1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrAAHairLinePathRenderer.h"
9 #include "GrBuffer.h"
10 #include "GrCaps.h"
11 #include "GrClip.h"
12 #include "GrContext.h"
13 #include "GrDefaultGeoProcFactory.h"
14 #include "GrDrawOpTest.h"
15 #include "GrOpFlushState.h"
16 #include "GrPathUtils.h"
17 #include "GrProcessor.h"
18 #include "GrResourceProvider.h"
19 #include "GrSimpleMeshDrawOpHelper.h"
20 #include "SkGeometry.h"
21 #include "SkMatrixPriv.h"
22 #include "SkPoint3.h"
23 #include "SkPointPriv.h"
24 #include "SkRectPriv.h"
25 #include "SkStroke.h"
26 #include "SkTemplates.h"
27 #include "effects/GrBezierEffect.h"
28 #include "ops/GrMeshDrawOp.h"
29 
30 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
31 
32 // quadratics are rendered as 5-sided polys in order to bound the
33 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
34 // bloat_quad. Quadratics and conics share an index buffer
35 
36 // lines are rendered as:
37 //      *______________*
38 //      |\ -_______   /|
39 //      | \        \ / |
40 //      |  *--------*  |
41 //      | /  ______/ \ |
42 //      */_-__________\*
43 // For: 6 vertices and 18 indices (for 6 triangles)
44 
45 // Each quadratic is rendered as a five sided polygon. This poly bounds
46 // the quadratic's bounding triangle but has been expanded so that the
47 // 1-pixel wide area around the curve is inside the poly.
48 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
49 // that is rendered would look like this:
50 //              b0
51 //              b
52 //
53 //     a0              c0
54 //      a            c
55 //       a1       c1
56 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
57 // specified by these 9 indices:
58 static const uint16_t kQuadIdxBufPattern[] = {
59     0, 1, 2,
60     2, 4, 3,
61     1, 4, 2
62 };
63 
64 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
65 static const int kQuadNumVertices = 5;
66 static const int kQuadsNumInIdxBuffer = 256;
67 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
68 
get_quads_index_buffer(GrResourceProvider * resourceProvider)69 static sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
70     GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
71     return resourceProvider->findOrCreatePatternedIndexBuffer(
72         kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
73         gQuadsIndexBufferKey);
74 }
75 
76 
77 // Each line segment is rendered as two quads and two triangles.
78 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
79 // The four external points are offset 1 pixel perpendicular to the
80 // line and half a pixel parallel to the line.
81 //
82 // p4                  p5
83 //      p0         p1
84 // p2                  p3
85 //
86 // Each is drawn as six triangles specified by these 18 indices:
87 
88 static const uint16_t kLineSegIdxBufPattern[] = {
89     0, 1, 3,
90     0, 3, 2,
91     0, 4, 5,
92     0, 5, 1,
93     0, 2, 4,
94     1, 5, 3
95 };
96 
97 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
98 static const int kLineSegNumVertices = 6;
99 static const int kLineSegsNumInIdxBuffer = 256;
100 
101 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
102 
get_lines_index_buffer(GrResourceProvider * resourceProvider)103 static sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
104     GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
105     return resourceProvider->findOrCreatePatternedIndexBuffer(
106         kLineSegIdxBufPattern, kIdxsPerLineSeg,  kLineSegsNumInIdxBuffer, kLineSegNumVertices,
107         gLinesIndexBufferKey);
108 }
109 
110 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)111 static int get_float_exp(float x) {
112     GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
113 #ifdef SK_DEBUG
114     static bool tested;
115     if (!tested) {
116         tested = true;
117         SkASSERT(get_float_exp(0.25f) == -2);
118         SkASSERT(get_float_exp(0.3f) == -2);
119         SkASSERT(get_float_exp(0.5f) == -1);
120         SkASSERT(get_float_exp(1.f) == 0);
121         SkASSERT(get_float_exp(2.f) == 1);
122         SkASSERT(get_float_exp(2.5f) == 1);
123         SkASSERT(get_float_exp(8.f) == 3);
124         SkASSERT(get_float_exp(100.f) == 6);
125         SkASSERT(get_float_exp(1000.f) == 9);
126         SkASSERT(get_float_exp(1024.f) == 10);
127         SkASSERT(get_float_exp(3000000.f) == 21);
128     }
129 #endif
130     const int* iptr = (const int*)&x;
131     return (((*iptr) & 0x7f800000) >> 23) - 127;
132 }
133 
134 // Uses the max curvature function for quads to estimate
135 // where to chop the conic. If the max curvature is not
136 // found along the curve segment it will return 1 and
137 // dst[0] is the original conic. If it returns 2 the dst[0]
138 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)139 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
140     SkScalar t = SkFindQuadMaxCurvature(src);
141     if (t == 0) {
142         if (dst) {
143             dst[0].set(src, weight);
144         }
145         return 1;
146     } else {
147         if (dst) {
148             SkConic conic;
149             conic.set(src, weight);
150             if (!conic.chopAt(t, dst)) {
151                 dst[0].set(src, weight);
152                 return 1;
153             }
154         }
155         return 2;
156     }
157 }
158 
159 // Calls split_conic on the entire conic and then once more on each subsection.
160 // Most cases will result in either 1 conic (chop point is not within t range)
161 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)162 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
163     SkConic dstTemp[2];
164     int conicCnt = split_conic(src, dstTemp, weight);
165     if (2 == conicCnt) {
166         int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
167         conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
168     } else {
169         dst[0] = dstTemp[0];
170     }
171     return conicCnt;
172 }
173 
174 // returns 0 if quad/conic is degen or close to it
175 // in this case approx the path with lines
176 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)177 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
178     static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
179     static const SkScalar gDegenerateToLineTolSqd =
180         gDegenerateToLineTol * gDegenerateToLineTol;
181 
182     if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
183         SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
184         return 1;
185     }
186 
187     *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
188     if (*dsqd < gDegenerateToLineTolSqd) {
189         return 1;
190     }
191 
192     if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
193         return 1;
194     }
195     return 0;
196 }
197 
is_degen_quad_or_conic(const SkPoint p[3])198 static int is_degen_quad_or_conic(const SkPoint p[3]) {
199     SkScalar dsqd;
200     return is_degen_quad_or_conic(p, &dsqd);
201 }
202 
203 // we subdivide the quads to avoid huge overfill
204 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])205 static int num_quad_subdivs(const SkPoint p[3]) {
206     SkScalar dsqd;
207     if (is_degen_quad_or_conic(p, &dsqd)) {
208         return -1;
209     }
210 
211     // tolerance of triangle height in pixels
212     // tuned on windows  Quadro FX 380 / Z600
213     // trade off of fill vs cpu time on verts
214     // maybe different when do this using gpu (geo or tess shaders)
215     static const SkScalar gSubdivTol = 175 * SK_Scalar1;
216 
217     if (dsqd <= gSubdivTol * gSubdivTol) {
218         return 0;
219     } else {
220         static const int kMaxSub = 4;
221         // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
222         // = log4(d*d/tol*tol)/2
223         // = log2(d*d/tol*tol)
224 
225         // +1 since we're ignoring the mantissa contribution.
226         int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
227         log = SkTMin(SkTMax(0, log), kMaxSub);
228         return log;
229     }
230 }
231 
232 /**
233  * Generates the lines and quads to be rendered. Lines are always recorded in
234  * device space. We will do a device space bloat to account for the 1pixel
235  * thickness.
236  * Quads are recorded in device space unless m contains
237  * perspective, then in they are in src space. We do this because we will
238  * subdivide large quads to reduce over-fill. This subdivision has to be
239  * performed before applying the perspective matrix.
240  */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,SkScalar capLength,GrAAHairLinePathRenderer::PtArray * lines,GrAAHairLinePathRenderer::PtArray * quads,GrAAHairLinePathRenderer::PtArray * conics,GrAAHairLinePathRenderer::IntArray * quadSubdivCnts,GrAAHairLinePathRenderer::FloatArray * conicWeights)241 static int gather_lines_and_quads(const SkPath& path,
242                                   const SkMatrix& m,
243                                   const SkIRect& devClipBounds,
244                                   SkScalar capLength,
245                                   GrAAHairLinePathRenderer::PtArray* lines,
246                                   GrAAHairLinePathRenderer::PtArray* quads,
247                                   GrAAHairLinePathRenderer::PtArray* conics,
248                                   GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
249                                   GrAAHairLinePathRenderer::FloatArray* conicWeights) {
250     SkPath::Iter iter(path, false);
251 
252     int totalQuadCount = 0;
253     SkRect bounds;
254     SkIRect ibounds;
255 
256     bool persp = m.hasPerspective();
257 
258     // Whenever a degenerate, zero-length contour is encountered, this code will insert a
259     // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
260     // suffice for AA square & circle capping.
261     int verbsInContour = 0; // Does not count moves
262     bool seenZeroLengthVerb = false;
263     SkPoint zeroVerbPt;
264 
265     for (;;) {
266         SkPoint pathPts[4];
267         SkPoint devPts[4];
268         SkPath::Verb verb = iter.next(pathPts, false);
269         switch (verb) {
270             case SkPath::kConic_Verb: {
271                 SkConic dst[4];
272                 // We chop the conics to create tighter clipping to hide error
273                 // that appears near max curvature of very thin conics. Thin
274                 // hyperbolas with high weight still show error.
275                 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
276                 for (int i = 0; i < conicCnt; ++i) {
277                     SkPoint* chopPnts = dst[i].fPts;
278                     m.mapPoints(devPts, chopPnts, 3);
279                     bounds.setBounds(devPts, 3);
280                     bounds.outset(SK_Scalar1, SK_Scalar1);
281                     bounds.roundOut(&ibounds);
282                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
283                         if (is_degen_quad_or_conic(devPts)) {
284                             SkPoint* pts = lines->push_back_n(4);
285                             pts[0] = devPts[0];
286                             pts[1] = devPts[1];
287                             pts[2] = devPts[1];
288                             pts[3] = devPts[2];
289                             if (verbsInContour == 0 && i == 0 &&
290                                     pts[0] == pts[1] && pts[2] == pts[3]) {
291                                 seenZeroLengthVerb = true;
292                                 zeroVerbPt = pts[0];
293                             }
294                         } else {
295                             // when in perspective keep conics in src space
296                             SkPoint* cPts = persp ? chopPnts : devPts;
297                             SkPoint* pts = conics->push_back_n(3);
298                             pts[0] = cPts[0];
299                             pts[1] = cPts[1];
300                             pts[2] = cPts[2];
301                             conicWeights->push_back() = dst[i].fW;
302                         }
303                     }
304                 }
305                 verbsInContour++;
306                 break;
307             }
308             case SkPath::kMove_Verb:
309                 // New contour (and last one was unclosed). If it was just a zero length drawing
310                 // operation, and we're supposed to draw caps, then add a tiny line.
311                 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
312                     SkPoint* pts = lines->push_back_n(2);
313                     pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
314                     pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
315                 }
316                 verbsInContour = 0;
317                 seenZeroLengthVerb = false;
318                 break;
319             case SkPath::kLine_Verb:
320                 m.mapPoints(devPts, pathPts, 2);
321                 bounds.setBounds(devPts, 2);
322                 bounds.outset(SK_Scalar1, SK_Scalar1);
323                 bounds.roundOut(&ibounds);
324                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
325                     SkPoint* pts = lines->push_back_n(2);
326                     pts[0] = devPts[0];
327                     pts[1] = devPts[1];
328                     if (verbsInContour == 0 && pts[0] == pts[1]) {
329                         seenZeroLengthVerb = true;
330                         zeroVerbPt = pts[0];
331                     }
332                 }
333                 verbsInContour++;
334                 break;
335             case SkPath::kQuad_Verb: {
336                 SkPoint choppedPts[5];
337                 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
338                 // When it is degenerate it allows the approximation with lines to work since the
339                 // chop point (if there is one) will be at the parabola's vertex. In the nearly
340                 // degenerate the QuadUVMatrix computed for the points is almost singular which
341                 // can cause rendering artifacts.
342                 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
343                 for (int i = 0; i < n; ++i) {
344                     SkPoint* quadPts = choppedPts + i * 2;
345                     m.mapPoints(devPts, quadPts, 3);
346                     bounds.setBounds(devPts, 3);
347                     bounds.outset(SK_Scalar1, SK_Scalar1);
348                     bounds.roundOut(&ibounds);
349 
350                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
351                         int subdiv = num_quad_subdivs(devPts);
352                         SkASSERT(subdiv >= -1);
353                         if (-1 == subdiv) {
354                             SkPoint* pts = lines->push_back_n(4);
355                             pts[0] = devPts[0];
356                             pts[1] = devPts[1];
357                             pts[2] = devPts[1];
358                             pts[3] = devPts[2];
359                             if (verbsInContour == 0 && i == 0 &&
360                                     pts[0] == pts[1] && pts[2] == pts[3]) {
361                                 seenZeroLengthVerb = true;
362                                 zeroVerbPt = pts[0];
363                             }
364                         } else {
365                             // when in perspective keep quads in src space
366                             SkPoint* qPts = persp ? quadPts : devPts;
367                             SkPoint* pts = quads->push_back_n(3);
368                             pts[0] = qPts[0];
369                             pts[1] = qPts[1];
370                             pts[2] = qPts[2];
371                             quadSubdivCnts->push_back() = subdiv;
372                             totalQuadCount += 1 << subdiv;
373                         }
374                     }
375                 }
376                 verbsInContour++;
377                 break;
378             }
379             case SkPath::kCubic_Verb:
380                 m.mapPoints(devPts, pathPts, 4);
381                 bounds.setBounds(devPts, 4);
382                 bounds.outset(SK_Scalar1, SK_Scalar1);
383                 bounds.roundOut(&ibounds);
384                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
385                     PREALLOC_PTARRAY(32) q;
386                     // We convert cubics to quadratics (for now).
387                     // In perspective have to do conversion in src space.
388                     if (persp) {
389                         SkScalar tolScale =
390                             GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
391                         GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
392                     } else {
393                         GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
394                     }
395                     for (int i = 0; i < q.count(); i += 3) {
396                         SkPoint* qInDevSpace;
397                         // bounds has to be calculated in device space, but q is
398                         // in src space when there is perspective.
399                         if (persp) {
400                             m.mapPoints(devPts, &q[i], 3);
401                             bounds.setBounds(devPts, 3);
402                             qInDevSpace = devPts;
403                         } else {
404                             bounds.setBounds(&q[i], 3);
405                             qInDevSpace = &q[i];
406                         }
407                         bounds.outset(SK_Scalar1, SK_Scalar1);
408                         bounds.roundOut(&ibounds);
409                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
410                             int subdiv = num_quad_subdivs(qInDevSpace);
411                             SkASSERT(subdiv >= -1);
412                             if (-1 == subdiv) {
413                                 SkPoint* pts = lines->push_back_n(4);
414                                 // lines should always be in device coords
415                                 pts[0] = qInDevSpace[0];
416                                 pts[1] = qInDevSpace[1];
417                                 pts[2] = qInDevSpace[1];
418                                 pts[3] = qInDevSpace[2];
419                                 if (verbsInContour == 0 && i == 0 &&
420                                         pts[0] == pts[1] && pts[2] == pts[3]) {
421                                     seenZeroLengthVerb = true;
422                                     zeroVerbPt = pts[0];
423                                 }
424                             } else {
425                                 SkPoint* pts = quads->push_back_n(3);
426                                 // q is already in src space when there is no
427                                 // perspective and dev coords otherwise.
428                                 pts[0] = q[0 + i];
429                                 pts[1] = q[1 + i];
430                                 pts[2] = q[2 + i];
431                                 quadSubdivCnts->push_back() = subdiv;
432                                 totalQuadCount += 1 << subdiv;
433                             }
434                         }
435                     }
436                 }
437                 verbsInContour++;
438                 break;
439             case SkPath::kClose_Verb:
440                 // Contour is closed, so we don't need to grow the starting line, unless it's
441                 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
442                 if (capLength > 0) {
443                     if (seenZeroLengthVerb && verbsInContour == 1) {
444                         SkPoint* pts = lines->push_back_n(2);
445                         pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
446                         pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
447                     } else if (verbsInContour == 0) {
448                         // Contour was (moveTo, close). Add a line.
449                         m.mapPoints(devPts, pathPts, 1);
450                         devPts[1] = devPts[0];
451                         bounds.setBounds(devPts, 2);
452                         bounds.outset(SK_Scalar1, SK_Scalar1);
453                         bounds.roundOut(&ibounds);
454                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
455                             SkPoint* pts = lines->push_back_n(2);
456                             pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
457                             pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
458                         }
459                     }
460                 }
461                 break;
462             case SkPath::kDone_Verb:
463                 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
464                     // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
465                     // degenerate, we need to draw a line.
466                     SkPoint* pts = lines->push_back_n(2);
467                     pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
468                     pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
469                 }
470                 return totalQuadCount;
471         }
472     }
473 }
474 
475 struct LineVertex {
476     SkPoint fPos;
477     float fCoverage;
478 };
479 
480 struct BezierVertex {
481     SkPoint fPos;
482     union {
483         struct {
484             SkScalar fKLM[3];
485         } fConic;
486         SkVector   fQuadCoord;
487         struct {
488             SkScalar fBogus[4];
489         };
490     };
491 };
492 
493 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
494 
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)495 static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
496                             const SkPoint& ptB, const SkVector& normB,
497                             SkPoint* result) {
498 
499     SkScalar lineAW = -normA.dot(ptA);
500     SkScalar lineBW = -normB.dot(ptB);
501 
502     SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
503     wInv = SkScalarInvert(wInv);
504 
505     result->fX = normA.fY * lineBW - lineAW * normB.fY;
506     result->fX *= wInv;
507 
508     result->fY = lineAW * normB.fX - normA.fX * lineBW;
509     result->fY *= wInv;
510 }
511 
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])512 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
513     // this should be in the src space, not dev coords, when we have perspective
514     GrPathUtils::QuadUVMatrix DevToUV(qpts);
515     DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
516 }
517 
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])518 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
519                        const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
520     SkASSERT(!toDevice == !toSrc);
521     // original quad is specified by tri a,b,c
522     SkPoint a = qpts[0];
523     SkPoint b = qpts[1];
524     SkPoint c = qpts[2];
525 
526     if (toDevice) {
527         toDevice->mapPoints(&a, 1);
528         toDevice->mapPoints(&b, 1);
529         toDevice->mapPoints(&c, 1);
530     }
531     // make a new poly where we replace a and c by a 1-pixel wide edges orthog
532     // to edges ab and bc:
533     //
534     //   before       |        after
535     //                |              b0
536     //         b      |
537     //                |
538     //                |     a0            c0
539     // a         c    |        a1       c1
540     //
541     // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
542     // respectively.
543     BezierVertex& a0 = verts[0];
544     BezierVertex& a1 = verts[1];
545     BezierVertex& b0 = verts[2];
546     BezierVertex& c0 = verts[3];
547     BezierVertex& c1 = verts[4];
548 
549     SkVector ab = b;
550     ab -= a;
551     SkVector ac = c;
552     ac -= a;
553     SkVector cb = b;
554     cb -= c;
555 
556     // We should have already handled degenerates
557     SkASSERT(ab.length() > 0 && cb.length() > 0);
558 
559     ab.normalize();
560     SkVector abN;
561     SkPointPriv::SetOrthog(&abN, ab, SkPointPriv::kLeft_Side);
562     if (abN.dot(ac) > 0) {
563         abN.negate();
564     }
565 
566     cb.normalize();
567     SkVector cbN;
568     SkPointPriv::SetOrthog(&cbN, cb, SkPointPriv::kLeft_Side);
569     if (cbN.dot(ac) < 0) {
570         cbN.negate();
571     }
572 
573     a0.fPos = a;
574     a0.fPos += abN;
575     a1.fPos = a;
576     a1.fPos -= abN;
577 
578     c0.fPos = c;
579     c0.fPos += cbN;
580     c1.fPos = c;
581     c1.fPos -= cbN;
582 
583     intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
584 
585     if (toSrc) {
586         SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
587                                           kQuadNumVertices);
588     }
589 }
590 
591 // Equations based off of Loop-Blinn Quadratic GPU Rendering
592 // Input Parametric:
593 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
594 // Output Implicit:
595 // f(x, y, w) = f(P) = K^2 - LM
596 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
597 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)598 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
599                              const SkScalar weight) {
600     SkMatrix klm;
601 
602     GrPathUtils::getConicKLM(p, weight, &klm);
603 
604     for (int i = 0; i < kQuadNumVertices; ++i) {
605         const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
606         klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
607     }
608 }
609 
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)610 static void add_conics(const SkPoint p[3],
611                        const SkScalar weight,
612                        const SkMatrix* toDevice,
613                        const SkMatrix* toSrc,
614                        BezierVertex** vert) {
615     bloat_quad(p, toDevice, toSrc, *vert);
616     set_conic_coeffs(p, *vert, weight);
617     *vert += kQuadNumVertices;
618 }
619 
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)620 static void add_quads(const SkPoint p[3],
621                       int subdiv,
622                       const SkMatrix* toDevice,
623                       const SkMatrix* toSrc,
624                       BezierVertex** vert) {
625     SkASSERT(subdiv >= 0);
626     if (subdiv) {
627         SkPoint newP[5];
628         SkChopQuadAtHalf(p, newP);
629         add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
630         add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
631     } else {
632         bloat_quad(p, toDevice, toSrc, *vert);
633         set_uv_quad(p, *vert);
634         *vert += kQuadNumVertices;
635     }
636 }
637 
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)638 static void add_line(const SkPoint p[2],
639                      const SkMatrix* toSrc,
640                      uint8_t coverage,
641                      LineVertex** vert) {
642     const SkPoint& a = p[0];
643     const SkPoint& b = p[1];
644 
645     SkVector ortho, vec = b;
646     vec -= a;
647 
648     SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
649 
650     if (vec.setLength(SK_ScalarHalf)) {
651         // Create a vector orthogonal to 'vec' and of unit length
652         ortho.fX = 2.0f * vec.fY;
653         ortho.fY = -2.0f * vec.fX;
654 
655         float floatCoverage = GrNormalizeByteToFloat(coverage);
656 
657         if (lengthSqd >= 1.0f) {
658             // Relative to points a and b:
659             // The inner vertices are inset half a pixel along the line a,b
660             (*vert)[0].fPos = a + vec;
661             (*vert)[0].fCoverage = floatCoverage;
662             (*vert)[1].fPos = b - vec;
663             (*vert)[1].fCoverage = floatCoverage;
664         } else {
665             // The inner vertices are inset a distance of length(a,b) from the outer edge of
666             // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
667             // The coverage is then modulated by the length. This gives us the correct
668             // coverage for rects shorter than a pixel as they get translated subpixel amounts
669             // inside of a pixel.
670             SkScalar length = SkScalarSqrt(lengthSqd);
671             (*vert)[0].fPos = b - vec;
672             (*vert)[0].fCoverage = floatCoverage * length;
673             (*vert)[1].fPos = a + vec;
674             (*vert)[1].fCoverage = floatCoverage * length;
675         }
676         // Relative to points a and b:
677         // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
678         // orthogonally.
679         (*vert)[2].fPos = a - vec + ortho;
680         (*vert)[2].fCoverage = 0;
681         (*vert)[3].fPos = b + vec + ortho;
682         (*vert)[3].fCoverage = 0;
683         (*vert)[4].fPos = a - vec - ortho;
684         (*vert)[4].fCoverage = 0;
685         (*vert)[5].fPos = b + vec - ortho;
686         (*vert)[5].fCoverage = 0;
687 
688         if (toSrc) {
689             SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
690                                               kLineSegNumVertices);
691         }
692     } else {
693         // just make it degenerate and likely offscreen
694         for (int i = 0; i < kLineSegNumVertices; ++i) {
695             (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
696         }
697     }
698 
699     *vert += kLineSegNumVertices;
700 }
701 
702 ///////////////////////////////////////////////////////////////////////////////
703 
704 GrPathRenderer::CanDrawPath
onCanDrawPath(const CanDrawPathArgs & args) const705 GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
706     if (GrAAType::kCoverage != args.fAAType) {
707         return CanDrawPath::kNo;
708     }
709 
710     if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
711         return CanDrawPath::kNo;
712     }
713 
714     // We don't currently handle dashing in this class though perhaps we should.
715     if (args.fShape->style().pathEffect()) {
716         return CanDrawPath::kNo;
717     }
718 
719     if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
720         args.fCaps->shaderCaps()->shaderDerivativeSupport()) {
721         return CanDrawPath::kYes;
722     }
723 
724     return CanDrawPath::kNo;
725 }
726 
727 template <class VertexType>
check_bounds(const SkMatrix & viewMatrix,const SkRect & devBounds,void * vertices,int vCount)728 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
729 {
730     SkRect tolDevBounds = devBounds;
731     // The bounds ought to be tight, but in perspective the below code runs the verts
732     // through the view matrix to get back to dev coords, which can introduce imprecision.
733     if (viewMatrix.hasPerspective()) {
734         tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
735     } else {
736         // Non-persp matrices cause this path renderer to draw in device space.
737         SkASSERT(viewMatrix.isIdentity());
738     }
739     SkRect actualBounds;
740 
741     VertexType* verts = reinterpret_cast<VertexType*>(vertices);
742     bool first = true;
743     for (int i = 0; i < vCount; ++i) {
744         SkPoint pos = verts[i].fPos;
745         // This is a hack to workaround the fact that we move some degenerate segments offscreen.
746         if (SK_ScalarMax == pos.fX) {
747             continue;
748         }
749         viewMatrix.mapPoints(&pos, 1);
750         if (first) {
751             actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
752             first = false;
753         } else {
754             SkRectPriv::GrowToInclude(&actualBounds, pos);
755         }
756     }
757     if (!first) {
758         return tolDevBounds.contains(actualBounds);
759     }
760 
761     return true;
762 }
763 
764 namespace {
765 
766 class AAHairlineOp final : public GrMeshDrawOp {
767 private:
768     using Helper = GrSimpleMeshDrawOpHelperWithStencil;
769 
770 public:
771     DEFINE_OP_CLASS_ID
772 
Make(GrPaint && paint,const SkMatrix & viewMatrix,const SkPath & path,const GrStyle & style,const SkIRect & devClipBounds,const GrUserStencilSettings * stencilSettings)773     static std::unique_ptr<GrDrawOp> Make(GrPaint&& paint,
774                                           const SkMatrix& viewMatrix,
775                                           const SkPath& path,
776                                           const GrStyle& style,
777                                           const SkIRect& devClipBounds,
778                                           const GrUserStencilSettings* stencilSettings) {
779         SkScalar hairlineCoverage;
780         uint8_t newCoverage = 0xff;
781         if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
782             newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
783         }
784 
785         const SkStrokeRec& stroke = style.strokeRec();
786         SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
787 
788         return Helper::FactoryHelper<AAHairlineOp>(std::move(paint), newCoverage, viewMatrix, path,
789                                                    devClipBounds, capLength, stencilSettings);
790     }
791 
AAHairlineOp(const Helper::MakeArgs & helperArgs,GrColor color,uint8_t coverage,const SkMatrix & viewMatrix,const SkPath & path,SkIRect devClipBounds,SkScalar capLength,const GrUserStencilSettings * stencilSettings)792     AAHairlineOp(const Helper::MakeArgs& helperArgs,
793                  GrColor color,
794                  uint8_t coverage,
795                  const SkMatrix& viewMatrix,
796                  const SkPath& path,
797                  SkIRect devClipBounds,
798                  SkScalar capLength,
799                  const GrUserStencilSettings* stencilSettings)
800             : INHERITED(ClassID())
801             , fHelper(helperArgs, GrAAType::kCoverage, stencilSettings)
802             , fColor(color)
803             , fCoverage(coverage) {
804         fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
805 
806         this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
807                                    IsZeroArea::kYes);
808     }
809 
name() const810     const char* name() const override { return "AAHairlineOp"; }
811 
visitProxies(const VisitProxyFunc & func) const812     void visitProxies(const VisitProxyFunc& func) const override {
813         fHelper.visitProxies(func);
814     }
815 
dumpInfo() const816     SkString dumpInfo() const override {
817         SkString string;
818         string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor, fCoverage,
819                        fPaths.count());
820         string += INHERITED::dumpInfo();
821         string += fHelper.dumpInfo();
822         return string;
823     }
824 
fixedFunctionFlags() const825     FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
826 
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrPixelConfigIsClamped dstIsClamped)827     RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip,
828                                 GrPixelConfigIsClamped dstIsClamped) override {
829         return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped,
830                                             GrProcessorAnalysisCoverage::kSingleChannel, &fColor);
831     }
832 
833 private:
834     void onPrepareDraws(Target*) override;
835 
836     typedef SkTArray<SkPoint, true> PtArray;
837     typedef SkTArray<int, true> IntArray;
838     typedef SkTArray<float, true> FloatArray;
839 
onCombineIfPossible(GrOp * t,const GrCaps & caps)840     bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
841         AAHairlineOp* that = t->cast<AAHairlineOp>();
842 
843         if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
844             return false;
845         }
846 
847         if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
848             return false;
849         }
850 
851         // We go to identity if we don't have perspective
852         if (this->viewMatrix().hasPerspective() &&
853             !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
854             return false;
855         }
856 
857         // TODO we can actually combine hairlines if they are the same color in a kind of bulk
858         // method but we haven't implemented this yet
859         // TODO investigate going to vertex color and coverage?
860         if (this->coverage() != that->coverage()) {
861             return false;
862         }
863 
864         if (this->color() != that->color()) {
865             return false;
866         }
867 
868         if (fHelper.usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
869             return false;
870         }
871 
872         fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
873         this->joinBounds(*that);
874         return true;
875     }
876 
color() const877     GrColor color() const { return fColor; }
coverage() const878     uint8_t coverage() const { return fCoverage; }
viewMatrix() const879     const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
880 
881     struct PathData {
882         SkMatrix fViewMatrix;
883         SkPath fPath;
884         SkIRect fDevClipBounds;
885         SkScalar fCapLength;
886     };
887 
888     SkSTArray<1, PathData, true> fPaths;
889     Helper fHelper;
890     GrColor fColor;
891     uint8_t fCoverage;
892 
893     typedef GrMeshDrawOp INHERITED;
894 };
895 
896 }  // anonymous namespace
897 
onPrepareDraws(Target * target)898 void AAHairlineOp::onPrepareDraws(Target* target) {
899     // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
900     SkMatrix invert;
901     if (!this->viewMatrix().invert(&invert)) {
902         return;
903     }
904 
905     // we will transform to identity space if the viewmatrix does not have perspective
906     bool hasPerspective = this->viewMatrix().hasPerspective();
907     const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
908     const SkMatrix* geometryProcessorLocalM = &invert;
909     const SkMatrix* toDevice = nullptr;
910     const SkMatrix* toSrc = nullptr;
911     if (hasPerspective) {
912         geometryProcessorViewM = &this->viewMatrix();
913         geometryProcessorLocalM = &SkMatrix::I();
914         toDevice = &this->viewMatrix();
915         toSrc = &invert;
916     }
917 
918     // This is hand inlined for maximum performance.
919     PREALLOC_PTARRAY(128) lines;
920     PREALLOC_PTARRAY(128) quads;
921     PREALLOC_PTARRAY(128) conics;
922     IntArray qSubdivs;
923     FloatArray cWeights;
924     int quadCount = 0;
925 
926     int instanceCount = fPaths.count();
927     for (int i = 0; i < instanceCount; i++) {
928         const PathData& args = fPaths[i];
929         quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
930                                             args.fCapLength, &lines, &quads, &conics, &qSubdivs,
931                                             &cWeights);
932     }
933 
934     int lineCount = lines.count() / 2;
935     int conicCount = conics.count() / 3;
936     int quadAndConicCount = conicCount + quadCount;
937 
938     static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
939     static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
940     if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
941         return;
942     }
943 
944     const GrPipeline* pipeline = fHelper.makePipeline(target);
945     // do lines first
946     if (lineCount) {
947         sk_sp<GrGeometryProcessor> lineGP;
948         {
949             using namespace GrDefaultGeoProcFactory;
950 
951             Color color(this->color());
952             LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
953                                                               : LocalCoords::kUnused_Type);
954             localCoords.fMatrix = geometryProcessorLocalM;
955             lineGP = GrDefaultGeoProcFactory::Make(color, Coverage::kAttribute_Type, localCoords,
956                                                    *geometryProcessorViewM);
957         }
958 
959         sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
960 
961         const GrBuffer* vertexBuffer;
962         int firstVertex;
963 
964         size_t vertexStride = lineGP->getVertexStride();
965         int vertexCount = kLineSegNumVertices * lineCount;
966         LineVertex* verts = reinterpret_cast<LineVertex*>(
967             target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
968 
969         if (!verts|| !linesIndexBuffer) {
970             SkDebugf("Could not allocate vertices\n");
971             return;
972         }
973 
974         SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
975 
976         for (int i = 0; i < lineCount; ++i) {
977             add_line(&lines[2*i], toSrc, this->coverage(), &verts);
978         }
979 
980         GrMesh mesh(GrPrimitiveType::kTriangles);
981         mesh.setIndexedPatterned(linesIndexBuffer.get(), kIdxsPerLineSeg, kLineSegNumVertices,
982                                  lineCount, kLineSegsNumInIdxBuffer);
983         mesh.setVertexData(vertexBuffer, firstVertex);
984         target->draw(lineGP.get(), pipeline, mesh);
985     }
986 
987     if (quadCount || conicCount) {
988         sk_sp<GrGeometryProcessor> quadGP(GrQuadEffect::Make(this->color(),
989                                                              *geometryProcessorViewM,
990                                                              GrClipEdgeType::kHairlineAA,
991                                                              target->caps(),
992                                                              *geometryProcessorLocalM,
993                                                              fHelper.usesLocalCoords(),
994                                                              this->coverage()));
995 
996         sk_sp<GrGeometryProcessor> conicGP(GrConicEffect::Make(this->color(),
997                                                                *geometryProcessorViewM,
998                                                                GrClipEdgeType::kHairlineAA,
999                                                                target->caps(),
1000                                                                *geometryProcessorLocalM,
1001                                                                fHelper.usesLocalCoords(),
1002                                                                this->coverage()));
1003 
1004         const GrBuffer* vertexBuffer;
1005         int firstVertex;
1006 
1007         sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
1008 
1009         size_t vertexStride = sizeof(BezierVertex);
1010         int vertexCount = kQuadNumVertices * quadAndConicCount;
1011         void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
1012                                                  &vertexBuffer, &firstVertex);
1013 
1014         if (!vertices || !quadsIndexBuffer) {
1015             SkDebugf("Could not allocate vertices\n");
1016             return;
1017         }
1018 
1019         // Setup vertices
1020         BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
1021 
1022         int unsubdivQuadCnt = quads.count() / 3;
1023         for (int i = 0; i < unsubdivQuadCnt; ++i) {
1024             SkASSERT(qSubdivs[i] >= 0);
1025             add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
1026         }
1027 
1028         // Start Conics
1029         for (int i = 0; i < conicCount; ++i) {
1030             add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
1031         }
1032 
1033         if (quadCount > 0) {
1034             GrMesh mesh(GrPrimitiveType::kTriangles);
1035             mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
1036                                      quadCount, kQuadsNumInIdxBuffer);
1037             mesh.setVertexData(vertexBuffer, firstVertex);
1038             target->draw(quadGP.get(), pipeline, mesh);
1039             firstVertex += quadCount * kQuadNumVertices;
1040         }
1041 
1042         if (conicCount > 0) {
1043             GrMesh mesh(GrPrimitiveType::kTriangles);
1044             mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
1045                                      conicCount, kQuadsNumInIdxBuffer);
1046             mesh.setVertexData(vertexBuffer, firstVertex);
1047             target->draw(conicGP.get(), pipeline, mesh);
1048         }
1049     }
1050 }
1051 
onDrawPath(const DrawPathArgs & args)1052 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
1053     GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
1054                               "GrAAHairlinePathRenderer::onDrawPath");
1055     SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType());
1056 
1057     SkIRect devClipBounds;
1058     args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
1059                                       args.fRenderTargetContext->height(),
1060                                       &devClipBounds);
1061     SkPath path;
1062     args.fShape->asPath(&path);
1063     std::unique_ptr<GrDrawOp> op =
1064             AAHairlineOp::Make(std::move(args.fPaint), *args.fViewMatrix, path,
1065                                args.fShape->style(), devClipBounds, args.fUserStencilSettings);
1066     args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op));
1067     return true;
1068 }
1069 
1070 ///////////////////////////////////////////////////////////////////////////////////////////////////
1071 
1072 #if GR_TEST_UTILS
1073 
GR_DRAW_OP_TEST_DEFINE(AAHairlineOp)1074 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
1075     SkMatrix viewMatrix = GrTest::TestMatrix(random);
1076     SkPath path = GrTest::TestPath(random);
1077     SkIRect devClipBounds;
1078     devClipBounds.setEmpty();
1079     return AAHairlineOp::Make(std::move(paint), viewMatrix, path, GrStyle::SimpleHairline(),
1080                               devClipBounds, GrGetRandomStencil(random, context));
1081 }
1082 
1083 #endif
1084