1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include <cmath>
9 #include "SkRRectPriv.h"
10 #include "SkScopeExit.h"
11 #include "SkBuffer.h"
12 #include "SkMalloc.h"
13 #include "SkMatrix.h"
14 #include "SkScaleToSides.h"
15 
16 ///////////////////////////////////////////////////////////////////////////////
17 
setRectXY(const SkRect & rect,SkScalar xRad,SkScalar yRad)18 void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) {
19     if (!this->initializeRect(rect)) {
20         return;
21     }
22 
23     if (!SkScalarsAreFinite(xRad, yRad)) {
24         xRad = yRad = 0;    // devolve into a simple rect
25     }
26     if (xRad <= 0 || yRad <= 0) {
27         // all corners are square in this case
28         this->setRect(rect);
29         return;
30     }
31 
32     if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) {
33         SkScalar scale = SkMinScalar(fRect.width() / (xRad + xRad), fRect.height() / (yRad + yRad));
34         SkASSERT(scale < SK_Scalar1);
35         xRad *= scale;
36         yRad *= scale;
37     }
38 
39     for (int i = 0; i < 4; ++i) {
40         fRadii[i].set(xRad, yRad);
41     }
42     fType = kSimple_Type;
43     if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) {
44         fType = kOval_Type;
45         // TODO: assert that all the x&y radii are already W/2 & H/2
46     }
47 
48     SkASSERT(this->isValid());
49 }
50 
setNinePatch(const SkRect & rect,SkScalar leftRad,SkScalar topRad,SkScalar rightRad,SkScalar bottomRad)51 void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
52                            SkScalar rightRad, SkScalar bottomRad) {
53     if (!this->initializeRect(rect)) {
54         return;
55     }
56 
57     const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad };
58     if (!SkScalarsAreFinite(array, 4)) {
59         this->setRect(rect);    // devolve into a simple rect
60         return;
61     }
62 
63     leftRad = SkMaxScalar(leftRad, 0);
64     topRad = SkMaxScalar(topRad, 0);
65     rightRad = SkMaxScalar(rightRad, 0);
66     bottomRad = SkMaxScalar(bottomRad, 0);
67 
68     SkScalar scale = SK_Scalar1;
69     if (leftRad + rightRad > fRect.width()) {
70         scale = fRect.width() / (leftRad + rightRad);
71     }
72     if (topRad + bottomRad > fRect.height()) {
73         scale = SkMinScalar(scale, fRect.height() / (topRad + bottomRad));
74     }
75 
76     if (scale < SK_Scalar1) {
77         leftRad *= scale;
78         topRad *= scale;
79         rightRad *= scale;
80         bottomRad *= scale;
81     }
82 
83     if (leftRad == rightRad && topRad == bottomRad) {
84         if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) {
85             fType = kOval_Type;
86         } else if (0 == leftRad || 0 == topRad) {
87             // If the left and (by equality check above) right radii are zero then it is a rect.
88             // Same goes for top/bottom.
89             fType = kRect_Type;
90             leftRad = 0;
91             topRad = 0;
92             rightRad = 0;
93             bottomRad = 0;
94         } else {
95             fType = kSimple_Type;
96         }
97     } else {
98         fType = kNinePatch_Type;
99     }
100 
101     fRadii[kUpperLeft_Corner].set(leftRad, topRad);
102     fRadii[kUpperRight_Corner].set(rightRad, topRad);
103     fRadii[kLowerRight_Corner].set(rightRad, bottomRad);
104     fRadii[kLowerLeft_Corner].set(leftRad, bottomRad);
105 
106     SkASSERT(this->isValid());
107 }
108 
109 // These parameters intentionally double. Apropos crbug.com/463920, if one of the
110 // radii is huge while the other is small, single precision math can completely
111 // miss the fact that a scale is required.
compute_min_scale(double rad1,double rad2,double limit,double curMin)112 static double compute_min_scale(double rad1, double rad2, double limit, double curMin) {
113     if ((rad1 + rad2) > limit) {
114         return SkTMin(curMin, limit / (rad1 + rad2));
115     }
116     return curMin;
117 }
118 
setRectRadii(const SkRect & rect,const SkVector radii[4])119 void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) {
120     if (!this->initializeRect(rect)) {
121         return;
122     }
123 
124     if (!SkScalarsAreFinite(&radii[0].fX, 8)) {
125         this->setRect(rect);    // devolve into a simple rect
126         return;
127     }
128 
129     memcpy(fRadii, radii, sizeof(fRadii));
130 
131     bool allCornersSquare = true;
132 
133     // Clamp negative radii to zero
134     for (int i = 0; i < 4; ++i) {
135         if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) {
136             // In this case we are being a little fast & loose. Since one of
137             // the radii is 0 the corner is square. However, the other radii
138             // could still be non-zero and play in the global scale factor
139             // computation.
140             fRadii[i].fX = 0;
141             fRadii[i].fY = 0;
142         } else {
143             allCornersSquare = false;
144         }
145     }
146 
147     if (allCornersSquare) {
148         this->setRect(rect);
149         return;
150     }
151 
152     this->scaleRadii();
153 }
154 
initializeRect(const SkRect & rect)155 bool SkRRect::initializeRect(const SkRect& rect) {
156     // Check this before sorting because sorting can hide nans.
157     if (!rect.isFinite()) {
158         *this = SkRRect();
159         return false;
160     }
161     fRect = rect.makeSorted();
162     if (fRect.isEmpty()) {
163         memset(fRadii, 0, sizeof(fRadii));
164         fType = kEmpty_Type;
165         return false;
166     }
167     return true;
168 }
169 
170 // If we can't distinguish one of the radii relative to the other, force it to zero so it
171 // doesn't confuse us later. See crbug.com/850350
172 //
flush_to_zero(SkScalar & a,SkScalar & b)173 static void flush_to_zero(SkScalar& a, SkScalar& b) {
174     SkASSERT(a >= 0);
175     SkASSERT(b >= 0);
176     if (a + b == a) {
177         b = 0;
178     } else if (a + b == b) {
179         a = 0;
180     }
181 }
182 
scaleRadii()183 void SkRRect::scaleRadii() {
184 
185     // Proportionally scale down all radii to fit. Find the minimum ratio
186     // of a side and the radii on that side (for all four sides) and use
187     // that to scale down _all_ the radii. This algorithm is from the
188     // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping
189     // Curves:
190     // "Let f = min(Li/Si), where i is one of { top, right, bottom, left },
191     //   Si is the sum of the two corresponding radii of the corners on side i,
192     //   and Ltop = Lbottom = the width of the box,
193     //   and Lleft = Lright = the height of the box.
194     // If f < 1, then all corner radii are reduced by multiplying them by f."
195     double scale = 1.0;
196 
197     // The sides of the rectangle may be larger than a float.
198     double width = (double)fRect.fRight - (double)fRect.fLeft;
199     double height = (double)fRect.fBottom - (double)fRect.fTop;
200     scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width,  scale);
201     scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale);
202     scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width,  scale);
203     scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale);
204 
205     flush_to_zero(fRadii[0].fX, fRadii[1].fX);
206     flush_to_zero(fRadii[1].fY, fRadii[2].fY);
207     flush_to_zero(fRadii[2].fX, fRadii[3].fX);
208     flush_to_zero(fRadii[3].fY, fRadii[0].fY);
209 
210     if (scale < 1.0) {
211         SkScaleToSides::AdjustRadii(width,  scale, &fRadii[0].fX, &fRadii[1].fX);
212         SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY);
213         SkScaleToSides::AdjustRadii(width,  scale, &fRadii[2].fX, &fRadii[3].fX);
214         SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY);
215     }
216 
217     // At this point we're either oval, simple, or complex (not empty or rect).
218     this->computeType();
219 
220     SkASSERT(this->isValid());
221 }
222 
223 // This method determines if a point known to be inside the RRect's bounds is
224 // inside all the corners.
checkCornerContainment(SkScalar x,SkScalar y) const225 bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const {
226     SkPoint canonicalPt; // (x,y) translated to one of the quadrants
227     int index;
228 
229     if (kOval_Type == this->type()) {
230         canonicalPt.set(x - fRect.centerX(), y - fRect.centerY());
231         index = kUpperLeft_Corner;  // any corner will do in this case
232     } else {
233         if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX &&
234             y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) {
235             // UL corner
236             index = kUpperLeft_Corner;
237             canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX),
238                             y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY));
239             SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0);
240         } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX &&
241                    y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) {
242             // LL corner
243             index = kLowerLeft_Corner;
244             canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX),
245                             y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY));
246             SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0);
247         } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX &&
248                    y < fRect.fTop + fRadii[kUpperRight_Corner].fY) {
249             // UR corner
250             index = kUpperRight_Corner;
251             canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX),
252                             y - (fRect.fTop + fRadii[kUpperRight_Corner].fY));
253             SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0);
254         } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX &&
255                    y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) {
256             // LR corner
257             index = kLowerRight_Corner;
258             canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX),
259                             y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY));
260             SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0);
261         } else {
262             // not in any of the corners
263             return true;
264         }
265     }
266 
267     // A point is in an ellipse (in standard position) if:
268     //      x^2     y^2
269     //     ----- + ----- <= 1
270     //      a^2     b^2
271     // or :
272     //     b^2*x^2 + a^2*y^2 <= (ab)^2
273     SkScalar dist =  SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) +
274                      SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX);
275     return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY);
276 }
277 
AllCornersCircular(const SkRRect & rr,SkScalar tolerance)278 bool SkRRectPriv::AllCornersCircular(const SkRRect& rr, SkScalar tolerance) {
279     return SkScalarNearlyEqual(rr.fRadii[0].fX, rr.fRadii[0].fY, tolerance) &&
280            SkScalarNearlyEqual(rr.fRadii[1].fX, rr.fRadii[1].fY, tolerance) &&
281            SkScalarNearlyEqual(rr.fRadii[2].fX, rr.fRadii[2].fY, tolerance) &&
282            SkScalarNearlyEqual(rr.fRadii[3].fX, rr.fRadii[3].fY, tolerance);
283 }
284 
contains(const SkRect & rect) const285 bool SkRRect::contains(const SkRect& rect) const {
286     if (!this->getBounds().contains(rect)) {
287         // If 'rect' isn't contained by the RR's bounds then the
288         // RR definitely doesn't contain it
289         return false;
290     }
291 
292     if (this->isRect()) {
293         // the prior test was sufficient
294         return true;
295     }
296 
297     // At this point we know all four corners of 'rect' are inside the
298     // bounds of of this RR. Check to make sure all the corners are inside
299     // all the curves
300     return this->checkCornerContainment(rect.fLeft, rect.fTop) &&
301            this->checkCornerContainment(rect.fRight, rect.fTop) &&
302            this->checkCornerContainment(rect.fRight, rect.fBottom) &&
303            this->checkCornerContainment(rect.fLeft, rect.fBottom);
304 }
305 
radii_are_nine_patch(const SkVector radii[4])306 static bool radii_are_nine_patch(const SkVector radii[4]) {
307     return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX &&
308            radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY &&
309            radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX &&
310            radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY;
311 }
312 
313 // There is a simplified version of this method in setRectXY
computeType()314 void SkRRect::computeType() {
315     SK_AT_SCOPE_EXIT(SkASSERT(this->isValid()));
316 
317     if (fRect.isEmpty()) {
318         SkASSERT(fRect.isSorted());
319         for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) {
320             SkASSERT((fRadii[i] == SkVector{0, 0}));
321         }
322         fType = kEmpty_Type;
323         return;
324     }
325 
326     bool allRadiiEqual = true; // are all x radii equal and all y radii?
327     bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY;
328 
329     for (int i = 1; i < 4; ++i) {
330         if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
331             // if either radius is zero the corner is square so both have to
332             // be non-zero to have a rounded corner
333             allCornersSquare = false;
334         }
335         if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
336             allRadiiEqual = false;
337         }
338     }
339 
340     if (allCornersSquare) {
341         fType = kRect_Type;
342         return;
343     }
344 
345     if (allRadiiEqual) {
346         if (fRadii[0].fX >= SkScalarHalf(fRect.width()) &&
347             fRadii[0].fY >= SkScalarHalf(fRect.height())) {
348             fType = kOval_Type;
349         } else {
350             fType = kSimple_Type;
351         }
352         return;
353     }
354 
355     if (radii_are_nine_patch(fRadii)) {
356         fType = kNinePatch_Type;
357     } else {
358         fType = kComplex_Type;
359     }
360 }
361 
matrix_only_scale_and_translate(const SkMatrix & matrix)362 static bool matrix_only_scale_and_translate(const SkMatrix& matrix) {
363     const SkMatrix::TypeMask m = (SkMatrix::TypeMask) (SkMatrix::kAffine_Mask
364                                     | SkMatrix::kPerspective_Mask);
365     return (matrix.getType() & m) == 0;
366 }
367 
transform(const SkMatrix & matrix,SkRRect * dst) const368 bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const {
369     if (nullptr == dst) {
370         return false;
371     }
372 
373     // Assert that the caller is not trying to do this in place, which
374     // would violate const-ness. Do not return false though, so that
375     // if they know what they're doing and want to violate it they can.
376     SkASSERT(dst != this);
377 
378     if (matrix.isIdentity()) {
379         *dst = *this;
380         return true;
381     }
382 
383     // If transform supported 90 degree rotations (which it could), we could
384     // use SkMatrix::rectStaysRect() to check for a valid transformation.
385     if (!matrix_only_scale_and_translate(matrix)) {
386         return false;
387     }
388 
389     SkRect newRect;
390     if (!matrix.mapRect(&newRect, fRect)) {
391         return false;
392     }
393 
394     // The matrix may have scaled us to zero (or due to float madness, we now have collapsed
395     // some dimension of the rect, so we need to check for that. Note that matrix must be
396     // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates
397     // loss of precision.
398     if (!newRect.isFinite() || newRect.isEmpty()) {
399         return false;
400     }
401 
402     // At this point, this is guaranteed to succeed, so we can modify dst.
403     dst->fRect = newRect;
404 
405     // Since the only transforms that were allowed are scale and translate, the type
406     // remains unchanged.
407     dst->fType = fType;
408 
409     if (kRect_Type == fType) {
410         SkASSERT(dst->isValid());
411         return true;
412     }
413     if (kOval_Type == fType) {
414         for (int i = 0; i < 4; ++i) {
415             dst->fRadii[i].fX = SkScalarHalf(newRect.width());
416             dst->fRadii[i].fY = SkScalarHalf(newRect.height());
417         }
418         SkASSERT(dst->isValid());
419         return true;
420     }
421 
422     // Now scale each corner
423     SkScalar xScale = matrix.getScaleX();
424     const bool flipX = xScale < 0;
425     if (flipX) {
426         xScale = -xScale;
427     }
428     SkScalar yScale = matrix.getScaleY();
429     const bool flipY = yScale < 0;
430     if (flipY) {
431         yScale = -yScale;
432     }
433 
434     // Scale the radii without respecting the flip.
435     for (int i = 0; i < 4; ++i) {
436         dst->fRadii[i].fX = fRadii[i].fX * xScale;
437         dst->fRadii[i].fY = fRadii[i].fY * yScale;
438     }
439 
440     // Now swap as necessary.
441     if (flipX) {
442         if (flipY) {
443             // Swap with opposite corners
444             SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]);
445             SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]);
446         } else {
447             // Only swap in x
448             SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]);
449             SkTSwap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]);
450         }
451     } else if (flipY) {
452         // Only swap in y
453         SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]);
454         SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]);
455     }
456 
457     if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) {
458         return false;
459     }
460 
461     dst->scaleRadii();
462     dst->isValid();
463 
464     return true;
465 }
466 
467 ///////////////////////////////////////////////////////////////////////////////
468 
inset(SkScalar dx,SkScalar dy,SkRRect * dst) const469 void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const {
470     SkRect r = fRect.makeInset(dx, dy);
471     bool degenerate = false;
472     if (r.fRight <= r.fLeft) {
473         degenerate = true;
474         r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight);
475     }
476     if (r.fBottom <= r.fTop) {
477         degenerate = true;
478         r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom);
479     }
480     if (degenerate) {
481         dst->fRect = r;
482         memset(dst->fRadii, 0, sizeof(dst->fRadii));
483         dst->fType = kEmpty_Type;
484         return;
485     }
486     if (!r.isFinite()) {
487         *dst = SkRRect();
488         return;
489     }
490 
491     SkVector radii[4];
492     memcpy(radii, fRadii, sizeof(radii));
493     for (int i = 0; i < 4; ++i) {
494         if (radii[i].fX) {
495             radii[i].fX -= dx;
496         }
497         if (radii[i].fY) {
498             radii[i].fY -= dy;
499         }
500     }
501     dst->setRectRadii(r, radii);
502 }
503 
504 ///////////////////////////////////////////////////////////////////////////////
505 
writeToMemory(void * buffer) const506 size_t SkRRect::writeToMemory(void* buffer) const {
507     // Serialize only the rect and corners, but not the derived type tag.
508     memcpy(buffer, this, kSizeInMemory);
509     return kSizeInMemory;
510 }
511 
writeToBuffer(SkWBuffer * buffer) const512 void SkRRect::writeToBuffer(SkWBuffer* buffer) const {
513     // Serialize only the rect and corners, but not the derived type tag.
514     buffer->write(this, kSizeInMemory);
515 }
516 
readFromMemory(const void * buffer,size_t length)517 size_t SkRRect::readFromMemory(const void* buffer, size_t length) {
518     if (length < kSizeInMemory) {
519         return 0;
520     }
521 
522     SkRRect raw;
523     memcpy(&raw, buffer, kSizeInMemory);
524     this->setRectRadii(raw.fRect, raw.fRadii);
525     return kSizeInMemory;
526 }
527 
readFromBuffer(SkRBuffer * buffer)528 bool SkRRect::readFromBuffer(SkRBuffer* buffer) {
529     if (buffer->available() < kSizeInMemory) {
530         return false;
531     }
532     SkRRect storage;
533     return buffer->read(&storage, kSizeInMemory) &&
534            (this->readFromMemory(&storage, kSizeInMemory) == kSizeInMemory);
535 }
536 
537 #include "SkString.h"
538 #include "SkStringUtils.h"
539 
dump(bool asHex) const540 void SkRRect::dump(bool asHex) const {
541     SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;
542 
543     fRect.dump(asHex);
544     SkString line("const SkPoint corners[] = {\n");
545     for (int i = 0; i < 4; ++i) {
546         SkString strX, strY;
547         SkAppendScalar(&strX, fRadii[i].x(), asType);
548         SkAppendScalar(&strY, fRadii[i].y(), asType);
549         line.appendf("    { %s, %s },", strX.c_str(), strY.c_str());
550         if (asHex) {
551             line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y());
552         }
553         line.append("\n");
554     }
555     line.append("};");
556     SkDebugf("%s\n", line.c_str());
557 }
558 
559 ///////////////////////////////////////////////////////////////////////////////
560 
561 /**
562  *  We need all combinations of predicates to be true to have a "safe" radius value.
563  */
are_radius_check_predicates_valid(SkScalar rad,SkScalar min,SkScalar max)564 static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) {
565     return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) &&
566            rad >= 0;
567 }
568 
isValid() const569 bool SkRRect::isValid() const {
570     if (!AreRectAndRadiiValid(fRect, fRadii)) {
571         return false;
572     }
573 
574     bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY);
575     bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY);
576     bool allRadiiSame = true;
577 
578     for (int i = 1; i < 4; ++i) {
579         if (0 != fRadii[i].fX || 0 != fRadii[i].fY) {
580             allRadiiZero = false;
581         }
582 
583         if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
584             allRadiiSame = false;
585         }
586 
587         if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
588             allCornersSquare = false;
589         }
590     }
591     bool patchesOfNine = radii_are_nine_patch(fRadii);
592 
593     if (fType < 0 || fType > kLastType) {
594         return false;
595     }
596 
597     switch (fType) {
598         case kEmpty_Type:
599             if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) {
600                 return false;
601             }
602             break;
603         case kRect_Type:
604             if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) {
605                 return false;
606             }
607             break;
608         case kOval_Type:
609             if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) {
610                 return false;
611             }
612 
613             for (int i = 0; i < 4; ++i) {
614                 if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) ||
615                     !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) {
616                     return false;
617                 }
618             }
619             break;
620         case kSimple_Type:
621             if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) {
622                 return false;
623             }
624             break;
625         case kNinePatch_Type:
626             if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare ||
627                 !patchesOfNine) {
628                 return false;
629             }
630             break;
631         case kComplex_Type:
632             if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare ||
633                 patchesOfNine) {
634                 return false;
635             }
636             break;
637     }
638 
639     return true;
640 }
641 
AreRectAndRadiiValid(const SkRect & rect,const SkVector radii[4])642 bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) {
643     if (!rect.isFinite() || !rect.isSorted()) {
644         return false;
645     }
646     for (int i = 0; i < 4; ++i) {
647         if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) ||
648             !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) {
649             return false;
650         }
651     }
652     return true;
653 }
654 ///////////////////////////////////////////////////////////////////////////////
655