1 /*
2  * Copyright 2008 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 
9 #include "SkPathMeasure.h"
10 #include "SkPathMeasurePriv.h"
11 #include "SkGeometry.h"
12 #include "SkPath.h"
13 #include "SkTSearch.h"
14 
15 #define kMaxTValue  0x3FFFFFFF
16 
tValue2Scalar(int t)17 static inline SkScalar tValue2Scalar(int t) {
18     SkASSERT((unsigned)t <= kMaxTValue);
19     const SkScalar kMaxTReciprocal = 1.0f / kMaxTValue;
20     return t * kMaxTReciprocal;
21 }
22 
getScalarT() const23 SkScalar SkPathMeasure::Segment::getScalarT() const {
24     return tValue2Scalar(fTValue);
25 }
26 
NextSegment(const Segment * seg)27 const SkPathMeasure::Segment* SkPathMeasure::NextSegment(const Segment* seg) {
28     unsigned ptIndex = seg->fPtIndex;
29 
30     do {
31         ++seg;
32     } while (seg->fPtIndex == ptIndex);
33     return seg;
34 }
35 
SkPathMeasure_segTo(const SkPoint pts[],unsigned segType,SkScalar startT,SkScalar stopT,SkPath * dst)36 void SkPathMeasure_segTo(const SkPoint pts[], unsigned segType,
37                    SkScalar startT, SkScalar stopT, SkPath* dst) {
38     SkASSERT(startT >= 0 && startT <= SK_Scalar1);
39     SkASSERT(stopT >= 0 && stopT <= SK_Scalar1);
40     SkASSERT(startT <= stopT);
41 
42     if (startT == stopT) {
43         /* if the dash as a zero-length on segment, add a corresponding zero-length line.
44            The stroke code will add end caps to zero length lines as appropriate */
45         SkPoint lastPt;
46         SkAssertResult(dst->getLastPt(&lastPt));
47         dst->lineTo(lastPt);
48         return;
49     }
50 
51     SkPoint tmp0[7], tmp1[7];
52 
53     switch (segType) {
54         case kLine_SegType:
55             if (SK_Scalar1 == stopT) {
56                 dst->lineTo(pts[1]);
57             } else {
58                 dst->lineTo(SkScalarInterp(pts[0].fX, pts[1].fX, stopT),
59                             SkScalarInterp(pts[0].fY, pts[1].fY, stopT));
60             }
61             break;
62         case kQuad_SegType:
63             if (0 == startT) {
64                 if (SK_Scalar1 == stopT) {
65                     dst->quadTo(pts[1], pts[2]);
66                 } else {
67                     SkChopQuadAt(pts, tmp0, stopT);
68                     dst->quadTo(tmp0[1], tmp0[2]);
69                 }
70             } else {
71                 SkChopQuadAt(pts, tmp0, startT);
72                 if (SK_Scalar1 == stopT) {
73                     dst->quadTo(tmp0[3], tmp0[4]);
74                 } else {
75                     SkChopQuadAt(&tmp0[2], tmp1, (stopT - startT) / (1 - startT));
76                     dst->quadTo(tmp1[1], tmp1[2]);
77                 }
78             }
79             break;
80         case kConic_SegType: {
81             SkConic conic(pts[0], pts[2], pts[3], pts[1].fX);
82 
83             if (0 == startT) {
84                 if (SK_Scalar1 == stopT) {
85                     dst->conicTo(conic.fPts[1], conic.fPts[2], conic.fW);
86                 } else {
87                     SkConic tmp[2];
88                     if (conic.chopAt(stopT, tmp)) {
89                         dst->conicTo(tmp[0].fPts[1], tmp[0].fPts[2], tmp[0].fW);
90                     }
91                 }
92             } else {
93                 if (SK_Scalar1 == stopT) {
94                     SkConic tmp1[2];
95                     if (conic.chopAt(startT, tmp1)) {
96                         dst->conicTo(tmp1[1].fPts[1], tmp1[1].fPts[2], tmp1[1].fW);
97                     }
98                 } else {
99                     SkConic tmp;
100                     conic.chopAt(startT, stopT, &tmp);
101                     dst->conicTo(tmp.fPts[1], tmp.fPts[2], tmp.fW);
102                 }
103             }
104         } break;
105         case kCubic_SegType:
106             if (0 == startT) {
107                 if (SK_Scalar1 == stopT) {
108                     dst->cubicTo(pts[1], pts[2], pts[3]);
109                 } else {
110                     SkChopCubicAt(pts, tmp0, stopT);
111                     dst->cubicTo(tmp0[1], tmp0[2], tmp0[3]);
112                 }
113             } else {
114                 SkChopCubicAt(pts, tmp0, startT);
115                 if (SK_Scalar1 == stopT) {
116                     dst->cubicTo(tmp0[4], tmp0[5], tmp0[6]);
117                 } else {
118                     SkChopCubicAt(&tmp0[3], tmp1, (stopT - startT) / (1 - startT));
119                     dst->cubicTo(tmp1[1], tmp1[2], tmp1[3]);
120                 }
121             }
122             break;
123         default:
124             SK_ABORT("unknown segType");
125     }
126 }
127 
128 ///////////////////////////////////////////////////////////////////////////////
129 
tspan_big_enough(int tspan)130 static inline int tspan_big_enough(int tspan) {
131     SkASSERT((unsigned)tspan <= kMaxTValue);
132     return tspan >> 10;
133 }
134 
135 // can't use tangents, since we need [0..1..................2] to be seen
136 // as definitely not a line (it is when drawn, but not parametrically)
137 // so we compare midpoints
138 #define CHEAP_DIST_LIMIT    (SK_Scalar1/2)  // just made this value up
139 
quad_too_curvy(const SkPoint pts[3])140 bool SkPathMeasure::quad_too_curvy(const SkPoint pts[3]) {
141     // diff = (a/4 + b/2 + c/4) - (a/2 + c/2)
142     // diff = -a/4 + b/2 - c/4
143     SkScalar dx = SkScalarHalf(pts[1].fX) -
144                         SkScalarHalf(SkScalarHalf(pts[0].fX + pts[2].fX));
145     SkScalar dy = SkScalarHalf(pts[1].fY) -
146                         SkScalarHalf(SkScalarHalf(pts[0].fY + pts[2].fY));
147 
148     SkScalar dist = SkMaxScalar(SkScalarAbs(dx), SkScalarAbs(dy));
149     return dist > fTolerance;
150 }
151 
conic_too_curvy(const SkPoint & firstPt,const SkPoint & midTPt,const SkPoint & lastPt)152 bool SkPathMeasure::conic_too_curvy(const SkPoint& firstPt, const SkPoint& midTPt,
153                             const SkPoint& lastPt) {
154     SkPoint midEnds = firstPt + lastPt;
155     midEnds *= 0.5f;
156     SkVector dxy = midTPt - midEnds;
157     SkScalar dist = SkMaxScalar(SkScalarAbs(dxy.fX), SkScalarAbs(dxy.fY));
158     return dist > fTolerance;
159 }
160 
cheap_dist_exceeds_limit(const SkPoint & pt,SkScalar x,SkScalar y)161 bool SkPathMeasure::cheap_dist_exceeds_limit(const SkPoint& pt,
162                                      SkScalar x, SkScalar y) {
163     SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY));
164     // just made up the 1/2
165     return dist > fTolerance;
166 }
167 
cubic_too_curvy(const SkPoint pts[4])168 bool SkPathMeasure::cubic_too_curvy(const SkPoint pts[4]) {
169     return  cheap_dist_exceeds_limit(pts[1],
170                          SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1/3),
171                          SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1/3))
172                          ||
173             cheap_dist_exceeds_limit(pts[2],
174                          SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1*2/3),
175                          SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3));
176 }
177 
quad_folded_len(const SkPoint pts[3])178 static SkScalar quad_folded_len(const SkPoint pts[3]) {
179     SkScalar t = SkFindQuadMaxCurvature(pts);
180     SkPoint pt = SkEvalQuadAt(pts, t);
181     SkVector a = pts[2] - pt;
182     SkScalar result = a.length();
183     if (0 != t) {
184         SkVector b = pts[0] - pt;
185         result += b.length();
186     }
187     SkASSERT(SkScalarIsFinite(result));
188     return result;
189 }
190 
191 /* from http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/ */
192 /* This works -- more needs to be done to see if it is performant on all platforms.
193    To use this to measure parts of quads requires recomputing everything -- perhaps
194    a chop-like interface can start from a larger measurement and get two new measurements
195    with one call here.
196  */
compute_quad_len(const SkPoint pts[3])197 static SkScalar compute_quad_len(const SkPoint pts[3]) {
198     SkPoint a,b;
199     a.fX = pts[0].fX - 2 * pts[1].fX + pts[2].fX;
200     a.fY = pts[0].fY - 2 * pts[1].fY + pts[2].fY;
201     SkScalar A = 4 * (a.fX * a.fX + a.fY * a.fY);
202     if (0 == A) {
203         a = pts[2] - pts[0];
204         return a.length();
205     }
206     b.fX = 2 * (pts[1].fX - pts[0].fX);
207     b.fY = 2 * (pts[1].fY - pts[0].fY);
208     SkScalar B = 4 * (a.fX * b.fX + a.fY * b.fY);
209     SkScalar C =      b.fX * b.fX + b.fY * b.fY;
210     SkScalar Sabc = 2 * SkScalarSqrt(A + B + C);
211     SkScalar A_2  = SkScalarSqrt(A);
212     SkScalar A_32 = 2 * A * A_2;
213     SkScalar C_2  = 2 * SkScalarSqrt(C);
214     SkScalar BA   = B / A_2;
215     if (0 == BA + C_2) {
216         return quad_folded_len(pts);
217     }
218     SkScalar J = A_32 * Sabc + A_2 * B * (Sabc - C_2);
219     SkScalar K = 4 * C * A - B * B;
220     SkScalar L = (2 * A_2 + BA + Sabc) / (BA + C_2);
221     if (L <= 0) {
222         return quad_folded_len(pts);
223     }
224     SkScalar M = SkScalarLog(L);
225     SkScalar result = (J + K * M) / (4 * A_32);
226     SkASSERT(SkScalarIsFinite(result));
227     return result;
228 }
229 
compute_quad_segs(const SkPoint pts[3],SkScalar distance,int mint,int maxt,int ptIndex)230 SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3],
231                           SkScalar distance, int mint, int maxt, int ptIndex) {
232     if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts)) {
233         SkPoint tmp[5];
234         int     halft = (mint + maxt) >> 1;
235 
236         SkChopQuadAtHalf(pts, tmp);
237         distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex);
238         distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptIndex);
239     } else {
240         SkScalar d = SkPoint::Distance(pts[0], pts[2]);
241         SkScalar prevD = distance;
242         distance += d;
243         if (distance > prevD) {
244             Segment* seg = fSegments.append();
245             seg->fDistance = distance;
246             seg->fPtIndex = ptIndex;
247             seg->fType = kQuad_SegType;
248             seg->fTValue = maxt;
249         }
250     }
251     return distance;
252 }
253 
compute_conic_segs(const SkConic & conic,SkScalar distance,int mint,const SkPoint & minPt,int maxt,const SkPoint & maxPt,int ptIndex)254 SkScalar SkPathMeasure::compute_conic_segs(const SkConic& conic, SkScalar distance,
255                                            int mint, const SkPoint& minPt,
256                                            int maxt, const SkPoint& maxPt, int ptIndex) {
257     int halft = (mint + maxt) >> 1;
258     SkPoint halfPt = conic.evalAt(tValue2Scalar(halft));
259     if (tspan_big_enough(maxt - mint) && conic_too_curvy(minPt, halfPt, maxPt)) {
260         distance = this->compute_conic_segs(conic, distance, mint, minPt, halft, halfPt, ptIndex);
261         distance = this->compute_conic_segs(conic, distance, halft, halfPt, maxt, maxPt, ptIndex);
262     } else {
263         SkScalar d = SkPoint::Distance(minPt, maxPt);
264         SkScalar prevD = distance;
265         distance += d;
266         if (distance > prevD) {
267             Segment* seg = fSegments.append();
268             seg->fDistance = distance;
269             seg->fPtIndex = ptIndex;
270             seg->fType = kConic_SegType;
271             seg->fTValue = maxt;
272         }
273     }
274     return distance;
275 }
276 
compute_cubic_segs(const SkPoint pts[4],SkScalar distance,int mint,int maxt,int ptIndex)277 SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4],
278                            SkScalar distance, int mint, int maxt, int ptIndex) {
279     if (tspan_big_enough(maxt - mint) && cubic_too_curvy(pts)) {
280         SkPoint tmp[7];
281         int     halft = (mint + maxt) >> 1;
282 
283         SkChopCubicAtHalf(pts, tmp);
284         distance = this->compute_cubic_segs(tmp, distance, mint, halft, ptIndex);
285         distance = this->compute_cubic_segs(&tmp[3], distance, halft, maxt, ptIndex);
286     } else {
287         SkScalar d = SkPoint::Distance(pts[0], pts[3]);
288         SkScalar prevD = distance;
289         distance += d;
290         if (distance > prevD) {
291             Segment* seg = fSegments.append();
292             seg->fDistance = distance;
293             seg->fPtIndex = ptIndex;
294             seg->fType = kCubic_SegType;
295             seg->fTValue = maxt;
296         }
297     }
298     return distance;
299 }
300 
buildSegments()301 void SkPathMeasure::buildSegments() {
302     SkPoint         pts[4];
303     int             ptIndex = fFirstPtIndex;
304     SkScalar        distance = 0;
305     bool            isClosed = fForceClosed;
306     bool            firstMoveTo = ptIndex < 0;
307     Segment*        seg;
308 
309     /*  Note:
310      *  as we accumulate distance, we have to check that the result of +=
311      *  actually made it larger, since a very small delta might be > 0, but
312      *  still have no effect on distance (if distance >>> delta).
313      *
314      *  We do this check below, and in compute_quad_segs and compute_cubic_segs
315      */
316     fSegments.reset();
317     bool done = false;
318     do {
319         switch (fIter.next(pts)) {
320             case SkPath::kMove_Verb:
321                 ptIndex += 1;
322                 fPts.append(1, pts);
323                 if (!firstMoveTo) {
324                     done = true;
325                     break;
326                 }
327                 firstMoveTo = false;
328                 break;
329 
330             case SkPath::kLine_Verb: {
331                 SkScalar d = SkPoint::Distance(pts[0], pts[1]);
332                 SkASSERT(d >= 0);
333                 SkScalar prevD = distance;
334                 distance += d;
335                 if (distance > prevD) {
336                     seg = fSegments.append();
337                     seg->fDistance = distance;
338                     seg->fPtIndex = ptIndex;
339                     seg->fType = kLine_SegType;
340                     seg->fTValue = kMaxTValue;
341                     fPts.append(1, pts + 1);
342                     ptIndex++;
343                 }
344             } break;
345 
346             case SkPath::kQuad_Verb: {
347                 SkScalar prevD = distance;
348                 if (false) {
349                     SkScalar length = compute_quad_len(pts);
350                     if (length) {
351                         distance += length;
352                         Segment* seg = fSegments.append();
353                         seg->fDistance = distance;
354                         seg->fPtIndex = ptIndex;
355                         seg->fType = kQuad_SegType;
356                         seg->fTValue = kMaxTValue;
357                     }
358                 } else {
359                     distance = this->compute_quad_segs(pts, distance, 0, kMaxTValue, ptIndex);
360                 }
361                 if (distance > prevD) {
362                     fPts.append(2, pts + 1);
363                     ptIndex += 2;
364                 }
365             } break;
366 
367             case SkPath::kConic_Verb: {
368                 const SkConic conic(pts, fIter.conicWeight());
369                 SkScalar prevD = distance;
370                 distance = this->compute_conic_segs(conic, distance, 0, conic.fPts[0],
371                                                     kMaxTValue, conic.fPts[2], ptIndex);
372                 if (distance > prevD) {
373                     // we store the conic weight in our next point, followed by the last 2 pts
374                     // thus to reconstitue a conic, you'd need to say
375                     // SkConic(pts[0], pts[2], pts[3], weight = pts[1].fX)
376                     fPts.append()->set(conic.fW, 0);
377                     fPts.append(2, pts + 1);
378                     ptIndex += 3;
379                 }
380             } break;
381 
382             case SkPath::kCubic_Verb: {
383                 SkScalar prevD = distance;
384                 distance = this->compute_cubic_segs(pts, distance, 0, kMaxTValue, ptIndex);
385                 if (distance > prevD) {
386                     fPts.append(3, pts + 1);
387                     ptIndex += 3;
388                 }
389             } break;
390 
391             case SkPath::kClose_Verb:
392                 isClosed = true;
393                 break;
394 
395             case SkPath::kDone_Verb:
396                 done = true;
397                 break;
398         }
399     } while (!done);
400 
401     fLength = distance;
402     fIsClosed = isClosed;
403     fFirstPtIndex = ptIndex;
404 
405 #ifdef SK_DEBUG
406 #ifndef SK_DISABLE_SLOW_DEBUG_VALIDATION
407     {
408         const Segment* seg = fSegments.begin();
409         const Segment* stop = fSegments.end();
410         unsigned        ptIndex = 0;
411         SkScalar        distance = 0;
412         // limit the loop to a reasonable number; pathological cases can run for minutes
413         int             maxChecks = 10000000;  // set to INT_MAX to defeat the check
414         while (seg < stop) {
415             SkASSERT(seg->fDistance > distance);
416             SkASSERT(seg->fPtIndex >= ptIndex);
417             SkASSERT(seg->fTValue > 0);
418 
419             const Segment* s = seg;
420             while (s < stop - 1 && s[0].fPtIndex == s[1].fPtIndex && --maxChecks > 0) {
421                 SkASSERT(s[0].fType == s[1].fType);
422                 SkASSERT(s[0].fTValue < s[1].fTValue);
423                 s += 1;
424             }
425 
426             distance = seg->fDistance;
427             ptIndex = seg->fPtIndex;
428             seg += 1;
429         }
430     //  SkDebugf("\n");
431     }
432 #endif
433 #endif
434 }
435 
compute_pos_tan(const SkPoint pts[],unsigned segType,SkScalar t,SkPoint * pos,SkVector * tangent)436 static void compute_pos_tan(const SkPoint pts[], unsigned segType,
437                             SkScalar t, SkPoint* pos, SkVector* tangent) {
438     switch (segType) {
439         case kLine_SegType:
440             if (pos) {
441                 pos->set(SkScalarInterp(pts[0].fX, pts[1].fX, t),
442                          SkScalarInterp(pts[0].fY, pts[1].fY, t));
443             }
444             if (tangent) {
445                 tangent->setNormalize(pts[1].fX - pts[0].fX, pts[1].fY - pts[0].fY);
446             }
447             break;
448         case kQuad_SegType:
449             SkEvalQuadAt(pts, t, pos, tangent);
450             if (tangent) {
451                 tangent->normalize();
452             }
453             break;
454         case kConic_SegType: {
455             SkConic(pts[0], pts[2], pts[3], pts[1].fX).evalAt(t, pos, tangent);
456             if (tangent) {
457                 tangent->normalize();
458             }
459         } break;
460         case kCubic_SegType:
461             SkEvalCubicAt(pts, t, pos, tangent, nullptr);
462             if (tangent) {
463                 tangent->normalize();
464             }
465             break;
466         default:
467             SkDEBUGFAIL("unknown segType");
468     }
469 }
470 
471 
472 ////////////////////////////////////////////////////////////////////////////////
473 ////////////////////////////////////////////////////////////////////////////////
474 
SkPathMeasure()475 SkPathMeasure::SkPathMeasure() {
476     fPath = nullptr;
477     fTolerance = CHEAP_DIST_LIMIT;
478     fLength = -1;   // signal we need to compute it
479     fForceClosed = false;
480     fFirstPtIndex = -1;
481 }
482 
SkPathMeasure(const SkPath & path,bool forceClosed,SkScalar resScale)483 SkPathMeasure::SkPathMeasure(const SkPath& path, bool forceClosed, SkScalar resScale) {
484     fPath = &path;
485     fTolerance = CHEAP_DIST_LIMIT * SkScalarInvert(resScale);
486     fLength = -1;   // signal we need to compute it
487     fForceClosed = forceClosed;
488     fFirstPtIndex = -1;
489 
490     fIter.setPath(path, forceClosed);
491 }
492 
~SkPathMeasure()493 SkPathMeasure::~SkPathMeasure() {}
494 
495 /** Assign a new path, or null to have none.
496 */
setPath(const SkPath * path,bool forceClosed)497 void SkPathMeasure::setPath(const SkPath* path, bool forceClosed) {
498     fPath = path;
499     fLength = -1;   // signal we need to compute it
500     fForceClosed = forceClosed;
501     fFirstPtIndex = -1;
502 
503     if (path) {
504         fIter.setPath(*path, forceClosed);
505     }
506     fSegments.reset();
507     fPts.reset();
508 }
509 
getLength()510 SkScalar SkPathMeasure::getLength() {
511     if (fPath == nullptr) {
512         return 0;
513     }
514     if (fLength < 0) {
515         this->buildSegments();
516     }
517     if (SkScalarIsNaN(fLength)) {
518         fLength = 0;
519     }
520     SkASSERT(fLength >= 0);
521     return fLength;
522 }
523 
524 template <typename T, typename K>
SkTKSearch(const T base[],int count,const K & key)525 int SkTKSearch(const T base[], int count, const K& key) {
526     SkASSERT(count >= 0);
527     if (count <= 0) {
528         return ~0;
529     }
530 
531     SkASSERT(base != nullptr); // base may be nullptr if count is zero
532 
533     int lo = 0;
534     int hi = count - 1;
535 
536     while (lo < hi) {
537         int mid = (hi + lo) >> 1;
538         if (base[mid].fDistance < key) {
539             lo = mid + 1;
540         } else {
541             hi = mid;
542         }
543     }
544 
545     if (base[hi].fDistance < key) {
546         hi += 1;
547         hi = ~hi;
548     } else if (key < base[hi].fDistance) {
549         hi = ~hi;
550     }
551     return hi;
552 }
553 
distanceToSegment(SkScalar distance,SkScalar * t)554 const SkPathMeasure::Segment* SkPathMeasure::distanceToSegment(
555                                             SkScalar distance, SkScalar* t) {
556     SkDEBUGCODE(SkScalar length = ) this->getLength();
557     SkASSERT(distance >= 0 && distance <= length);
558 
559     const Segment*  seg = fSegments.begin();
560     int             count = fSegments.count();
561 
562     int index = SkTKSearch<Segment, SkScalar>(seg, count, distance);
563     // don't care if we hit an exact match or not, so we xor index if it is negative
564     index ^= (index >> 31);
565     seg = &seg[index];
566 
567     // now interpolate t-values with the prev segment (if possible)
568     SkScalar    startT = 0, startD = 0;
569     // check if the prev segment is legal, and references the same set of points
570     if (index > 0) {
571         startD = seg[-1].fDistance;
572         if (seg[-1].fPtIndex == seg->fPtIndex) {
573             SkASSERT(seg[-1].fType == seg->fType);
574             startT = seg[-1].getScalarT();
575         }
576     }
577 
578     SkASSERT(seg->getScalarT() > startT);
579     SkASSERT(distance >= startD);
580     SkASSERT(seg->fDistance > startD);
581 
582     *t = startT + (seg->getScalarT() - startT) * (distance - startD) / (seg->fDistance - startD);
583     return seg;
584 }
585 
getPosTan(SkScalar distance,SkPoint * pos,SkVector * tangent)586 bool SkPathMeasure::getPosTan(SkScalar distance, SkPoint* pos, SkVector* tangent) {
587     if (nullptr == fPath) {
588         return false;
589     }
590 
591     SkScalar    length = this->getLength(); // call this to force computing it
592     int         count = fSegments.count();
593 
594     if (count == 0 || length == 0) {
595         return false;
596     }
597 
598     // pin the distance to a legal range
599     if (distance < 0) {
600         distance = 0;
601     } else if (distance > length) {
602         distance = length;
603     }
604 
605     SkScalar        t;
606     const Segment*  seg = this->distanceToSegment(distance, &t);
607 
608     compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, t, pos, tangent);
609     return true;
610 }
611 
getMatrix(SkScalar distance,SkMatrix * matrix,MatrixFlags flags)612 bool SkPathMeasure::getMatrix(SkScalar distance, SkMatrix* matrix,
613                               MatrixFlags flags) {
614     if (nullptr == fPath) {
615         return false;
616     }
617 
618     SkPoint     position;
619     SkVector    tangent;
620 
621     if (this->getPosTan(distance, &position, &tangent)) {
622         if (matrix) {
623             if (flags & kGetTangent_MatrixFlag) {
624                 matrix->setSinCos(tangent.fY, tangent.fX, 0, 0);
625             } else {
626                 matrix->reset();
627             }
628             if (flags & kGetPosition_MatrixFlag) {
629                 matrix->postTranslate(position.fX, position.fY);
630             }
631         }
632         return true;
633     }
634     return false;
635 }
636 
getSegment(SkScalar startD,SkScalar stopD,SkPath * dst,bool startWithMoveTo)637 bool SkPathMeasure::getSegment(SkScalar startD, SkScalar stopD, SkPath* dst,
638                                bool startWithMoveTo) {
639     SkASSERT(dst);
640 
641     SkScalar length = this->getLength();    // ensure we have built our segments
642 
643     if (startD < 0) {
644         startD = 0;
645     }
646     if (stopD > length) {
647         stopD = length;
648     }
649     if (startD > stopD) {
650         return false;
651     }
652     if (!fSegments.count()) {
653         return false;
654     }
655 
656     SkPoint  p;
657     SkScalar startT, stopT;
658     const Segment* seg = this->distanceToSegment(startD, &startT);
659     const Segment* stopSeg = this->distanceToSegment(stopD, &stopT);
660     SkASSERT(seg <= stopSeg);
661 
662     if (startWithMoveTo) {
663         compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, startT, &p, nullptr);
664         dst->moveTo(p);
665     }
666 
667     if (seg->fPtIndex == stopSeg->fPtIndex) {
668         SkPathMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, startT, stopT, dst);
669     } else {
670         do {
671             SkPathMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, startT, SK_Scalar1, dst);
672             seg = SkPathMeasure::NextSegment(seg);
673             startT = 0;
674         } while (seg->fPtIndex < stopSeg->fPtIndex);
675         SkPathMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, 0, stopT, dst);
676     }
677     return true;
678 }
679 
isClosed()680 bool SkPathMeasure::isClosed() {
681     (void)this->getLength();
682     return fIsClosed;
683 }
684 
685 /** Move to the next contour in the path. Return true if one exists, or false if
686     we're done with the path.
687 */
nextContour()688 bool SkPathMeasure::nextContour() {
689     fLength = -1;
690     return this->getLength() > 0;
691 }
692 
693 ///////////////////////////////////////////////////////////////////////////////
694 ///////////////////////////////////////////////////////////////////////////////
695 
696 #ifdef SK_DEBUG
697 
dump()698 void SkPathMeasure::dump() {
699     SkDebugf("pathmeas: length=%g, segs=%d\n", fLength, fSegments.count());
700 
701     for (int i = 0; i < fSegments.count(); i++) {
702         const Segment* seg = &fSegments[i];
703         SkDebugf("pathmeas: seg[%d] distance=%g, point=%d, t=%g, type=%d\n",
704                 i, seg->fDistance, seg->fPtIndex, seg->getScalarT(),
705                  seg->fType);
706     }
707 }
708 
709 #endif
710