1 
2 /*
3  * Copyright 2008 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkWriter32_DEFINED
11 #define SkWriter32_DEFINED
12 
13 #include "../private/SkTemplates.h"
14 #include "SkData.h"
15 #include "SkMatrix.h"
16 #include "SkPath.h"
17 #include "SkPoint.h"
18 #include "SkPoint3.h"
19 #include "SkRRect.h"
20 #include "SkRect.h"
21 #include "SkRegion.h"
22 #include "SkScalar.h"
23 #include "SkStream.h"
24 #include "SkTypes.h"
25 
26 class SK_API SkWriter32 : SkNoncopyable {
27 public:
28     /**
29      *  The caller can specify an initial block of storage, which the caller manages.
30      *
31      *  SkWriter32 will try to back reserve and write calls with this external storage until the
32      *  first time an allocation doesn't fit.  From then it will use dynamically allocated storage.
33      *  This used to be optional behavior, but pipe now relies on it.
34      */
35     SkWriter32(void* external = nullptr, size_t externalBytes = 0) {
36         this->reset(external, externalBytes);
37     }
38 
39     // return the current offset (will always be a multiple of 4)
bytesWritten()40     size_t bytesWritten() const { return fUsed; }
41 
42     SK_ATTR_DEPRECATED("use bytesWritten")
size()43     size_t size() const { return this->bytesWritten(); }
44 
45     void reset(void* external = nullptr, size_t externalBytes = 0) {
46         SkASSERT(SkIsAlign4((uintptr_t)external));
47         SkASSERT(SkIsAlign4(externalBytes));
48 
49         fData = (uint8_t*)external;
50         fCapacity = externalBytes;
51         fUsed = 0;
52         fExternal = external;
53     }
54 
55     // size MUST be multiple of 4
reserve(size_t size)56     uint32_t* reserve(size_t size) {
57         SkASSERT(SkAlign4(size) == size);
58         size_t offset = fUsed;
59         size_t totalRequired = fUsed + size;
60         if (totalRequired > fCapacity) {
61             this->growToAtLeast(totalRequired);
62         }
63         fUsed = totalRequired;
64         return (uint32_t*)(fData + offset);
65     }
66 
67     /**
68      *  Read a T record at offset, which must be a multiple of 4. Only legal if the record
69      *  was written atomically using the write methods below.
70      */
71     template<typename T>
readTAt(size_t offset)72     const T& readTAt(size_t offset) const {
73         SkASSERT(SkAlign4(offset) == offset);
74         SkASSERT(offset < fUsed);
75         return *(T*)(fData + offset);
76     }
77 
78     /**
79      *  Overwrite a T record at offset, which must be a multiple of 4. Only legal if the record
80      *  was written atomically using the write methods below.
81      */
82     template<typename T>
overwriteTAt(size_t offset,const T & value)83     void overwriteTAt(size_t offset, const T& value) {
84         SkASSERT(SkAlign4(offset) == offset);
85         SkASSERT(offset < fUsed);
86         *(T*)(fData + offset) = value;
87     }
88 
writeBool(bool value)89     bool writeBool(bool value) {
90         this->write32(value);
91         return value;
92     }
93 
writeInt(int32_t value)94     void writeInt(int32_t value) {
95         this->write32(value);
96     }
97 
write8(int32_t value)98     void write8(int32_t value) {
99         *(int32_t*)this->reserve(sizeof(value)) = value & 0xFF;
100     }
101 
write16(int32_t value)102     void write16(int32_t value) {
103         *(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF;
104     }
105 
write32(int32_t value)106     void write32(int32_t value) {
107         *(int32_t*)this->reserve(sizeof(value)) = value;
108     }
109 
writePtr(void * value)110     void writePtr(void* value) {
111         *(void**)this->reserve(sizeof(value)) = value;
112     }
113 
writeScalar(SkScalar value)114     void writeScalar(SkScalar value) {
115         *(SkScalar*)this->reserve(sizeof(value)) = value;
116     }
117 
writePoint(const SkPoint & pt)118     void writePoint(const SkPoint& pt) {
119         *(SkPoint*)this->reserve(sizeof(pt)) = pt;
120     }
121 
writePoint3(const SkPoint3 & pt)122     void writePoint3(const SkPoint3& pt) {
123         *(SkPoint3*)this->reserve(sizeof(pt)) = pt;
124     }
125 
writeRect(const SkRect & rect)126     void writeRect(const SkRect& rect) {
127         *(SkRect*)this->reserve(sizeof(rect)) = rect;
128     }
129 
writeIRect(const SkIRect & rect)130     void writeIRect(const SkIRect& rect) {
131         *(SkIRect*)this->reserve(sizeof(rect)) = rect;
132     }
133 
writeRRect(const SkRRect & rrect)134     void writeRRect(const SkRRect& rrect) {
135         rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory));
136     }
137 
writePath(const SkPath & path)138     void writePath(const SkPath& path) {
139         size_t size = path.writeToMemory(nullptr);
140         SkASSERT(SkAlign4(size) == size);
141         path.writeToMemory(this->reserve(size));
142     }
143 
144     void writeMatrix(const SkMatrix& matrix);
145 
writeRegion(const SkRegion & rgn)146     void writeRegion(const SkRegion& rgn) {
147         size_t size = rgn.writeToMemory(nullptr);
148         SkASSERT(SkAlign4(size) == size);
149         rgn.writeToMemory(this->reserve(size));
150     }
151 
152     // write count bytes (must be a multiple of 4)
writeMul4(const void * values,size_t size)153     void writeMul4(const void* values, size_t size) {
154         this->write(values, size);
155     }
156 
157     /**
158      *  Write size bytes from values. size must be a multiple of 4, though
159      *  values need not be 4-byte aligned.
160      */
write(const void * values,size_t size)161     void write(const void* values, size_t size) {
162         SkASSERT(SkAlign4(size) == size);
163         sk_careful_memcpy(this->reserve(size), values, size);
164     }
165 
166     /**
167      *  Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be
168      *  filled in with zeroes.
169      */
reservePad(size_t size)170     uint32_t* reservePad(size_t size) {
171         size_t alignedSize = SkAlign4(size);
172         uint32_t* p = this->reserve(alignedSize);
173         if (alignedSize != size) {
174             SkASSERT(alignedSize >= 4);
175             p[alignedSize / 4 - 1] = 0;
176         }
177         return p;
178     }
179 
180     /**
181      *  Write size bytes from src, and pad to 4 byte alignment with zeroes.
182      */
writePad(const void * src,size_t size)183     void writePad(const void* src, size_t size) {
184         sk_careful_memcpy(this->reservePad(size), src, size);
185     }
186 
187     /**
188      *  Writes a string to the writer, which can be retrieved with
189      *  SkReader32::readString().
190      *  The length can be specified, or if -1 is passed, it will be computed by
191      *  calling strlen(). The length must be < max size_t.
192      *
193      *  If you write NULL, it will be read as "".
194      */
195     void writeString(const char* str, size_t len = (size_t)-1);
196 
197     /**
198      *  Computes the size (aligned to multiple of 4) need to write the string
199      *  in a call to writeString(). If the length is not specified, it will be
200      *  computed by calling strlen().
201      */
202     static size_t WriteStringSize(const char* str, size_t len = (size_t)-1);
203 
writeData(const SkData * data)204     void writeData(const SkData* data) {
205         uint32_t len = data ? SkToU32(data->size()) : 0;
206         this->write32(len);
207         if (data) {
208             this->writePad(data->data(), len);
209         }
210     }
211 
WriteDataSize(const SkData * data)212     static size_t WriteDataSize(const SkData* data) {
213         return 4 + SkAlign4(data ? data->size() : 0);
214     }
215 
216     /**
217      *  Move the cursor back to offset bytes from the beginning.
218      *  offset must be a multiple of 4 no greater than size().
219      */
rewindToOffset(size_t offset)220     void rewindToOffset(size_t offset) {
221         SkASSERT(SkAlign4(offset) == offset);
222         SkASSERT(offset <= bytesWritten());
223         fUsed = offset;
224     }
225 
226     // copy into a single buffer (allocated by caller). Must be at least size()
flatten(void * dst)227     void flatten(void* dst) const {
228         memcpy(dst, fData, fUsed);
229     }
230 
writeToStream(SkWStream * stream)231     bool writeToStream(SkWStream* stream) const {
232         return stream->write(fData, fUsed);
233     }
234 
235     // read from the stream, and write up to length bytes. Return the actual
236     // number of bytes written.
readFromStream(SkStream * stream,size_t length)237     size_t readFromStream(SkStream* stream, size_t length) {
238         return stream->read(this->reservePad(length), length);
239     }
240 
241     /**
242      *  Captures a snapshot of the data as it is right now, and return it.
243      */
244     sk_sp<SkData> snapshotAsData() const;
245 private:
246     void growToAtLeast(size_t size);
247 
248     uint8_t* fData;                    // Points to either fInternal or fExternal.
249     size_t fCapacity;                  // Number of bytes we can write to fData.
250     size_t fUsed;                      // Number of bytes written.
251     void* fExternal;                   // Unmanaged memory block.
252     SkAutoTMalloc<uint8_t> fInternal;  // Managed memory block.
253 };
254 
255 /**
256  *  Helper class to allocated SIZE bytes as part of the writer, and to provide
257  *  that storage to the constructor as its initial storage buffer.
258  *
259  *  This wrapper ensures proper alignment rules are met for the storage.
260  */
261 template <size_t SIZE> class SkSWriter32 : public SkWriter32 {
262 public:
SkSWriter32()263     SkSWriter32() { this->reset(); }
264 
reset()265     void reset() {this->INHERITED::reset(fData.fStorage, SIZE); }
266 
267 private:
268     union {
269         void*   fPtrAlignment;
270         double  fDoubleAlignment;
271         char    fStorage[SIZE];
272     } fData;
273 
274     typedef SkWriter32 INHERITED;
275 };
276 
277 #endif
278