp name) 107 (compiler-error "The block name ~S is not a symbol." name)) 108 (start-block start) 109 (ctran-starts-block next) 110 (let* ((dummy (make-ctran)) 111 (entry (make-entry)) 112 (cleanup (make-cleanup :kind :block 113 :mess-up entry))) 114 (push entry (lambda-entries (lexenv-lambda *lexenv*))) 115 (setf (entry-cleanup entry) cleanup) 116 (link-node-to-previous-ctran entry start) 117 (use-ctran entry dummy) 118 119 (let* ((env-entry (list entry next result)) 120 (*lexenv* (make-lexenv :blocks (list (cons name env-entry)) 121 :cleanup cleanup))) 122 (ir1-convert-progn-body dummy next result forms)))) 123 124(def-ir1-translator return-from ((name &optional value) start next result) 125 #!+sb-doc 126 "RETURN-FROM block-name value-form 127 128Evaluate the VALUE-FORM, returning its values from the lexically enclosing 129block BLOCK-NAME. This is constrained to be used only within the dynamic 130extent of the block." 131 ;; old comment: 132 ;; We make NEXT start a block just so that it will have a block 133 ;; assigned. People assume that when they pass a ctran into 134 ;; IR1-CONVERT as NEXT, it will have a block when it is done. 135 ;; KLUDGE: Note that this block is basically fictitious. In the code 136 ;; (BLOCK B (RETURN-FROM B) (SETQ X 3)) 137 ;; it's the block which answers the question "which block is 138 ;; the (SETQ X 3) in?" when the right answer is that (SETQ X 3) is 139 ;; dead code and so doesn't really have a block at all. The existence 140 ;; of this block, and that way that it doesn't explicitly say 141 ;; "I'm actually nowhere at all" makes some logic (e.g. 142 ;; BLOCK-HOME-LAMBDA-OR-NULL) more obscure, and it might be better 143 ;; to get rid of it, perhaps using a special placeholder value 144 ;; to indicate the orphanedness of the code. 145 (ctran-starts-block next) 146 (let* ((found (or (lexenv-find name blocks) 147 (compiler-error "return for unknown block: ~S" name))) 148 (exit-ctran (second found)) 149 (value-ctran (make-ctran)) 150 (value-lvar (make-lvar)) 151 (entry (first found)) 152 (exit (make-exit :entry entry 153 :value value-lvar))) 154 (when (ctran-deleted-p exit-ctran) 155 (throw 'locall-already-let-converted exit-ctran)) 156 (setf (lvar-dest value-lvar) exit) 157 (ir1-convert start value-ctran value-lvar value) 158 (push exit (entry-exits entry)) 159 (link-node-to-previous-ctran exit value-ctran) 160 (let ((home-lambda (ctran-home-lambda-or-null start))) 161 (when home-lambda 162 (sset-adjoin entry (lambda-calls-or-closes home-lambda)))) 163 (use-continuation exit exit-ctran (third found)))) 164 165;;; Return a list of the segments of a TAGBODY. Each segment looks 166;;; like (<tag> <form>* (go <next tag>)). That is, we break up the 167;;; tagbody into segments of non-tag statements, and explicitly 168;;; represent the drop-through with a GO. The first segment has a 169;;; dummy NIL tag, since it represents code before the first tag. Note 170;;; however that NIL may appear as the tag of an inner segment. The 171;;; last segment (which may also be the first segment) ends in NIL 172;;; rather than a GO. 173(defun parse-tagbody (body) 174 (declare (list body)) 175 (collect ((tags) 176 (segments)) 177 (let ((current body)) 178 (loop 179 (let ((next-segment (member-if #'atom current))) 180 (unless next-segment 181 (segments `(,@current nil)) 182 (return)) 183 (let ((tag (car next-segment))) 184 (when (member tag (tags)) 185 (compiler-error 186 "The tag ~S appears more than once in a tagbody." 187 tag)) 188 (unless (or (symbolp tag) (integerp tag)) 189 (compiler-error "~S is not a legal go tag." tag)) 190 (tags tag) 191 (segments `(,@(ldiff current next-segment) (go ,tag)))) 192 (setq current (rest next-segment)))) 193 (mapcar #'cons (cons nil (tags)) (segments))))) 194 195;;; Set up the cleanup, emitting the entry node. Then make a block for 196;;; each tag, building up the tag list for LEXENV-TAGS as we go. 197;;; Finally, convert each segment with the precomputed Start and Cont 198;;; values. 199(def-ir1-translator tagbody ((&rest statements) start next result) 200 #!+sb-doc 201 "TAGBODY {tag | statement}* 202 203Define tags for use with GO. The STATEMENTS are evaluated in order, skipping 204TAGS, and NIL is returned. If a statement contains a GO to a defined TAG 205within the lexical scope of the form, then control is transferred to the next 206statement following that tag. A TAG must be an integer or a symbol. A 207STATEMENT must be a list. Other objects are illegal within the body." 208 (start-block start) 209 (ctran-starts-block next) 210 (let* ((dummy (make-ctran)) 211 (entry (make-entry)) 212 (segments (parse-tagbody statements)) 213 (cleanup (make-cleanup :kind :tagbody 214 :mess-up entry))) 215 (push entry (lambda-entries (lexenv-lambda *lexenv*))) 216 (setf (entry-cleanup entry) cleanup) 217 (link-node-to-previous-ctran entry start) 218 (use-ctran entry dummy) 219 220 (collect ((tags) 221 (starts) 222 (ctrans)) 223 (starts dummy) 224 (dolist (segment (rest segments)) 225 (let* ((tag-ctran (make-ctran)) 226 (tag (list (car segment) entry tag-ctran))) 227 (ctrans tag-ctran) 228 (starts tag-ctran) 229 (ctran-starts-block tag-ctran) 230 (tags tag))) 231 (ctrans next) 232 233 (let ((*lexenv* (make-lexenv :cleanup cleanup :tags (tags)))) 234 (mapc (lambda (segment start end) 235 (ir1-convert-progn-body start end 236 (when (eq end next) result) 237 (rest segment))) 238 segments (starts) (ctrans)))))) 239 240;;; Emit an EXIT node without any value. 241(def-ir1-translator go ((tag) start next result) 242 #!+sb-doc 243 "GO tag 244 245Transfer control to the named TAG in the lexically enclosing TAGBODY. This is 246constrained to be used only within the dynamic extent of the TAGBODY." 247 (ctran-starts-block next) 248 (let* ((found (or (lexenv-find tag tags :test #'eql) 249 (compiler-error "attempt to GO to nonexistent tag: ~S" 250 tag))) 251 (entry (first found)) 252 (exit (make-exit :entry entry))) 253 (push exit (entry-exits entry)) 254 (link-node-to-previous-ctran exit start) 255 (let ((home-lambda (ctran-home-lambda-or-null start))) 256 (when home-lambda 257 (sset-adjoin entry (lambda-calls-or-closes home-lambda)))) 258 (use-ctran exit (second found)))) 259 260;;;; translators for compiler-magic special forms 261 262;;; This handles EVAL-WHEN in non-top-level forms. (EVAL-WHENs in top 263;;; level forms are picked off and handled by PROCESS-TOPLEVEL-FORM, 264;;; so that they're never seen at this level.) 265;;; 266;;; ANSI "3.2.3.1 Processing of Top Level Forms" says that processing 267;;; of non-top-level EVAL-WHENs is very simple: 268;;; EVAL-WHEN forms cause compile-time evaluation only at top level. 269;;; Both :COMPILE-TOPLEVEL and :LOAD-TOPLEVEL situation specifications 270;;; are ignored for non-top-level forms. For non-top-level forms, an 271;;; eval-when specifying the :EXECUTE situation is treated as an 272;;; implicit PROGN including the forms in the body of the EVAL-WHEN 273;;; form; otherwise, the forms in the body are ignored. 274(def-ir1-translator eval-when ((situations &rest forms) start next result) 275 #!+sb-doc 276 "EVAL-WHEN (situation*) form* 277 278Evaluate the FORMS in the specified SITUATIONS (any of :COMPILE-TOPLEVEL, 279:LOAD-TOPLEVEL, or :EXECUTE, or (deprecated) COMPILE, LOAD, or EVAL)." 280 (multiple-value-bind (ct lt e) (parse-eval-when-situations situations) 281 (declare (ignore ct lt)) 282 (ir1-convert-progn-body start next result (and e forms))) 283 (values)) 284 285;;; common logic for MACROLET and SYMBOL-MACROLET 286;;; 287;;; Call DEFINITIONIZE-FUN on each element of DEFINITIONS to find its 288;;; in-lexenv representation, stuff the results into *LEXENV*, and 289;;; call FUN (with no arguments). 290(defun %funcall-in-foomacrolet-lexenv (definitionize-fun 291 definitionize-keyword 292 definitions 293 fun) 294 (declare (type function definitionize-fun fun) 295 (type (member :vars :funs) definitionize-keyword)) 296 (unless (listp definitions) 297 (compiler-error "Malformed ~s definitions: ~s" 298 (case definitionize-keyword 299 (:vars 'symbol-macrolet) 300 (:funs 'macrolet)) 301 definitions)) 302 (let* ((processed-definitions (mapcar definitionize-fun definitions)) 303 (*lexenv* (make-lexenv definitionize-keyword processed-definitions))) 304 ;; Do this after processing, since the definitions can be malformed. 305 (unless (= (length definitions) 306 (length (remove-duplicates definitions :key #'first))) 307 (compiler-style-warn "Duplicate definitions in ~S" definitions)) 308 ;; I wonder how much of an compiler performance penalty this 309 ;; non-constant keyword is. 310 (funcall fun definitionize-keyword processed-definitions))) 311 312;;; Tweak LEXENV to include the DEFINITIONS from a MACROLET, then 313;;; call FUN (with no arguments). 314;;; 315;;; This is split off from the IR1 convert method so that it can be 316;;; shared by the special-case top level MACROLET processing code, and 317;;; further split so that the special-case MACROLET processing code in 318;;; EVAL can likewise make use of it. 319(defun macrolet-definitionize-fun (context lexenv) 320 (flet ((fail (control &rest args) 321 (ecase context 322 (:compile (apply #'compiler-error control args)) 323 (:eval (error 'simple-program-error 324 :format-control control 325 :format-arguments args))))) 326 (lambda (definition) 327 (unless (list-of-length-at-least-p definition 2) 328 (fail "The list ~S is too short to be a legal local macro definition." 329 definition)) 330 (destructuring-bind (name arglist &body body) definition 331 (unless (symbolp name) 332 (fail "The local macro name ~S is not a symbol." name)) 333 (when (fboundp name) 334 (program-assert-symbol-home-package-unlocked 335 context name "binding ~A as a local macro")) 336 (unless (listp arglist) 337 (fail "The local macro argument list ~S is not a list." 338 arglist)) 339 `(,name macro . 340 ,(compile-in-lexenv 341 nil 342 (make-macro-lambda nil arglist body 'macrolet name) 343 lexenv)))))) 344 345(defun funcall-in-macrolet-lexenv (definitions fun context) 346 (%funcall-in-foomacrolet-lexenv 347 (macrolet-definitionize-fun context (make-restricted-lexenv *lexenv*)) 348 :funs 349 definitions 350 fun)) 351 352(def-ir1-translator macrolet ((definitions &rest body) start next result) 353 #!+sb-doc 354 "MACROLET ({(name lambda-list form*)}*) body-form* 355 356Evaluate the BODY-FORMS in an environment with the specified local macros 357defined. NAME is the local macro name, LAMBDA-LIST is a DEFMACRO style 358destructuring lambda list, and the FORMS evaluate to the expansion." 359 (funcall-in-macrolet-lexenv 360 definitions 361 (lambda (&key funs) 362 (declare (ignore funs)) 363 (ir1-translate-locally body start next result)) 364 :compile)) 365 366(defun symbol-macrolet-definitionize-fun (context) 367 (flet ((fail (control &rest args) 368 (ecase context 369 (:compile (apply #'compiler-error control args)) 370 (:eval (error 'simple-program-error 371 :format-control control 372 :format-arguments args))))) 373 (lambda (definition) 374 (unless (proper-list-of-length-p definition 2) 375 (fail "malformed symbol/expansion pair: ~S" definition)) 376 (destructuring-bind (name expansion) definition 377 (unless (symbolp name) 378 (fail "The local symbol macro name ~S is not a symbol." name)) 379 (when (or (boundp name) (eq (info :variable :kind name) :macro)) 380 (program-assert-symbol-home-package-unlocked 381 context name "binding ~A as a local symbol-macro")) 382 (let ((kind (info :variable :kind name))) 383 (when (member kind '(:special :constant :global)) 384 (fail "Attempt to bind a ~(~A~) variable with SYMBOL-MACROLET: ~S" 385 kind name))) 386 ;; A magical cons that MACROEXPAND-1 understands. 387 `(,name . (macro . ,expansion)))))) 388 389(defun funcall-in-symbol-macrolet-lexenv (definitions fun context) 390 (%funcall-in-foomacrolet-lexenv 391 (symbol-macrolet-definitionize-fun context) 392 :vars 393 definitions 394 fun)) 395 396(def-ir1-translator symbol-macrolet 397 ((macrobindings &body body) start next result) 398 #!+sb-doc 399 "SYMBOL-MACROLET ({(name expansion)}*) decl* form* 400 401Define the NAMES as symbol macros with the given EXPANSIONS. Within the 402body, references to a NAME will effectively be replaced with the EXPANSION." 403 (funcall-in-symbol-macrolet-lexenv 404 macrobindings 405 (lambda (&key vars) 406 (ir1-translate-locally body start next result :vars vars)) 407 :compile)) 408 409;;;; %PRIMITIVE 410;;;; 411;;;; Uses of %PRIMITIVE are either expanded into Lisp code or turned 412;;;; into a funny function. 413 414;;; Carefully evaluate a list of forms, returning a list of the results. 415(defun eval-info-args (args) 416 (declare (list args)) 417 (handler-case (mapcar #'eval args) 418 (error (condition) 419 (compiler-error "Lisp error during evaluation of info args:~%~A" 420 condition)))) 421 422;;; Convert to the %%PRIMITIVE funny function. The first argument is 423;;; the template, the second is a list of the results of any 424;;; codegen-info args, and the remaining arguments are the runtime 425;;; arguments. 426;;; 427;;; We do various error checking now so that we don't bomb out with 428;;; a fatal error during IR2 conversion. 429;;; 430;;; KLUDGE: It's confusing having multiple names floating around for 431;;; nearly the same concept: PRIMITIVE, TEMPLATE, VOP. Now that CMU 432;;; CL's *PRIMITIVE-TRANSLATORS* stuff is gone, we could call 433;;; primitives VOPs, rename TEMPLATE to VOP-TEMPLATE, rename 434;;; BACKEND-TEMPLATE-NAMES to BACKEND-VOPS, and rename %PRIMITIVE to 435;;; VOP or %VOP.. -- WHN 2001-06-11 436;;; FIXME: Look at doing this ^, it doesn't look too hard actually. 437(def-ir1-translator %primitive ((name &rest args) start next result) 438 (declare (type symbol name)) 439 (let* ((template (or (gethash name *backend-template-names*) 440 (bug "undefined primitive ~A" name))) 441 (required (length (template-arg-types template))) 442 (info (template-info-arg-count template)) 443 (min (+ required info)) 444 (nargs (length args))) 445 (if (template-more-args-type template) 446 (when (< nargs min) 447 (bug "Primitive ~A was called with ~R argument~:P, ~ 448 but wants at least ~R." 449 name 450 nargs 451 min)) 452 (unless (= nargs min) 453 (bug "Primitive ~A was called with ~R argument~:P, ~ 454 but wants exactly ~R." 455 name 456 nargs 457 min))) 458 459 (when (template-conditional-p template) 460 (bug "%PRIMITIVE was used with a conditional template.")) 461 462 (when (template-more-results-type template) 463 (bug "%PRIMITIVE was used with an unknown values template.")) 464 465 (ir1-convert start next result 466 `(%%primitive ',template 467 ',(eval-info-args 468 (subseq args required min)) 469 ,@(subseq args 0 required) 470 ,@(subseq args min))))) 471 472;;;; QUOTE 473 474(def-ir1-translator quote ((thing) start next result) 475 #!+sb-doc 476 "QUOTE value 477 478Return VALUE without evaluating it." 479 (reference-constant start next result thing)) 480 481(defun name-context () 482 ;; Name of the outermost non-NIL BLOCK, or the source namestring 483 ;; of the source file. 484 (let ((context 485 (or (car (find-if (lambda (b) 486 (let ((name (pop b))) 487 (and name 488 ;; KLUDGE: High debug adds this block on 489 ;; some platforms. 490 #!-unwind-to-frame-and-call-vop 491 (neq 'return-value-tag name) 492 ;; KLUDGE: CATCH produces blocks whose 493 ;; cleanup is :CATCH. 494 (neq :catch (cleanup-kind (entry-cleanup (pop b))))))) 495 (lexenv-blocks *lexenv*) :from-end t)) 496 *source-namestring* 497 (let* ((p (or sb!xc:*compile-file-truename* *load-truename*))) 498 (when p 499 #+sb-xc-host (lpnify-namestring (namestring p) (pathname-directory p) (pathname-type p)) 500 #-sb-xc-host (namestring p)))))) 501 (when context 502 (list :in context)))) 503 504;;;; FUNCTION and NAMED-LAMBDA 505(defun name-lambdalike (thing) 506 (case (car thing) 507 ((named-lambda) 508 (or (second thing) 509 `(lambda ,(strip-lambda-list (third thing) :name) ,(name-context)))) 510 ((lambda) 511 `(lambda ,(strip-lambda-list (second thing) :name) ,@(name-context))) 512 ((lambda-with-lexenv) 513 ;; FIXME: Get the original DEFUN name here. 514 `(lambda ,(fifth thing))) 515 (otherwise 516 (compiler-error "Not a valid lambda expression:~% ~S" 517 thing)))) 518 519(defun fun-name-leaf (thing) 520 (cond 521 ((typep thing 522 '(cons (member lambda named-lambda lambda-with-lexenv))) 523 (values (ir1-convert-lambdalike 524 thing :debug-name (name-lambdalike thing)) 525 t)) 526 ((legal-fun-name-p thing) 527 (values (find-lexically-apparent-fun 528 thing "as the argument to FUNCTION") 529 nil)) 530 (t 531 (compiler-error "~S is not a legal function name." thing)))) 532 533(def-ir1-translator %%allocate-closures ((&rest leaves) start next result) 534 (aver (eq result 'nil)) 535 (let ((lambdas leaves)) 536 (ir1-convert start next result `(%allocate-closures ',lambdas)) 537 (let ((allocator (node-dest (ctran-next start)))) 538 (dolist (lambda lambdas) 539 (setf (functional-allocator lambda) allocator))))) 540 541(defmacro with-fun-name-leaf ((leaf thing start &key global-function) &body body) 542 `(multiple-value-bind (,leaf allocate-p) 543 (if ,global-function 544 (find-global-fun ,thing t) 545 (fun-name-leaf ,thing)) 546 (if allocate-p 547 (let ((.new-start. (make-ctran))) 548 (ir1-convert ,start .new-start. nil `(%%allocate-closures ,leaf)) 549 (let ((,start .new-start.)) 550 ,@body)) 551 (locally 552 ,@body)))) 553 554(def-ir1-translator function ((thing) start next result) 555 #!+sb-doc 556 "FUNCTION name 557 558Return the lexically apparent definition of the function NAME. NAME may also 559be a lambda expression." 560 (with-fun-name-leaf (leaf thing start) 561 (reference-leaf start next result leaf))) 562 563;;; Like FUNCTION, but ignores local definitions and inline 564;;; expansions, and doesn't nag about undefined functions. 565;;; Used for optimizing things like (FUNCALL 'FOO). 566(def-ir1-translator global-function ((thing) start next result) 567 (with-fun-name-leaf (leaf thing start :global-function t) 568 (reference-leaf start next result leaf))) 569 570(defun constant-global-fun-name (thing) 571 (let ((constantp (sb!xc:constantp thing))) 572 (when constantp 573 (let ((name (constant-form-value thing))) 574 (when (legal-fun-name-p name) 575 name))))) 576 577(defun lvar-constant-global-fun-name (lvar) 578 (when (constant-lvar-p lvar) 579 (let ((name (lvar-value lvar))) 580 (when (legal-fun-name-p name) 581 name)))) 582 583(defun ensure-source-fun-form (source &optional give-up) 584 (let ((op (when (consp source) (car source)))) 585 (cond ((eq op '%coerce-callable-to-fun) 586 (ensure-source-fun-form (second source))) 587 ((member op '(function global-function lambda named-lambda)) 588 (values source nil)) 589 (t 590 (let ((cname (constant-global-fun-name source))) 591 (if cname 592 (values `(global-function ,cname) nil) 593 (values `(%coerce-callable-to-fun ,source) give-up))))))) 594 595(defun source-variable-or-else (lvar fallback) 596 (let ((uses (principal-lvar-use lvar)) leaf name) 597 (or (and (ref-p uses) 598 (leaf-has-source-name-p (setf leaf (ref-leaf uses))) 599 (symbolp (setf name (leaf-source-name leaf))) 600 ;; assume users don't hand-write gensyms 601 (symbol-package name) 602 name) 603 fallback))) 604 605(defun ensure-lvar-fun-form (lvar lvar-name &optional give-up) 606 (aver (and lvar-name (symbolp lvar-name))) 607 (if (csubtypep (lvar-type lvar) (specifier-type 'function)) 608 lvar-name 609 (let ((cname (lvar-constant-global-fun-name lvar))) 610 (cond (cname 611 `(global-function ,cname)) 612 (give-up 613 (give-up-ir1-transform 614 ;; No ~S here because if fallback is shown, it wants no quotes. 615 "~A is not known to be a function" 616 ;; LVAR-NAME is not what to show - if only it were that easy. 617 (source-variable-or-else lvar "callable expression"))) 618 (t 619 `(%coerce-callable-to-fun ,lvar-name)))))) 620 621;;;; FUNCALL 622(def-ir1-translator %funcall ((function &rest args) start next result) 623 ;; MACROEXPAND so that (LAMBDA ...) forms arriving here don't get an 624 ;; extra cast inserted for them. 625 (let ((function (%macroexpand function *lexenv*))) 626 (if (typep function '(cons (member function global-function) (cons t null))) 627 (with-fun-name-leaf (leaf (cadr function) start 628 :global-function (eq (car function) 629 'global-function)) 630 (ir1-convert start next result `(,leaf ,@args))) 631 (let ((ctran (make-ctran)) 632 (fun-lvar (make-lvar))) 633 (ir1-convert start ctran fun-lvar `(the function ,function)) 634 (ir1-convert-combination-args fun-lvar ctran next result args))))) 635 636;;; This source transform exists to reduce the amount of work for the 637;;; compiler. If the called function is a FUNCTION form, then convert 638;;; directly to %FUNCALL, instead of waiting around for type 639;;; inference. 640(define-source-transform funcall (function &rest args) 641 `(%funcall ,(ensure-source-fun-form function) ,@args)) 642 643(deftransform %coerce-callable-to-fun ((thing) * * :node node) 644 "optimize away possible call to FDEFINITION at runtime" 645 (ensure-lvar-fun-form thing 'thing t)) 646 647(define-source-transform %coerce-callable-to-fun (thing) 648 (ensure-source-fun-form thing t)) 649 650;;;; LET and LET* 651;;;; 652;;;; (LET and LET* can't be implemented as macros due to the fact that 653;;;; any pervasive declarations also affect the evaluation of the 654;;;; arguments.) 655 656;;; Given a list of binding specifiers in the style of LET, return: 657;;; 1. The list of var structures for the variables bound. 658;;; 2. The initial value form for each variable. 659;;; 660;;; The variable names are checked for legality and globally special 661;;; variables are marked as such. Context is the name of the form, for 662;;; error reporting purposes. 663(declaim (ftype (function (list symbol) (values list list)) 664 extract-let-vars)) 665(defun extract-let-vars (bindings context) 666 (collect ((vars) 667 (vals) 668 (names)) 669 (flet ((get-var (name) 670 (varify-lambda-arg name 671 (if (eq context 'let*) 672 nil 673 (names)) 674 context))) 675 (dolist (spec bindings) 676 (cond ((atom spec) 677 (let ((var (get-var spec))) 678 (vars var) 679 (names spec) 680 (vals nil))) 681 (t 682 (unless (proper-list-of-length-p spec 1 2) 683 (compiler-error "The ~S binding spec ~S is malformed." 684 context 685 spec)) 686 (let* ((name (first spec)) 687 (var (get-var name))) 688 (vars var) 689 (names name) 690 (vals (second spec))))))) 691 (dolist (name (names)) 692 (when (eq (info :variable :kind name) :macro) 693 (program-assert-symbol-home-package-unlocked 694 :compile name "lexically binding symbol-macro ~A"))) 695 (values (vars) (vals)))) 696 697(def-ir1-translator let ((bindings &body body) start next result) 698 #!+sb-doc 699 "LET ({(var [value]) | var}*) declaration* form* 700 701During evaluation of the FORMS, bind the VARS to the result of evaluating the 702VALUE forms. The variables are bound in parallel after all of the VALUES forms 703have been evaluated." 704 (cond ((null bindings) 705 (ir1-translate-locally body start next result)) 706 ((listp bindings) 707 (multiple-value-bind (forms decls) (parse-body body nil) 708 (multiple-value-bind (vars values) (extract-let-vars bindings 'let) 709 (binding* ((ctran (make-ctran)) 710 (fun-lvar (make-lvar)) 711 ((next result) 712 (processing-decls (decls vars nil next result 713 post-binding-lexenv) 714 (let ((fun (ir1-convert-lambda-body 715 forms 716 vars 717 :post-binding-lexenv post-binding-lexenv 718 :debug-name (debug-name 'let bindings)))) 719 (reference-leaf start ctran fun-lvar fun)) 720 (values next result)))) 721 (ir1-convert-combination-args fun-lvar ctran next result values))))) 722 (t 723 (compiler-error "Malformed LET bindings: ~S." bindings)))) 724 725(def-ir1-translator let* ((bindings &body body) 726 start next result) 727 #!+sb-doc 728 "LET* ({(var [value]) | var}*) declaration* form* 729 730Similar to LET, but the variables are bound sequentially, allowing each VALUE 731form to reference any of the previous VARS." 732 (if (listp bindings) 733 (multiple-value-bind (forms decls) (parse-body body nil) 734 (multiple-value-bind (vars values) (extract-let-vars bindings 'let*) 735 (processing-decls (decls vars nil next result post-binding-lexenv) 736 (ir1-convert-aux-bindings start 737 next 738 result 739 forms 740 vars 741 values 742 post-binding-lexenv)))) 743 (compiler-error "Malformed LET* bindings: ~S." bindings))) 744 745;;; logic shared between IR1 translators for LOCALLY, MACROLET, 746;;; and SYMBOL-MACROLET 747;;; 748;;; Note that all these things need to preserve toplevel-formness, 749;;; but we don't need to worry about that within an IR1 translator, 750;;; since toplevel-formness is picked off by PROCESS-TOPLEVEL-FOO 751;;; forms before we hit the IR1 transform level. 752(defun ir1-translate-locally (body start next result &key vars funs) 753 (declare (type ctran start next) (type (or lvar null) result) 754 (type list body)) 755 (multiple-value-bind (forms decls) (parse-body body nil) 756 (processing-decls (decls vars funs next result) 757 (ir1-convert-progn-body start next result forms)))) 758 759(def-ir1-translator locally ((&body body) start next result) 760 #!+sb-doc 761 "LOCALLY declaration* form* 762 763Sequentially evaluate the FORMS in a lexical environment where the 764DECLARATIONS have effect. If LOCALLY is a top level form, then the FORMS are 765also processed as top level forms." 766 (ir1-translate-locally body start next result)) 767 768;;;; FLET and LABELS 769 770;;; Given a list of local function specifications in the style of 771;;; FLET, return lists of the function names and of the lambdas which 772;;; are their definitions. 773;;; 774;;; The function names are checked for legality. CONTEXT is the name 775;;; of the form, for error reporting. 776(declaim (ftype (function (list symbol) (values list list)) extract-flet-vars)) 777(defun extract-flet-vars (definitions context) 778 (collect ((names) 779 (defs)) 780 (dolist (def definitions) 781 (when (or (atom def) (< (length def) 2)) 782 (compiler-error "The ~S definition spec ~S is malformed." context def)) 783 784 (let ((name (first def))) 785 (check-fun-name name) 786 (when (fboundp name) 787 (program-assert-symbol-home-package-unlocked 788 :compile name "binding ~A as a local function")) 789 (names name) 790 (multiple-value-bind (forms decls doc) (parse-body (cddr def) t) 791 (defs `(lambda ,(second def) 792 ,@(when doc (list doc)) 793 ,@decls 794 (block ,(fun-name-block-name name) 795 . ,forms)))))) 796 (values (names) (defs)))) 797 798(defun ir1-convert-fbindings (start next result funs body) 799 (let ((ctran (make-ctran)) 800 (dx-p (find-if #'leaf-dynamic-extent funs))) 801 (when dx-p 802 (ctran-starts-block ctran) 803 (ctran-starts-block next)) 804 (ir1-convert start ctran nil `(%%allocate-closures ,@funs)) 805 (cond (dx-p 806 (let* ((dummy (make-ctran)) 807 (entry (make-entry)) 808 (cleanup (make-cleanup :kind :dynamic-extent 809 :mess-up entry 810 :info (list (node-dest 811 (ctran-next start)))))) 812 (push entry (lambda-entries (lexenv-lambda *lexenv*))) 813 (setf (entry-cleanup entry) cleanup) 814 (link-node-to-previous-ctran entry ctran) 815 (use-ctran entry dummy) 816 817 (let ((*lexenv* (make-lexenv :cleanup cleanup))) 818 (ir1-convert-progn-body dummy next result body)))) 819 (t (ir1-convert-progn-body ctran next result body))))) 820 821(def-ir1-translator flet ((definitions &body body) 822 start next result) 823 #!+sb-doc 824 "FLET ({(name lambda-list declaration* form*)}*) declaration* body-form* 825 826Evaluate the BODY-FORMS with local function definitions. The bindings do 827not enclose the definitions; any use of NAME in the FORMS will refer to the 828lexically apparent function definition in the enclosing environment." 829 (multiple-value-bind (forms decls) (parse-body body nil) 830 (unless (listp definitions) 831 (compiler-error "Malformed FLET definitions: ~s" definitions)) 832 (multiple-value-bind (names defs) 833 (extract-flet-vars definitions 'flet) 834 (let ((fvars (mapcar (lambda (n d) 835 (ir1-convert-lambda 836 d :source-name n 837 :maybe-add-debug-catch t 838 :debug-name 839 (debug-name 'flet n t))) 840 names defs))) 841 (processing-decls (decls nil fvars next result) 842 (let ((*lexenv* (make-lexenv :funs (pairlis names fvars)))) 843 (ir1-convert-fbindings start next result fvars forms))))))) 844 845(def-ir1-translator labels ((definitions &body body) start next result) 846 #!+sb-doc 847 "LABELS ({(name lambda-list declaration* form*)}*) declaration* body-form* 848 849Evaluate the BODY-FORMS with local function definitions. The bindings enclose 850the new definitions, so the defined functions can call themselves or each 851other." 852 (multiple-value-bind (forms decls) (parse-body body nil) 853 (unless (listp definitions) 854 (compiler-error "Malformed LABELS definitions: ~s" definitions)) 855 (multiple-value-bind (names defs) 856 (extract-flet-vars definitions 'labels) 857 (let* (;; dummy LABELS functions, to be used as placeholders 858 ;; during construction of real LABELS functions 859 (placeholder-funs (mapcar (lambda (name) 860 (make-functional 861 :%source-name name 862 :%debug-name (debug-name 863 'labels-placeholder 864 name))) 865 names)) 866 ;; (like PAIRLIS but guaranteed to preserve ordering:) 867 (placeholder-fenv (mapcar #'cons names placeholder-funs)) 868 ;; the real LABELS functions, compiled in a LEXENV which 869 ;; includes the dummy LABELS functions 870 (real-funs 871 (let ((*lexenv* (make-lexenv :funs placeholder-fenv))) 872 (mapcar (lambda (name def) 873 (ir1-convert-lambda def 874 :source-name name 875 :maybe-add-debug-catch t 876 :debug-name (debug-name 'labels name t))) 877 names defs)))) 878 879 ;; Modify all the references to the dummy function leaves so 880 ;; that they point to the real function leaves. 881 (loop for real-fun in real-funs and 882 placeholder-cons in placeholder-fenv do 883 (substitute-leaf real-fun (cdr placeholder-cons)) 884 (setf (cdr placeholder-cons) real-fun)) 885 886 ;; Voila. 887 (processing-decls (decls nil real-funs next result) 888 (let ((*lexenv* (make-lexenv 889 ;; Use a proper FENV here (not the 890 ;; placeholder used earlier) so that if the 891 ;; lexical environment is used for inline 892 ;; expansion we'll get the right functions. 893 :funs (pairlis names real-funs)))) 894 (ir1-convert-fbindings start next result real-funs forms))))))) 895 896 897;;;; the THE special operator, and friends 898 899;;; A logic shared among THE and TRULY-THE. 900(defun the-in-policy (type value policy start next result) 901 (let ((type (if (ctype-p type) type 902 (compiler-values-specifier-type type)))) 903 (cond ((or (eq type *wild-type*) 904 (eq type *universal-type*) 905 (and (leaf-p value) 906 (values-subtypep (make-single-value-type (leaf-type value)) 907 type)) 908 (and (sb!xc:constantp value) 909 (or (not (values-type-p type)) 910 (values-type-may-be-single-value-p type)) 911 (ctypep (constant-form-value value) 912 (single-value-type type)))) 913 (ir1-convert start next result value)) 914 (t (let ((value-ctran (make-ctran)) 915 (value-lvar (make-lvar))) 916 (ir1-convert start value-ctran value-lvar value) 917 (let ((cast (make-cast value-lvar type policy))) 918 (link-node-to-previous-ctran cast value-ctran) 919 (setf (lvar-dest value-lvar) cast) 920 (use-continuation cast next result))))))) 921 922;;; Assert that FORM evaluates to the specified type (which may be a 923;;; VALUES type). TYPE may be a type specifier or (as a hack) a CTYPE. 924(def-ir1-translator the ((value-type form) start next result) 925 #!+sb-doc 926 "Specifies that the values returned by FORM conform to the VALUE-TYPE. 927 928CLHS specifies that the consequences are undefined if any result is 929not of the declared type, but SBCL treats declarations as assertions 930as long as SAFETY is at least 2, in which case incorrect type 931information will result in a runtime type-error instead of leading to 932eg. heap corruption. This is however expressly non-portable: use 933CHECK-TYPE instead of THE to catch type-errors at runtime. THE is best 934considered an optimization tool to inform the compiler about types it 935is unable to derive from other declared types." 936 (the-in-policy value-type form (lexenv-policy *lexenv*) start next result)) 937 938;;; This is like the THE special form, except that it believes 939;;; whatever you tell it. It will never generate a type check, but 940;;; will cause a warning if the compiler can prove the assertion is 941;;; wrong. 942;;; 943;;; For the benefit of code-walkers we also add a macro-expansion. (Using INFO 944;;; directly to get around safeguards for adding a macro-expansion for special 945;;; operator.) Because :FUNCTION :KIND remains :SPECIAL-FORM, the compiler 946;;; never uses the macro -- but manually calling its MACRO-FUNCTION or 947;;; MACROEXPANDing TRULY-THE forms does. 948(def-ir1-translator truly-the ((value-type form) start next result) 949 #!+sb-doc 950 "Specifies that the values returned by FORM conform to the 951VALUE-TYPE, and causes the compiler to trust this information 952unconditionally. 953 954Consequences are undefined if any result is not of the declared type 955-- typical symptoms including memory corruptions. Use with great 956care." 957 (the-in-policy value-type form **zero-typecheck-policy** start next result)) 958 959(def-ir1-translator bound-cast ((array bound index) start next result) 960 (let ((check-bound-tran (make-ctran)) 961 (index-ctran (make-ctran)) 962 (index-lvar (make-lvar))) 963 ;; CHECK-BOUND transform ensure that INDEX won't be evaluated twice 964 (ir1-convert start check-bound-tran nil `(%check-bound ,array ,bound ,index)) 965 (ir1-convert check-bound-tran index-ctran index-lvar index) 966 (let* ((check-bound-combination (ctran-use check-bound-tran)) 967 (array (first (combination-args check-bound-combination))) 968 (bound (second (combination-args check-bound-combination))) 969 (derived (constant-lvar-p bound)) 970 (type (specifier-type (if derived 971 `(integer 0 (,(lvar-value bound))) 972 '(and unsigned-byte fixnum)))) 973 (cast (make-bound-cast :value index-lvar 974 :asserted-type type 975 :type-to-check type 976 :derived-type (coerce-to-values type) 977 :check check-bound-combination 978 :derived derived 979 :array array 980 :bound bound))) 981 (link-node-to-previous-ctran cast index-ctran) 982 (setf (lvar-dest index-lvar) cast) 983 (use-continuation cast next result)))) 984#-sb-xc-host 985(setf (info :function :macro-function 'truly-the) 986 (lambda (whole env) 987 (declare (ignore env)) 988 `(the ,@(cdr whole)))) 989 990;;;; SETQ 991 992(defun explode-setq (form err-fun) 993 (collect ((sets)) 994 (do ((op (car form)) 995 (thing (cdr form) (cddr thing))) 996 ((endp thing) (sets)) 997 (if (endp (cdr thing)) 998 (funcall err-fun "odd number of args to ~A: ~S" op form) 999 (sets `(,op ,(first thing) ,(second thing))))))) 1000 1001;;; If there is a definition in LEXENV-VARS, just set that, otherwise 1002;;; look at the global information. If the name is for a constant, 1003;;; then error out. 1004(def-ir1-translator setq ((&whole source &rest things) start next result) 1005 (if (proper-list-of-length-p things 2) 1006 (let* ((name (first things)) 1007 (value-form (second things)) 1008 (leaf (or (lexenv-find name vars) (find-free-var name)))) 1009 (etypecase leaf 1010 (leaf 1011 (when (constant-p leaf) 1012 (compiler-error "~S is a constant and thus can't be set." name)) 1013 (when (lambda-var-p leaf) 1014 (let ((home-lambda (ctran-home-lambda-or-null start))) 1015 (when home-lambda 1016 (sset-adjoin leaf (lambda-calls-or-closes home-lambda)))) 1017 (when (lambda-var-ignorep leaf) 1018 ;; ANSI's definition of "Declaration IGNORE, IGNORABLE" 1019 ;; requires that this be a STYLE-WARNING, not a full warning. 1020 (compiler-style-warn 1021 "~S is being set even though it was declared to be ignored." 1022 name))) 1023 (if (and (global-var-p leaf) (eq :unknown (global-var-kind leaf))) 1024 ;; For undefined variables go through SET, so that we can catch 1025 ;; constant modifications. 1026 (ir1-convert start next result `(set ',name ,value-form)) 1027 (setq-var start next result leaf value-form))) 1028 (cons 1029 (aver (eq (car leaf) 'macro)) 1030 ;; Allow *MACROEXPAND-HOOK* to see NAME get expanded, 1031 ;; not just see a use of SETF on the new place. 1032 (ir1-convert start next result `(setf ,name ,(second things)))) 1033 (heap-alien-info 1034 (ir1-convert start next result 1035 `(%set-heap-alien ',leaf ,(second things)))))) 1036 (ir1-convert-progn-body start next result 1037 (explode-setq source 'compiler-error)))) 1038 1039;;; This is kind of like REFERENCE-LEAF, but we generate a SET node. 1040;;; This should only need to be called in SETQ. 1041(defun setq-var (start next result var value) 1042 (declare (type ctran start next) (type (or lvar null) result) 1043 (type basic-var var)) 1044 (let ((dest-ctran (make-ctran)) 1045 (dest-lvar (make-lvar)) 1046 (type (or (lexenv-find var type-restrictions) 1047 (leaf-type var)))) 1048 (ir1-convert start dest-ctran dest-lvar `(the ,(type-specifier type) 1049 ,value)) 1050 (let ((res (make-set :var var :value dest-lvar))) 1051 (setf (lvar-dest dest-lvar) res) 1052 (setf (leaf-ever-used var) t) 1053 (push res (basic-var-sets var)) 1054 (link-node-to-previous-ctran res dest-ctran) 1055 (use-continuation res next result)))) 1056 1057;;;; CATCH, THROW and UNWIND-PROTECT 1058 1059;;; We turn THROW into a MULTIPLE-VALUE-CALL of a magical function, 1060;;; since as far as IR1 is concerned, it has no interesting 1061;;; properties other than receiving multiple-values. 1062(def-ir1-translator throw ((tag result) start next result-lvar) 1063 #!+sb-doc 1064 "THROW tag form 1065 1066Do a non-local exit, return the values of FORM from the CATCH whose tag is EQ 1067to TAG." 1068 (ir1-convert start next result-lvar 1069 `(multiple-value-call #'%throw ,tag ,result))) 1070 1071;;; This is a special special form used to instantiate a cleanup as 1072;;; the current cleanup within the body. KIND is the kind of cleanup 1073;;; to make, and MESS-UP is a form that does the mess-up action. We 1074;;; make the MESS-UP be the USE of the MESS-UP form's continuation, 1075;;; and introduce the cleanup into the lexical environment. We 1076;;; back-patch the ENTRY-CLEANUP for the current cleanup to be the new 1077;;; cleanup, since this inner cleanup is the interesting one. 1078(def-ir1-translator %within-cleanup 1079 ((kind mess-up &body body) start next result) 1080 (let ((dummy (make-ctran)) 1081 (dummy2 (make-ctran))) 1082 (ir1-convert start dummy nil mess-up) 1083 (let* ((mess-node (ctran-use dummy)) 1084 (cleanup (make-cleanup :kind kind 1085 :mess-up mess-node)) 1086 (old-cup (lexenv-cleanup *lexenv*)) 1087 (*lexenv* (make-lexenv :cleanup cleanup))) 1088 (setf (entry-cleanup (cleanup-mess-up old-cup)) cleanup) 1089 (ir1-convert dummy dummy2 nil '(%cleanup-point)) 1090 (ir1-convert-progn-body dummy2 next result body)))) 1091 1092;;; This is a special special form that makes an "escape function" 1093;;; which returns unknown values from named block. We convert the 1094;;; function, set its kind to :ESCAPE, and then reference it. The 1095;;; :ESCAPE kind indicates that this function's purpose is to 1096;;; represent a non-local control transfer, and that it might not 1097;;; actually have to be compiled. 1098;;; 1099;;; Note that environment analysis replaces references to escape 1100;;; functions with references to the corresponding NLX-INFO structure. 1101(def-ir1-translator %escape-fun ((tag) start next result) 1102 (let ((fun (let ((*allow-instrumenting* nil)) 1103 (ir1-convert-lambda 1104 `(lambda () 1105 (return-from ,tag (%unknown-values))) 1106 :debug-name (debug-name 'escape-fun tag)))) 1107 (ctran (make-ctran))) 1108 (setf (functional-kind fun) :escape) 1109 (ir1-convert start ctran nil `(%%allocate-closures ,fun)) 1110 (reference-leaf ctran next result fun))) 1111 1112;;; Yet another special special form. This one looks up a local 1113;;; function and smashes it to a :CLEANUP function, as well as 1114;;; referencing it. 1115(def-ir1-translator %cleanup-fun ((name) start next result) 1116 ;; FIXME: Should this not be :TEST #'EQUAL? What happens to 1117 ;; (SETF FOO) here? 1118 (let ((fun (lexenv-find name funs))) 1119 (aver (lambda-p fun)) 1120 (setf (functional-kind fun) :cleanup) 1121 (reference-leaf start next result fun))) 1122 1123(def-ir1-translator catch ((tag &body body) start next result) 1124 #!+sb-doc 1125 "CATCH tag form* 1126 1127Evaluate TAG and instantiate it as a catcher while the body forms are 1128evaluated in an implicit PROGN. If a THROW is done to TAG within the dynamic 1129scope of the body, then control will be transferred to the end of the body and 1130the thrown values will be returned." 1131 ;; We represent the possibility of the control transfer by making an 1132 ;; "escape function" that does a lexical exit, and instantiate the 1133 ;; cleanup using %WITHIN-CLEANUP. 1134 (ir1-convert 1135 start next result 1136 (with-unique-names (exit-block) 1137 `(block ,exit-block 1138 (%within-cleanup 1139 :catch (%catch (%escape-fun ,exit-block) ,tag) 1140 ,@body))))) 1141 1142(def-ir1-translator unwind-protect 1143 ((protected &body cleanup) start next result) 1144 #!+sb-doc 1145 "UNWIND-PROTECT protected cleanup* 1146 1147Evaluate the form PROTECTED, returning its values. The CLEANUP forms are 1148evaluated whenever the dynamic scope of the PROTECTED form is exited (either 1149due to normal completion or a non-local exit such as THROW)." 1150 ;; UNWIND-PROTECT is similar to CATCH, but hairier. We make the 1151 ;; cleanup forms into a local function so that they can be referenced 1152 ;; both in the case where we are unwound and in any local exits. We 1153 ;; use %CLEANUP-FUN on this to indicate that reference by 1154 ;; %UNWIND-PROTECT isn't "real", and thus doesn't cause creation of 1155 ;; an XEP. 1156 (ir1-convert 1157 start next result 1158 (with-unique-names (cleanup-fun drop-thru-tag exit-tag next start count) 1159 `(flet ((,cleanup-fun () 1160 ,@cleanup 1161 nil)) 1162 ;; FIXME: If we ever get DYNAMIC-EXTENT working, then 1163 ;; ,CLEANUP-FUN should probably be declared DYNAMIC-EXTENT, 1164 ;; and something can be done to make %ESCAPE-FUN have 1165 ;; dynamic extent too. 1166 (declare (dynamic-extent #',cleanup-fun)) 1167 (block ,drop-thru-tag 1168 (multiple-value-bind (,next ,start ,count) 1169 (block ,exit-tag 1170 (%within-cleanup 1171 :unwind-protect 1172 (%unwind-protect (%escape-fun ,exit-tag) 1173 (%cleanup-fun ,cleanup-fun)) 1174 (return-from ,drop-thru-tag ,protected))) 1175 (declare (optimize (insert-debug-catch 0))) 1176 (,cleanup-fun) 1177 (%continue-unwind ,next ,start ,count))))))) 1178 1179;;;; multiple-value stuff 1180 1181(def-ir1-translator multiple-value-call ((fun &rest args) start next result) 1182 #!+sb-doc 1183 "MULTIPLE-VALUE-CALL function values-form* 1184 1185Call FUNCTION, passing all the values of each VALUES-FORM as arguments, 1186values from the first VALUES-FORM making up the first argument, etc." 1187 (let* ((ctran (make-ctran)) 1188 (fun-lvar (make-lvar)) 1189 (node (if args 1190 ;; If there are arguments, MULTIPLE-VALUE-CALL 1191 ;; turns into an MV-COMBINATION. 1192 (make-mv-combination fun-lvar) 1193 ;; If there are no arguments, then we convert to a 1194 ;; normal combination, ensuring that a MV-COMBINATION 1195 ;; always has at least one argument. This can be 1196 ;; regarded as an optimization, but it is more 1197 ;; important for simplifying compilation of 1198 ;; MV-COMBINATIONS. 1199 (make-combination fun-lvar)))) 1200 (ir1-convert start ctran fun-lvar (ensure-source-fun-form fun)) 1201 (setf (lvar-dest fun-lvar) node) 1202 (collect ((arg-lvars)) 1203 (let ((this-start ctran)) 1204 (dolist (arg args) 1205 (let ((this-ctran (make-ctran)) 1206 (this-lvar (make-lvar node))) 1207 (ir1-convert this-start this-ctran this-lvar arg) 1208 (setq this-start this-ctran) 1209 (arg-lvars this-lvar))) 1210 (link-node-to-previous-ctran node this-start) 1211 (use-continuation node next result) 1212 (setf (basic-combination-args node) (arg-lvars)))))) 1213 1214(def-ir1-translator multiple-value-prog1 1215 ((values-form &rest forms) start next result) 1216 #!+sb-doc 1217 "MULTIPLE-VALUE-PROG1 values-form form* 1218 1219Evaluate VALUES-FORM and then the FORMS, but return all the values of 1220VALUES-FORM." 1221 (let ((dummy (make-ctran))) 1222 (ctran-starts-block dummy) 1223 (ir1-convert start dummy result values-form) 1224 (ir1-convert-progn-body dummy next nil forms))) 1225 1226;;;; interface to defining macros 1227 1228;;; Old CMUCL comment: 1229;;; 1230;;; Return a new source path with any stuff intervening between the 1231;;; current path and the first form beginning with NAME stripped 1232;;; off. This is used to hide the guts of DEFmumble macros to 1233;;; prevent annoying error messages. 1234;;; 1235;;; Now that we have implementations of DEFmumble macros in terms of 1236;;; EVAL-WHEN, this function is no longer used. However, it might be 1237;;; worth figuring out why it was used, and maybe doing analogous 1238;;; munging to the functions created in the expanders for the macros. 1239(defun revert-source-path (name) 1240 (do ((path *current-path* (cdr path))) 1241 ((null path) *current-path*) 1242 (let ((first (first path))) 1243 (when (or (eq first name) 1244 (eq first 'original-source-start)) 1245 (return path))))) 1246