1 /*
2 	This file is part of solidity.
3 
4 	solidity is free software: you can redistribute it and/or modify
5 	it under the terms of the GNU General Public License as published by
6 	the Free Software Foundation, either version 3 of the License, or
7 	(at your option) any later version.
8 
9 	solidity is distributed in the hope that it will be useful,
10 	but WITHOUT ANY WARRANTY; without even the implied warranty of
11 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 	GNU General Public License for more details.
13 
14 	You should have received a copy of the GNU General Public License
15 	along with solidity.  If not, see <http://www.gnu.org/licenses/>.
16 */
17 // SPDX-License-Identifier: GPL-3.0
18 
19 #include <libsolidity/formal/SymbolicState.h>
20 
21 #include <libsolidity/formal/SymbolicTypes.h>
22 #include <libsolidity/formal/EncodingContext.h>
23 #include <libsolidity/formal/SMTEncoder.h>
24 
25 using namespace std;
26 using namespace solidity;
27 using namespace solidity::smtutil;
28 using namespace solidity::frontend::smt;
29 
BlockchainVariable(string _name,map<string,smtutil::SortPointer> _members,EncodingContext & _context)30 BlockchainVariable::BlockchainVariable(
31 	string _name,
32 	map<string, smtutil::SortPointer> _members,
33 	EncodingContext& _context
34 ):
35 	m_name(move(_name)),
36 	m_members(move(_members)),
37 	m_context(_context)
38 {
39 	vector<string> members;
40 	vector<SortPointer> sorts;
41 	for (auto const& [component, sort]: m_members)
42 	{
43 		members.emplace_back(component);
44 		sorts.emplace_back(sort);
45 		m_componentIndices[component] = static_cast<unsigned>(members.size() - 1);
46 	}
47 	m_tuple = make_unique<SymbolicTupleVariable>(
48 		make_shared<smtutil::TupleSort>(m_name + "_type", members, sorts),
49 		m_name,
50 		m_context
51 	);
52 }
53 
member(string const & _member) const54 smtutil::Expression BlockchainVariable::member(string const& _member) const
55 {
56 	return m_tuple->component(m_componentIndices.at(_member));
57 }
58 
assignMember(string const & _member,smtutil::Expression const & _value)59 smtutil::Expression BlockchainVariable::assignMember(string const& _member, smtutil::Expression const& _value)
60 {
61 	vector<smtutil::Expression> args;
62 	for (auto const& m: m_members)
63 		if (m.first == _member)
64 			args.emplace_back(_value);
65 		else
66 			args.emplace_back(member(m.first));
67 	m_tuple->increaseIndex();
68 	auto tuple = m_tuple->currentValue();
69 	auto sortExpr = smtutil::Expression(make_shared<smtutil::SortSort>(tuple.sort), tuple.name);
70 	m_context.addAssertion(tuple == smtutil::Expression::tuple_constructor(sortExpr, args));
71 	return m_tuple->currentValue();
72 }
73 
reset()74 void SymbolicState::reset()
75 {
76 	m_error.resetIndex();
77 	m_thisAddress.resetIndex();
78 	m_state.reset();
79 	m_tx.reset();
80 	m_crypto.reset();
81 	if (m_abi)
82 		m_abi->reset();
83 }
84 
balances() const85 smtutil::Expression SymbolicState::balances() const
86 {
87 	return m_state.member("balances");
88 }
89 
balance() const90 smtutil::Expression SymbolicState::balance() const
91 {
92 	return balance(thisAddress());
93 }
94 
balance(smtutil::Expression _address) const95 smtutil::Expression SymbolicState::balance(smtutil::Expression _address) const
96 {
97 	return smtutil::Expression::select(balances(), move(_address));
98 }
99 
blockhash(smtutil::Expression _blockNumber) const100 smtutil::Expression SymbolicState::blockhash(smtutil::Expression _blockNumber) const
101 {
102 	return smtutil::Expression::select(m_tx.member("blockhash"), move(_blockNumber));
103 }
104 
newBalances()105 void SymbolicState::newBalances()
106 {
107 	auto tupleSort = dynamic_pointer_cast<TupleSort>(stateSort());
108 	auto balanceSort = tupleSort->components.at(tupleSort->memberToIndex.at("balances"));
109 	SymbolicVariable newBalances(balanceSort, "fresh_balances_" + to_string(m_context.newUniqueId()), m_context);
110 	m_state.assignMember("balances", newBalances.currentValue());
111 }
112 
transfer(smtutil::Expression _from,smtutil::Expression _to,smtutil::Expression _value)113 void SymbolicState::transfer(smtutil::Expression _from, smtutil::Expression _to, smtutil::Expression _value)
114 {
115 	unsigned indexBefore = m_state.index();
116 	addBalance(_from, 0 - _value);
117 	addBalance(_to, move(_value));
118 	unsigned indexAfter = m_state.index();
119 	solAssert(indexAfter > indexBefore, "");
120 	m_state.newVar();
121 	/// Do not apply the transfer operation if _from == _to.
122 	auto newState = smtutil::Expression::ite(
123 		move(_from) == move(_to),
124 		m_state.value(indexBefore),
125 		m_state.value(indexAfter)
126 	);
127 	m_context.addAssertion(m_state.value() == newState);
128 }
129 
addBalance(smtutil::Expression _address,smtutil::Expression _value)130 void SymbolicState::addBalance(smtutil::Expression _address, smtutil::Expression _value)
131 {
132 	auto newBalances = smtutil::Expression::store(
133 		balances(),
134 		_address,
135 		balance(_address) + move(_value)
136 	);
137 	m_state.assignMember("balances", newBalances);
138 }
139 
txMember(string const & _member) const140 smtutil::Expression SymbolicState::txMember(string const& _member) const
141 {
142 	return m_tx.member(_member);
143 }
144 
txTypeConstraints() const145 smtutil::Expression SymbolicState::txTypeConstraints() const
146 {
147 	return
148 		smt::symbolicUnknownConstraints(m_tx.member("block.basefee"), TypeProvider::uint256()) &&
149 		smt::symbolicUnknownConstraints(m_tx.member("block.chainid"), TypeProvider::uint256()) &&
150 		smt::symbolicUnknownConstraints(m_tx.member("block.coinbase"), TypeProvider::address()) &&
151 		smt::symbolicUnknownConstraints(m_tx.member("block.difficulty"), TypeProvider::uint256()) &&
152 		smt::symbolicUnknownConstraints(m_tx.member("block.gaslimit"), TypeProvider::uint256()) &&
153 		smt::symbolicUnknownConstraints(m_tx.member("block.number"), TypeProvider::uint256()) &&
154 		smt::symbolicUnknownConstraints(m_tx.member("block.timestamp"), TypeProvider::uint256()) &&
155 		smt::symbolicUnknownConstraints(m_tx.member("msg.sender"), TypeProvider::address()) &&
156 		smt::symbolicUnknownConstraints(m_tx.member("msg.value"), TypeProvider::uint256()) &&
157 		smt::symbolicUnknownConstraints(m_tx.member("tx.origin"), TypeProvider::address()) &&
158 		smt::symbolicUnknownConstraints(m_tx.member("tx.gasprice"), TypeProvider::uint256());
159 }
160 
txNonPayableConstraint() const161 smtutil::Expression SymbolicState::txNonPayableConstraint() const
162 {
163 	return m_tx.member("msg.value") == 0;
164 }
165 
txFunctionConstraints(FunctionDefinition const & _function) const166 smtutil::Expression SymbolicState::txFunctionConstraints(FunctionDefinition const& _function) const
167 {
168 	smtutil::Expression conj = _function.isPayable() ? smtutil::Expression(true) : txNonPayableConstraint();
169 	if (_function.isPartOfExternalInterface())
170 	{
171 		auto sig = TypeProvider::function(_function)->externalIdentifier();
172 		conj = conj && m_tx.member("msg.sig") == sig;
173 		auto b0 = sig >> (3 * 8);
174 		auto b1 = (sig & 0x00ff0000) >> (2 * 8);
175 		auto b2 = (sig & 0x0000ff00) >> (1 * 8);
176 		auto b3 = (sig & 0x000000ff);
177 		auto data = smtutil::Expression::tuple_get(m_tx.member("msg.data"), 0);
178 		conj = conj && smtutil::Expression::select(data, 0) == b0;
179 		conj = conj && smtutil::Expression::select(data, 1) == b1;
180 		conj = conj && smtutil::Expression::select(data, 2) == b2;
181 		conj = conj && smtutil::Expression::select(data, 3) == b3;
182 		auto length = smtutil::Expression::tuple_get(m_tx.member("msg.data"), 1);
183 		// TODO add ABI size of function input parameters here \/
184 		conj = conj && length >= 4;
185 	}
186 
187 	return conj;
188 }
189 
prepareForSourceUnit(SourceUnit const & _source)190 void SymbolicState::prepareForSourceUnit(SourceUnit const& _source)
191 {
192 	set<FunctionCall const*> abiCalls = SMTEncoder::collectABICalls(&_source);
193 	for (auto const& source: _source.referencedSourceUnits(true))
194 		abiCalls += SMTEncoder::collectABICalls(source);
195 	buildABIFunctions(abiCalls);
196 }
197 
198 /// Private helpers.
199 
buildABIFunctions(set<FunctionCall const * > const & _abiFunctions)200 void SymbolicState::buildABIFunctions(set<FunctionCall const*> const& _abiFunctions)
201 {
202 	map<string, SortPointer> functions;
203 
204 	for (auto const* funCall: _abiFunctions)
205 	{
206 		auto t = dynamic_cast<FunctionType const*>(funCall->expression().annotation().type);
207 
208 		auto const& args = funCall->sortedArguments();
209 		auto const& paramTypes = t->parameterTypes();
210 		auto const& returnTypes = t->returnParameterTypes();
211 
212 
213 		auto argTypes = [](auto const& _args) {
214 			return applyMap(_args, [](auto arg) { return arg->annotation().type; });
215 		};
216 
217 		/// Since each abi.* function may have a different number of input/output parameters,
218 		/// we generically compute those types.
219 		vector<frontend::Type const*> inTypes;
220 		vector<frontend::Type const*> outTypes;
221 		if (t->kind() == FunctionType::Kind::ABIDecode)
222 		{
223 			/// abi.decode : (bytes, tuple_of_types(return_types)) -> (return_types)
224 			solAssert(args.size() == 2, "Unexpected number of arguments for abi.decode");
225 			inTypes.emplace_back(TypeProvider::bytesMemory());
226 			auto argType = args.at(1)->annotation().type;
227 			if (auto const* tupleType = dynamic_cast<TupleType const*>(argType))
228 				for (auto componentType: tupleType->components())
229 				{
230 					auto typeType = dynamic_cast<TypeType const*>(componentType);
231 					solAssert(typeType, "");
232 					outTypes.emplace_back(typeType->actualType());
233 				}
234 			else if (auto const* typeType = dynamic_cast<TypeType const*>(argType))
235 				outTypes.emplace_back(typeType->actualType());
236 			else
237 				solAssert(false, "Unexpected argument of abi.decode");
238 		}
239 		else if (t->kind() == FunctionType::Kind::ABIEncodeCall)
240 		{
241 			// abi.encodeCall : (functionPointer, tuple_of_args_or_one_non_tuple_arg(arguments)) -> bytes
242 			solAssert(args.size() == 2, "Unexpected number of arguments for abi.encodeCall");
243 
244 			outTypes.emplace_back(TypeProvider::bytesMemory());
245 			inTypes.emplace_back(args.at(0)->annotation().type);
246 			inTypes.emplace_back(args.at(1)->annotation().type);
247 		}
248 		else
249 		{
250 			outTypes = returnTypes;
251 			if (
252 				t->kind() == FunctionType::Kind::ABIEncodeWithSelector ||
253 				t->kind() == FunctionType::Kind::ABIEncodeWithSignature
254 			)
255 			{
256 				/// abi.encodeWithSelector : (bytes4, one_or_more_types) -> bytes
257 				/// abi.encodeWithSignature : (string, one_or_more_types) -> bytes
258 				inTypes.emplace_back(paramTypes.front());
259 				inTypes += argTypes(vector<ASTPointer<Expression const>>(args.begin() + 1, args.end()));
260 			}
261 			else
262 			{
263 				/// abi.encode/abi.encodePacked : one_or_more_types -> bytes
264 				solAssert(
265 					t->kind() == FunctionType::Kind::ABIEncode ||
266 					t->kind() == FunctionType::Kind::ABIEncodePacked,
267 					""
268 				);
269 				inTypes = argTypes(args);
270 			}
271 		}
272 
273 		/// Rational numbers and string literals add the concrete values to the type name,
274 		/// so we replace them by uint256 and bytes since those are the same as their SMT types.
275 		/// TODO we could also replace all types by their ABI type.
276 		auto replaceTypes = [](auto& _types) {
277 			for (auto& t: _types)
278 				if (t->category() == frontend::Type::Category::RationalNumber)
279 					t = TypeProvider::uint256();
280 				else if (t->category() == frontend::Type::Category::StringLiteral)
281 					t = TypeProvider::bytesMemory();
282 				else if (auto userType = dynamic_cast<UserDefinedValueType const*>(t))
283 					t = &userType->underlyingType();
284 		};
285 		replaceTypes(inTypes);
286 		replaceTypes(outTypes);
287 
288 		auto name = t->richIdentifier();
289 		for (auto paramType: inTypes + outTypes)
290 			name += "_" + paramType->richIdentifier();
291 
292 		m_abiMembers[funCall] = {name, inTypes, outTypes};
293 
294 		if (functions.count(name))
295 			continue;
296 
297 		/// If there is only one input or output parameter, we use that type directly.
298 		/// Otherwise we create a tuple wrapping the necessary input or output types.
299 		auto typesToSort = [](auto const& _types, string const& _name) -> shared_ptr<Sort> {
300 			if (_types.size() == 1)
301 				return smtSortAbstractFunction(*_types.front());
302 
303 			vector<string> inNames;
304 			vector<SortPointer> sorts;
305 			for (unsigned i = 0; i < _types.size(); ++i)
306 			{
307 				inNames.emplace_back(_name + "_input_" + to_string(i));
308 				sorts.emplace_back(smtSortAbstractFunction(*_types.at(i)));
309 			}
310 			return make_shared<smtutil::TupleSort>(
311 				_name + "_input",
312 				inNames,
313 				sorts
314 			);
315 		};
316 
317 		auto functionSort = make_shared<smtutil::ArraySort>(
318 			typesToSort(inTypes, name),
319 			typesToSort(outTypes, name)
320 		);
321 
322 		functions[name] = functionSort;
323 	}
324 
325 	m_abi = make_unique<BlockchainVariable>("abi", move(functions), m_context);
326 }
327 
abiFunction(frontend::FunctionCall const * _funCall)328 smtutil::Expression SymbolicState::abiFunction(frontend::FunctionCall const* _funCall)
329 {
330 	solAssert(m_abi, "");
331 	return m_abi->member(get<0>(m_abiMembers.at(_funCall)));
332 }
333 
abiFunctionTypes(FunctionCall const * _funCall) const334 SymbolicState::SymbolicABIFunction const& SymbolicState::abiFunctionTypes(FunctionCall const* _funCall) const
335 {
336 	return m_abiMembers.at(_funCall);
337 }
338