1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 
9 #include "SkEdge.h"
10 #include "SkFDot6.h"
11 #include "SkMathPriv.h"
12 
13 /*
14     In setLine, setQuadratic, setCubic, the first thing we do is to convert
15     the points into FDot6. This is modulated by the shift parameter, which
16     will either be 0, or something like 2 for antialiasing.
17 
18     In the float case, we want to turn the float into .6 by saying pt * 64,
19     or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
20 
21     In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
22     or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
23 */
24 
SkFDot6ToFixedDiv2(SkFDot6 value)25 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
26     // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
27     // away data in value, so just perform a modify up-shift
28     return SkLeftShift(value, 16 - 6 - 1);
29 }
30 
31 /////////////////////////////////////////////////////////////////////////
32 
setLine(const SkPoint & p0,const SkPoint & p1,const SkIRect * clip,int shift)33 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
34                     int shift) {
35     SkFDot6 x0, y0, x1, y1;
36 
37     {
38 #ifdef SK_RASTERIZE_EVEN_ROUNDING
39         x0 = SkScalarRoundToFDot6(p0.fX, shift);
40         y0 = SkScalarRoundToFDot6(p0.fY, shift);
41         x1 = SkScalarRoundToFDot6(p1.fX, shift);
42         y1 = SkScalarRoundToFDot6(p1.fY, shift);
43 #else
44         float scale = float(1 << (shift + 6));
45         x0 = int(p0.fX * scale);
46         y0 = int(p0.fY * scale);
47         x1 = int(p1.fX * scale);
48         y1 = int(p1.fY * scale);
49 #endif
50     }
51 
52     int winding = 1;
53 
54     if (y0 > y1) {
55         SkTSwap(x0, x1);
56         SkTSwap(y0, y1);
57         winding = -1;
58     }
59 
60     int top = SkFDot6Round(y0);
61     int bot = SkFDot6Round(y1);
62 
63     // are we a zero-height line?
64     if (top == bot) {
65         return 0;
66     }
67     // are we completely above or below the clip?
68     if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
69         return 0;
70     }
71 
72     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
73     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
74 
75     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
76     fDX         = slope;
77     fFirstY     = top;
78     fLastY      = bot - 1;
79     fCurveCount = 0;
80     fWinding    = SkToS8(winding);
81     fCurveShift = 0;
82 
83     if (clip) {
84         this->chopLineWithClip(*clip);
85     }
86     return 1;
87 }
88 
89 // called from a curve subclass
updateLine(SkFixed x0,SkFixed y0,SkFixed x1,SkFixed y1)90 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
91 {
92     SkASSERT(fWinding == 1 || fWinding == -1);
93     SkASSERT(fCurveCount != 0);
94 //    SkASSERT(fCurveShift != 0);
95 
96     y0 >>= 10;
97     y1 >>= 10;
98 
99     SkASSERT(y0 <= y1);
100 
101     int top = SkFDot6Round(y0);
102     int bot = SkFDot6Round(y1);
103 
104 //  SkASSERT(top >= fFirstY);
105 
106     // are we a zero-height line?
107     if (top == bot)
108         return 0;
109 
110     x0 >>= 10;
111     x1 >>= 10;
112 
113     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
114     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
115 
116     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
117     fDX         = slope;
118     fFirstY     = top;
119     fLastY      = bot - 1;
120 
121     return 1;
122 }
123 
chopLineWithClip(const SkIRect & clip)124 void SkEdge::chopLineWithClip(const SkIRect& clip)
125 {
126     int top = fFirstY;
127 
128     SkASSERT(top < clip.fBottom);
129 
130     // clip the line to the top
131     if (top < clip.fTop)
132     {
133         SkASSERT(fLastY >= clip.fTop);
134         fX += fDX * (clip.fTop - top);
135         fFirstY = clip.fTop;
136     }
137 }
138 
139 ///////////////////////////////////////////////////////////////////////////////
140 
141 /*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
142     Note that this limits the number of lines we use to approximate a curve.
143     If we need to increase this, we need to store fCurveCount in something
144     larger than int8_t.
145 */
146 #define MAX_COEFF_SHIFT     6
147 
cheap_distance(SkFDot6 dx,SkFDot6 dy)148 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
149 {
150     dx = SkAbs32(dx);
151     dy = SkAbs32(dy);
152     // return max + min/2
153     if (dx > dy)
154         dx += dy >> 1;
155     else
156         dx = dy + (dx >> 1);
157     return dx;
158 }
159 
diff_to_shift(SkFDot6 dx,SkFDot6 dy,int shiftAA=2)160 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2)
161 {
162     // cheap calc of distance from center of p0-p2 to the center of the curve
163     SkFDot6 dist = cheap_distance(dx, dy);
164 
165     // shift down dist (it is currently in dot6)
166     // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...)
167     // this is chosen by heuristic: make it as big as possible (to minimize segments)
168     // ... but small enough so that our curves still look smooth
169     // When shift > 0, we're using AA and everything is scaled up so we can
170     // lower the accuracy.
171 #ifdef SK_SUPPORT_LEGACY_QUAD_SHIFT
172     dist = (dist + (1 << 4)) >> 5;
173 #else
174     dist = (dist + (1 << 4)) >> (3 + shiftAA);
175 #endif
176 
177     // each subdivision (shift value) cuts this dist (error) by 1/4
178     return (32 - SkCLZ(dist)) >> 1;
179 }
180 
setQuadraticWithoutUpdate(const SkPoint pts[3],int shift)181 bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) {
182     SkFDot6 x0, y0, x1, y1, x2, y2;
183 
184     {
185 #ifdef SK_RASTERIZE_EVEN_ROUNDING
186         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
187         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
188         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
189         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
190         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
191         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
192 #else
193         float scale = float(1 << (shift + 6));
194         x0 = int(pts[0].fX * scale);
195         y0 = int(pts[0].fY * scale);
196         x1 = int(pts[1].fX * scale);
197         y1 = int(pts[1].fY * scale);
198         x2 = int(pts[2].fX * scale);
199         y2 = int(pts[2].fY * scale);
200 #endif
201     }
202 
203     int winding = 1;
204     if (y0 > y2)
205     {
206         SkTSwap(x0, x2);
207         SkTSwap(y0, y2);
208         winding = -1;
209     }
210     SkASSERT(y0 <= y1 && y1 <= y2);
211 
212     int top = SkFDot6Round(y0);
213     int bot = SkFDot6Round(y2);
214 
215     // are we a zero-height quad (line)?
216     if (top == bot)
217         return 0;
218 
219     // compute number of steps needed (1 << shift)
220     {
221         SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2;
222         SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2;
223         // This is a little confusing:
224         // before this line, shift is the scale up factor for AA;
225         // after this line, shift is the fCurveShift.
226         shift = diff_to_shift(dx, dy, shift);
227         SkASSERT(shift >= 0);
228     }
229     // need at least 1 subdivision for our bias trick
230     if (shift == 0) {
231         shift = 1;
232     } else if (shift > MAX_COEFF_SHIFT) {
233         shift = MAX_COEFF_SHIFT;
234     }
235 
236     fWinding    = SkToS8(winding);
237     //fCubicDShift only set for cubics
238     fCurveCount = SkToS8(1 << shift);
239 
240     /*
241      *  We want to reformulate into polynomial form, to make it clear how we
242      *  should forward-difference.
243      *
244      *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
245      *
246      *  A = p0 - 2p1 + p2
247      *  B = 2(p1 - p0)
248      *  C = p0
249      *
250      *  Our caller must have constrained our inputs (p0..p2) to all fit into
251      *  16.16. However, as seen above, we sometimes compute values that can be
252      *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
253      *  A and B at 1/2 of their actual value, and just apply a 2x scale during
254      *  application in updateQuadratic(). Hence we store (shift - 1) in
255      *  fCurveShift.
256      */
257 
258     fCurveShift = SkToU8(shift - 1);
259 
260     SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
261     SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
262 
263     fQx     = SkFDot6ToFixed(x0);
264     fQDx    = B + (A >> shift);     // biased by shift
265     fQDDx   = A >> (shift - 1);     // biased by shift
266 
267     A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
268     B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
269 
270     fQy     = SkFDot6ToFixed(y0);
271     fQDy    = B + (A >> shift);     // biased by shift
272     fQDDy   = A >> (shift - 1);     // biased by shift
273 
274     fQLastX = SkFDot6ToFixed(x2);
275     fQLastY = SkFDot6ToFixed(y2);
276 
277     return true;
278 }
279 
setQuadratic(const SkPoint pts[3],int shift)280 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) {
281     if (!setQuadraticWithoutUpdate(pts, shift)) {
282         return 0;
283     }
284     return this->updateQuadratic();
285 }
286 
updateQuadratic()287 int SkQuadraticEdge::updateQuadratic()
288 {
289     int     success;
290     int     count = fCurveCount;
291     SkFixed oldx = fQx;
292     SkFixed oldy = fQy;
293     SkFixed dx = fQDx;
294     SkFixed dy = fQDy;
295     SkFixed newx, newy;
296     int     shift = fCurveShift;
297 
298     SkASSERT(count > 0);
299 
300     do {
301         if (--count > 0)
302         {
303             newx    = oldx + (dx >> shift);
304             dx    += fQDDx;
305             newy    = oldy + (dy >> shift);
306             dy    += fQDDy;
307         }
308         else    // last segment
309         {
310             newx    = fQLastX;
311             newy    = fQLastY;
312         }
313         success = this->updateLine(oldx, oldy, newx, newy);
314         oldx = newx;
315         oldy = newy;
316     } while (count > 0 && !success);
317 
318     fQx         = newx;
319     fQy         = newy;
320     fQDx        = dx;
321     fQDy        = dy;
322     fCurveCount = SkToS8(count);
323     return success;
324 }
325 
326 /////////////////////////////////////////////////////////////////////////
327 
SkFDot6UpShift(SkFDot6 x,int upShift)328 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
329     SkASSERT((SkLeftShift(x, upShift) >> upShift) == x);
330     return SkLeftShift(x, upShift);
331 }
332 
333 /*  f(1/3) = (8a + 12b + 6c + d) / 27
334     f(2/3) = (a + 6b + 12c + 8d) / 27
335 
336     f(1/3)-b = (8a - 15b + 6c + d) / 27
337     f(2/3)-c = (a + 6b - 15c + 8d) / 27
338 
339     use 16/512 to approximate 1/27
340 */
cubic_delta_from_line(SkFDot6 a,SkFDot6 b,SkFDot6 c,SkFDot6 d)341 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
342 {
343     // since our parameters may be negative, we don't use << to avoid ASAN warnings
344     SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9;
345     SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9;
346 
347     return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
348 }
349 
setCubicWithoutUpdate(const SkPoint pts[4],int shift,bool sortY)350 bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) {
351     SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
352 
353     {
354 #ifdef SK_RASTERIZE_EVEN_ROUNDING
355         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
356         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
357         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
358         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
359         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
360         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
361         x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
362         y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
363 #else
364         float scale = float(1 << (shift + 6));
365         x0 = int(pts[0].fX * scale);
366         y0 = int(pts[0].fY * scale);
367         x1 = int(pts[1].fX * scale);
368         y1 = int(pts[1].fY * scale);
369         x2 = int(pts[2].fX * scale);
370         y2 = int(pts[2].fY * scale);
371         x3 = int(pts[3].fX * scale);
372         y3 = int(pts[3].fY * scale);
373 #endif
374     }
375 
376     int winding = 1;
377     if (sortY && y0 > y3)
378     {
379         SkTSwap(x0, x3);
380         SkTSwap(x1, x2);
381         SkTSwap(y0, y3);
382         SkTSwap(y1, y2);
383         winding = -1;
384     }
385 
386     int top = SkFDot6Round(y0);
387     int bot = SkFDot6Round(y3);
388 
389     // are we a zero-height cubic (line)?
390     if (sortY && top == bot)
391         return 0;
392 
393     // compute number of steps needed (1 << shift)
394     {
395         // Can't use (center of curve - center of baseline), since center-of-curve
396         // need not be the max delta from the baseline (it could even be coincident)
397         // so we try just looking at the two off-curve points
398         SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
399         SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
400         // add 1 (by observation)
401         shift = diff_to_shift(dx, dy) + 1;
402     }
403     // need at least 1 subdivision for our bias trick
404     SkASSERT(shift > 0);
405     if (shift > MAX_COEFF_SHIFT) {
406         shift = MAX_COEFF_SHIFT;
407     }
408 
409     /*  Since our in coming data is initially shifted down by 10 (or 8 in
410         antialias). That means the most we can shift up is 8. However, we
411         compute coefficients with a 3*, so the safest upshift is really 6
412     */
413     int upShift = 6;    // largest safe value
414     int downShift = shift + upShift - 10;
415     if (downShift < 0) {
416         downShift = 0;
417         upShift = 10 - shift;
418     }
419 
420     fWinding    = SkToS8(winding);
421     fCurveCount = SkToS8(SkLeftShift(-1, shift));
422     fCurveShift = SkToU8(shift);
423     fCubicDShift = SkToU8(downShift);
424 
425     SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
426     SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
427     SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
428 
429     fCx     = SkFDot6ToFixed(x0);
430     fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
431     fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
432     fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
433 
434     B = SkFDot6UpShift(3 * (y1 - y0), upShift);
435     C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
436     D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
437 
438     fCy     = SkFDot6ToFixed(y0);
439     fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
440     fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
441     fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
442 
443     fCLastX = SkFDot6ToFixed(x3);
444     fCLastY = SkFDot6ToFixed(y3);
445 
446     return true;
447 }
448 
setCubic(const SkPoint pts[4],int shift)449 int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
450     if (!this->setCubicWithoutUpdate(pts, shift)) {
451         return 0;
452     }
453     return this->updateCubic();
454 }
455 
updateCubic()456 int SkCubicEdge::updateCubic()
457 {
458     int     success;
459     int     count = fCurveCount;
460     SkFixed oldx = fCx;
461     SkFixed oldy = fCy;
462     SkFixed newx, newy;
463     const int ddshift = fCurveShift;
464     const int dshift = fCubicDShift;
465 
466     SkASSERT(count < 0);
467 
468     do {
469         if (++count < 0)
470         {
471             newx    = oldx + (fCDx >> dshift);
472             fCDx    += fCDDx >> ddshift;
473             fCDDx   += fCDDDx;
474 
475             newy    = oldy + (fCDy >> dshift);
476             fCDy    += fCDDy >> ddshift;
477             fCDDy   += fCDDDy;
478         }
479         else    // last segment
480         {
481         //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
482             newx    = fCLastX;
483             newy    = fCLastY;
484         }
485 
486         // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
487         // doesn't always achieve that, so we have to explicitly pin it here.
488         if (newy < oldy) {
489             newy = oldy;
490         }
491 
492         success = this->updateLine(oldx, oldy, newx, newy);
493         oldx = newx;
494         oldy = newy;
495     } while (count < 0 && !success);
496 
497     fCx         = newx;
498     fCy         = newy;
499     fCurveCount = SkToS8(count);
500     return success;
501 }
502