1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrAAHairLinePathRenderer.h"
9 #include "GrBuffer.h"
10 #include "GrCaps.h"
11 #include "GrClip.h"
12 #include "GrContext.h"
13 #include "GrDefaultGeoProcFactory.h"
14 #include "GrDrawOpTest.h"
15 #include "GrOpFlushState.h"
16 #include "GrPathUtils.h"
17 #include "GrProcessor.h"
18 #include "GrResourceProvider.h"
19 #include "GrSimpleMeshDrawOpHelper.h"
20 #include "SkGeometry.h"
21 #include "SkMatrixPriv.h"
22 #include "SkPoint3.h"
23 #include "SkPointPriv.h"
24 #include "SkRectPriv.h"
25 #include "SkStroke.h"
26 #include "SkTemplates.h"
27 #include "effects/GrBezierEffect.h"
28 #include "ops/GrMeshDrawOp.h"
29
30 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
31
32 // quadratics are rendered as 5-sided polys in order to bound the
33 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
34 // bloat_quad. Quadratics and conics share an index buffer
35
36 // lines are rendered as:
37 // *______________*
38 // |\ -_______ /|
39 // | \ \ / |
40 // | *--------* |
41 // | / ______/ \ |
42 // */_-__________\*
43 // For: 6 vertices and 18 indices (for 6 triangles)
44
45 // Each quadratic is rendered as a five sided polygon. This poly bounds
46 // the quadratic's bounding triangle but has been expanded so that the
47 // 1-pixel wide area around the curve is inside the poly.
48 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
49 // that is rendered would look like this:
50 // b0
51 // b
52 //
53 // a0 c0
54 // a c
55 // a1 c1
56 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
57 // specified by these 9 indices:
58 static const uint16_t kQuadIdxBufPattern[] = {
59 0, 1, 2,
60 2, 4, 3,
61 1, 4, 2
62 };
63
64 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
65 static const int kQuadNumVertices = 5;
66 static const int kQuadsNumInIdxBuffer = 256;
67 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
68
get_quads_index_buffer(GrResourceProvider * resourceProvider)69 static sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
70 GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
71 return resourceProvider->findOrCreatePatternedIndexBuffer(
72 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
73 gQuadsIndexBufferKey);
74 }
75
76
77 // Each line segment is rendered as two quads and two triangles.
78 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
79 // The four external points are offset 1 pixel perpendicular to the
80 // line and half a pixel parallel to the line.
81 //
82 // p4 p5
83 // p0 p1
84 // p2 p3
85 //
86 // Each is drawn as six triangles specified by these 18 indices:
87
88 static const uint16_t kLineSegIdxBufPattern[] = {
89 0, 1, 3,
90 0, 3, 2,
91 0, 4, 5,
92 0, 5, 1,
93 0, 2, 4,
94 1, 5, 3
95 };
96
97 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
98 static const int kLineSegNumVertices = 6;
99 static const int kLineSegsNumInIdxBuffer = 256;
100
101 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
102
get_lines_index_buffer(GrResourceProvider * resourceProvider)103 static sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
104 GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
105 return resourceProvider->findOrCreatePatternedIndexBuffer(
106 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
107 gLinesIndexBufferKey);
108 }
109
110 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)111 static int get_float_exp(float x) {
112 GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
113 #ifdef SK_DEBUG
114 static bool tested;
115 if (!tested) {
116 tested = true;
117 SkASSERT(get_float_exp(0.25f) == -2);
118 SkASSERT(get_float_exp(0.3f) == -2);
119 SkASSERT(get_float_exp(0.5f) == -1);
120 SkASSERT(get_float_exp(1.f) == 0);
121 SkASSERT(get_float_exp(2.f) == 1);
122 SkASSERT(get_float_exp(2.5f) == 1);
123 SkASSERT(get_float_exp(8.f) == 3);
124 SkASSERT(get_float_exp(100.f) == 6);
125 SkASSERT(get_float_exp(1000.f) == 9);
126 SkASSERT(get_float_exp(1024.f) == 10);
127 SkASSERT(get_float_exp(3000000.f) == 21);
128 }
129 #endif
130 const int* iptr = (const int*)&x;
131 return (((*iptr) & 0x7f800000) >> 23) - 127;
132 }
133
134 // Uses the max curvature function for quads to estimate
135 // where to chop the conic. If the max curvature is not
136 // found along the curve segment it will return 1 and
137 // dst[0] is the original conic. If it returns 2 the dst[0]
138 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)139 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
140 SkScalar t = SkFindQuadMaxCurvature(src);
141 if (t == 0) {
142 if (dst) {
143 dst[0].set(src, weight);
144 }
145 return 1;
146 } else {
147 if (dst) {
148 SkConic conic;
149 conic.set(src, weight);
150 if (!conic.chopAt(t, dst)) {
151 dst[0].set(src, weight);
152 return 1;
153 }
154 }
155 return 2;
156 }
157 }
158
159 // Calls split_conic on the entire conic and then once more on each subsection.
160 // Most cases will result in either 1 conic (chop point is not within t range)
161 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)162 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
163 SkConic dstTemp[2];
164 int conicCnt = split_conic(src, dstTemp, weight);
165 if (2 == conicCnt) {
166 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
167 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
168 } else {
169 dst[0] = dstTemp[0];
170 }
171 return conicCnt;
172 }
173
174 // returns 0 if quad/conic is degen or close to it
175 // in this case approx the path with lines
176 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)177 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
178 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
179 static const SkScalar gDegenerateToLineTolSqd =
180 gDegenerateToLineTol * gDegenerateToLineTol;
181
182 if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
183 SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
184 return 1;
185 }
186
187 *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
188 if (*dsqd < gDegenerateToLineTolSqd) {
189 return 1;
190 }
191
192 if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
193 return 1;
194 }
195 return 0;
196 }
197
is_degen_quad_or_conic(const SkPoint p[3])198 static int is_degen_quad_or_conic(const SkPoint p[3]) {
199 SkScalar dsqd;
200 return is_degen_quad_or_conic(p, &dsqd);
201 }
202
203 // we subdivide the quads to avoid huge overfill
204 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])205 static int num_quad_subdivs(const SkPoint p[3]) {
206 SkScalar dsqd;
207 if (is_degen_quad_or_conic(p, &dsqd)) {
208 return -1;
209 }
210
211 // tolerance of triangle height in pixels
212 // tuned on windows Quadro FX 380 / Z600
213 // trade off of fill vs cpu time on verts
214 // maybe different when do this using gpu (geo or tess shaders)
215 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
216
217 if (dsqd <= gSubdivTol * gSubdivTol) {
218 return 0;
219 } else {
220 static const int kMaxSub = 4;
221 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
222 // = log4(d*d/tol*tol)/2
223 // = log2(d*d/tol*tol)
224
225 // +1 since we're ignoring the mantissa contribution.
226 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
227 log = SkTMin(SkTMax(0, log), kMaxSub);
228 return log;
229 }
230 }
231
232 /**
233 * Generates the lines and quads to be rendered. Lines are always recorded in
234 * device space. We will do a device space bloat to account for the 1pixel
235 * thickness.
236 * Quads are recorded in device space unless m contains
237 * perspective, then in they are in src space. We do this because we will
238 * subdivide large quads to reduce over-fill. This subdivision has to be
239 * performed before applying the perspective matrix.
240 */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,SkScalar capLength,GrAAHairLinePathRenderer::PtArray * lines,GrAAHairLinePathRenderer::PtArray * quads,GrAAHairLinePathRenderer::PtArray * conics,GrAAHairLinePathRenderer::IntArray * quadSubdivCnts,GrAAHairLinePathRenderer::FloatArray * conicWeights)241 static int gather_lines_and_quads(const SkPath& path,
242 const SkMatrix& m,
243 const SkIRect& devClipBounds,
244 SkScalar capLength,
245 GrAAHairLinePathRenderer::PtArray* lines,
246 GrAAHairLinePathRenderer::PtArray* quads,
247 GrAAHairLinePathRenderer::PtArray* conics,
248 GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
249 GrAAHairLinePathRenderer::FloatArray* conicWeights) {
250 SkPath::Iter iter(path, false);
251
252 int totalQuadCount = 0;
253 SkRect bounds;
254 SkIRect ibounds;
255
256 bool persp = m.hasPerspective();
257
258 // Whenever a degenerate, zero-length contour is encountered, this code will insert a
259 // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
260 // suffice for AA square & circle capping.
261 int verbsInContour = 0; // Does not count moves
262 bool seenZeroLengthVerb = false;
263 SkPoint zeroVerbPt;
264
265 for (;;) {
266 SkPoint pathPts[4];
267 SkPoint devPts[4];
268 SkPath::Verb verb = iter.next(pathPts, false);
269 switch (verb) {
270 case SkPath::kConic_Verb: {
271 SkConic dst[4];
272 // We chop the conics to create tighter clipping to hide error
273 // that appears near max curvature of very thin conics. Thin
274 // hyperbolas with high weight still show error.
275 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
276 for (int i = 0; i < conicCnt; ++i) {
277 SkPoint* chopPnts = dst[i].fPts;
278 m.mapPoints(devPts, chopPnts, 3);
279 bounds.setBounds(devPts, 3);
280 bounds.outset(SK_Scalar1, SK_Scalar1);
281 bounds.roundOut(&ibounds);
282 if (SkIRect::Intersects(devClipBounds, ibounds)) {
283 if (is_degen_quad_or_conic(devPts)) {
284 SkPoint* pts = lines->push_back_n(4);
285 pts[0] = devPts[0];
286 pts[1] = devPts[1];
287 pts[2] = devPts[1];
288 pts[3] = devPts[2];
289 if (verbsInContour == 0 && i == 0 &&
290 pts[0] == pts[1] && pts[2] == pts[3]) {
291 seenZeroLengthVerb = true;
292 zeroVerbPt = pts[0];
293 }
294 } else {
295 // when in perspective keep conics in src space
296 SkPoint* cPts = persp ? chopPnts : devPts;
297 SkPoint* pts = conics->push_back_n(3);
298 pts[0] = cPts[0];
299 pts[1] = cPts[1];
300 pts[2] = cPts[2];
301 conicWeights->push_back() = dst[i].fW;
302 }
303 }
304 }
305 verbsInContour++;
306 break;
307 }
308 case SkPath::kMove_Verb:
309 // New contour (and last one was unclosed). If it was just a zero length drawing
310 // operation, and we're supposed to draw caps, then add a tiny line.
311 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
312 SkPoint* pts = lines->push_back_n(2);
313 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
314 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
315 }
316 verbsInContour = 0;
317 seenZeroLengthVerb = false;
318 break;
319 case SkPath::kLine_Verb:
320 m.mapPoints(devPts, pathPts, 2);
321 bounds.setBounds(devPts, 2);
322 bounds.outset(SK_Scalar1, SK_Scalar1);
323 bounds.roundOut(&ibounds);
324 if (SkIRect::Intersects(devClipBounds, ibounds)) {
325 SkPoint* pts = lines->push_back_n(2);
326 pts[0] = devPts[0];
327 pts[1] = devPts[1];
328 if (verbsInContour == 0 && pts[0] == pts[1]) {
329 seenZeroLengthVerb = true;
330 zeroVerbPt = pts[0];
331 }
332 }
333 verbsInContour++;
334 break;
335 case SkPath::kQuad_Verb: {
336 SkPoint choppedPts[5];
337 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
338 // When it is degenerate it allows the approximation with lines to work since the
339 // chop point (if there is one) will be at the parabola's vertex. In the nearly
340 // degenerate the QuadUVMatrix computed for the points is almost singular which
341 // can cause rendering artifacts.
342 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
343 for (int i = 0; i < n; ++i) {
344 SkPoint* quadPts = choppedPts + i * 2;
345 m.mapPoints(devPts, quadPts, 3);
346 bounds.setBounds(devPts, 3);
347 bounds.outset(SK_Scalar1, SK_Scalar1);
348 bounds.roundOut(&ibounds);
349
350 if (SkIRect::Intersects(devClipBounds, ibounds)) {
351 int subdiv = num_quad_subdivs(devPts);
352 SkASSERT(subdiv >= -1);
353 if (-1 == subdiv) {
354 SkPoint* pts = lines->push_back_n(4);
355 pts[0] = devPts[0];
356 pts[1] = devPts[1];
357 pts[2] = devPts[1];
358 pts[3] = devPts[2];
359 if (verbsInContour == 0 && i == 0 &&
360 pts[0] == pts[1] && pts[2] == pts[3]) {
361 seenZeroLengthVerb = true;
362 zeroVerbPt = pts[0];
363 }
364 } else {
365 // when in perspective keep quads in src space
366 SkPoint* qPts = persp ? quadPts : devPts;
367 SkPoint* pts = quads->push_back_n(3);
368 pts[0] = qPts[0];
369 pts[1] = qPts[1];
370 pts[2] = qPts[2];
371 quadSubdivCnts->push_back() = subdiv;
372 totalQuadCount += 1 << subdiv;
373 }
374 }
375 }
376 verbsInContour++;
377 break;
378 }
379 case SkPath::kCubic_Verb:
380 m.mapPoints(devPts, pathPts, 4);
381 bounds.setBounds(devPts, 4);
382 bounds.outset(SK_Scalar1, SK_Scalar1);
383 bounds.roundOut(&ibounds);
384 if (SkIRect::Intersects(devClipBounds, ibounds)) {
385 PREALLOC_PTARRAY(32) q;
386 // We convert cubics to quadratics (for now).
387 // In perspective have to do conversion in src space.
388 if (persp) {
389 SkScalar tolScale =
390 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
391 GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
392 } else {
393 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
394 }
395 for (int i = 0; i < q.count(); i += 3) {
396 SkPoint* qInDevSpace;
397 // bounds has to be calculated in device space, but q is
398 // in src space when there is perspective.
399 if (persp) {
400 m.mapPoints(devPts, &q[i], 3);
401 bounds.setBounds(devPts, 3);
402 qInDevSpace = devPts;
403 } else {
404 bounds.setBounds(&q[i], 3);
405 qInDevSpace = &q[i];
406 }
407 bounds.outset(SK_Scalar1, SK_Scalar1);
408 bounds.roundOut(&ibounds);
409 if (SkIRect::Intersects(devClipBounds, ibounds)) {
410 int subdiv = num_quad_subdivs(qInDevSpace);
411 SkASSERT(subdiv >= -1);
412 if (-1 == subdiv) {
413 SkPoint* pts = lines->push_back_n(4);
414 // lines should always be in device coords
415 pts[0] = qInDevSpace[0];
416 pts[1] = qInDevSpace[1];
417 pts[2] = qInDevSpace[1];
418 pts[3] = qInDevSpace[2];
419 if (verbsInContour == 0 && i == 0 &&
420 pts[0] == pts[1] && pts[2] == pts[3]) {
421 seenZeroLengthVerb = true;
422 zeroVerbPt = pts[0];
423 }
424 } else {
425 SkPoint* pts = quads->push_back_n(3);
426 // q is already in src space when there is no
427 // perspective and dev coords otherwise.
428 pts[0] = q[0 + i];
429 pts[1] = q[1 + i];
430 pts[2] = q[2 + i];
431 quadSubdivCnts->push_back() = subdiv;
432 totalQuadCount += 1 << subdiv;
433 }
434 }
435 }
436 }
437 verbsInContour++;
438 break;
439 case SkPath::kClose_Verb:
440 // Contour is closed, so we don't need to grow the starting line, unless it's
441 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
442 if (capLength > 0) {
443 if (seenZeroLengthVerb && verbsInContour == 1) {
444 SkPoint* pts = lines->push_back_n(2);
445 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
446 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
447 } else if (verbsInContour == 0) {
448 // Contour was (moveTo, close). Add a line.
449 m.mapPoints(devPts, pathPts, 1);
450 devPts[1] = devPts[0];
451 bounds.setBounds(devPts, 2);
452 bounds.outset(SK_Scalar1, SK_Scalar1);
453 bounds.roundOut(&ibounds);
454 if (SkIRect::Intersects(devClipBounds, ibounds)) {
455 SkPoint* pts = lines->push_back_n(2);
456 pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
457 pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
458 }
459 }
460 }
461 break;
462 case SkPath::kDone_Verb:
463 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
464 // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
465 // degenerate, we need to draw a line.
466 SkPoint* pts = lines->push_back_n(2);
467 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
468 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
469 }
470 return totalQuadCount;
471 }
472 }
473 }
474
475 struct LineVertex {
476 SkPoint fPos;
477 float fCoverage;
478 };
479
480 struct BezierVertex {
481 SkPoint fPos;
482 union {
483 struct {
484 SkScalar fKLM[3];
485 } fConic;
486 SkVector fQuadCoord;
487 struct {
488 SkScalar fBogus[4];
489 };
490 };
491 };
492
493 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
494
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)495 static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
496 const SkPoint& ptB, const SkVector& normB,
497 SkPoint* result) {
498
499 SkScalar lineAW = -normA.dot(ptA);
500 SkScalar lineBW = -normB.dot(ptB);
501
502 SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
503 wInv = SkScalarInvert(wInv);
504
505 result->fX = normA.fY * lineBW - lineAW * normB.fY;
506 result->fX *= wInv;
507
508 result->fY = lineAW * normB.fX - normA.fX * lineBW;
509 result->fY *= wInv;
510 }
511
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])512 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
513 // this should be in the src space, not dev coords, when we have perspective
514 GrPathUtils::QuadUVMatrix DevToUV(qpts);
515 DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
516 }
517
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])518 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
519 const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
520 SkASSERT(!toDevice == !toSrc);
521 // original quad is specified by tri a,b,c
522 SkPoint a = qpts[0];
523 SkPoint b = qpts[1];
524 SkPoint c = qpts[2];
525
526 if (toDevice) {
527 toDevice->mapPoints(&a, 1);
528 toDevice->mapPoints(&b, 1);
529 toDevice->mapPoints(&c, 1);
530 }
531 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
532 // to edges ab and bc:
533 //
534 // before | after
535 // | b0
536 // b |
537 // |
538 // | a0 c0
539 // a c | a1 c1
540 //
541 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
542 // respectively.
543 BezierVertex& a0 = verts[0];
544 BezierVertex& a1 = verts[1];
545 BezierVertex& b0 = verts[2];
546 BezierVertex& c0 = verts[3];
547 BezierVertex& c1 = verts[4];
548
549 SkVector ab = b;
550 ab -= a;
551 SkVector ac = c;
552 ac -= a;
553 SkVector cb = b;
554 cb -= c;
555
556 // We should have already handled degenerates
557 SkASSERT(ab.length() > 0 && cb.length() > 0);
558
559 ab.normalize();
560 SkVector abN;
561 SkPointPriv::SetOrthog(&abN, ab, SkPointPriv::kLeft_Side);
562 if (abN.dot(ac) > 0) {
563 abN.negate();
564 }
565
566 cb.normalize();
567 SkVector cbN;
568 SkPointPriv::SetOrthog(&cbN, cb, SkPointPriv::kLeft_Side);
569 if (cbN.dot(ac) < 0) {
570 cbN.negate();
571 }
572
573 a0.fPos = a;
574 a0.fPos += abN;
575 a1.fPos = a;
576 a1.fPos -= abN;
577
578 c0.fPos = c;
579 c0.fPos += cbN;
580 c1.fPos = c;
581 c1.fPos -= cbN;
582
583 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
584
585 if (toSrc) {
586 SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
587 kQuadNumVertices);
588 }
589 }
590
591 // Equations based off of Loop-Blinn Quadratic GPU Rendering
592 // Input Parametric:
593 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
594 // Output Implicit:
595 // f(x, y, w) = f(P) = K^2 - LM
596 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
597 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)598 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
599 const SkScalar weight) {
600 SkMatrix klm;
601
602 GrPathUtils::getConicKLM(p, weight, &klm);
603
604 for (int i = 0; i < kQuadNumVertices; ++i) {
605 const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
606 klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
607 }
608 }
609
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)610 static void add_conics(const SkPoint p[3],
611 const SkScalar weight,
612 const SkMatrix* toDevice,
613 const SkMatrix* toSrc,
614 BezierVertex** vert) {
615 bloat_quad(p, toDevice, toSrc, *vert);
616 set_conic_coeffs(p, *vert, weight);
617 *vert += kQuadNumVertices;
618 }
619
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)620 static void add_quads(const SkPoint p[3],
621 int subdiv,
622 const SkMatrix* toDevice,
623 const SkMatrix* toSrc,
624 BezierVertex** vert) {
625 SkASSERT(subdiv >= 0);
626 if (subdiv) {
627 SkPoint newP[5];
628 SkChopQuadAtHalf(p, newP);
629 add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
630 add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
631 } else {
632 bloat_quad(p, toDevice, toSrc, *vert);
633 set_uv_quad(p, *vert);
634 *vert += kQuadNumVertices;
635 }
636 }
637
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)638 static void add_line(const SkPoint p[2],
639 const SkMatrix* toSrc,
640 uint8_t coverage,
641 LineVertex** vert) {
642 const SkPoint& a = p[0];
643 const SkPoint& b = p[1];
644
645 SkVector ortho, vec = b;
646 vec -= a;
647
648 SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
649
650 if (vec.setLength(SK_ScalarHalf)) {
651 // Create a vector orthogonal to 'vec' and of unit length
652 ortho.fX = 2.0f * vec.fY;
653 ortho.fY = -2.0f * vec.fX;
654
655 float floatCoverage = GrNormalizeByteToFloat(coverage);
656
657 if (lengthSqd >= 1.0f) {
658 // Relative to points a and b:
659 // The inner vertices are inset half a pixel along the line a,b
660 (*vert)[0].fPos = a + vec;
661 (*vert)[0].fCoverage = floatCoverage;
662 (*vert)[1].fPos = b - vec;
663 (*vert)[1].fCoverage = floatCoverage;
664 } else {
665 // The inner vertices are inset a distance of length(a,b) from the outer edge of
666 // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
667 // The coverage is then modulated by the length. This gives us the correct
668 // coverage for rects shorter than a pixel as they get translated subpixel amounts
669 // inside of a pixel.
670 SkScalar length = SkScalarSqrt(lengthSqd);
671 (*vert)[0].fPos = b - vec;
672 (*vert)[0].fCoverage = floatCoverage * length;
673 (*vert)[1].fPos = a + vec;
674 (*vert)[1].fCoverage = floatCoverage * length;
675 }
676 // Relative to points a and b:
677 // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
678 // orthogonally.
679 (*vert)[2].fPos = a - vec + ortho;
680 (*vert)[2].fCoverage = 0;
681 (*vert)[3].fPos = b + vec + ortho;
682 (*vert)[3].fCoverage = 0;
683 (*vert)[4].fPos = a - vec - ortho;
684 (*vert)[4].fCoverage = 0;
685 (*vert)[5].fPos = b + vec - ortho;
686 (*vert)[5].fCoverage = 0;
687
688 if (toSrc) {
689 SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
690 kLineSegNumVertices);
691 }
692 } else {
693 // just make it degenerate and likely offscreen
694 for (int i = 0; i < kLineSegNumVertices; ++i) {
695 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
696 }
697 }
698
699 *vert += kLineSegNumVertices;
700 }
701
702 ///////////////////////////////////////////////////////////////////////////////
703
704 GrPathRenderer::CanDrawPath
onCanDrawPath(const CanDrawPathArgs & args) const705 GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
706 if (GrAAType::kCoverage != args.fAAType) {
707 return CanDrawPath::kNo;
708 }
709
710 if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
711 return CanDrawPath::kNo;
712 }
713
714 // We don't currently handle dashing in this class though perhaps we should.
715 if (args.fShape->style().pathEffect()) {
716 return CanDrawPath::kNo;
717 }
718
719 if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
720 args.fCaps->shaderCaps()->shaderDerivativeSupport()) {
721 return CanDrawPath::kYes;
722 }
723
724 return CanDrawPath::kNo;
725 }
726
727 template <class VertexType>
check_bounds(const SkMatrix & viewMatrix,const SkRect & devBounds,void * vertices,int vCount)728 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
729 {
730 SkRect tolDevBounds = devBounds;
731 // The bounds ought to be tight, but in perspective the below code runs the verts
732 // through the view matrix to get back to dev coords, which can introduce imprecision.
733 if (viewMatrix.hasPerspective()) {
734 tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
735 } else {
736 // Non-persp matrices cause this path renderer to draw in device space.
737 SkASSERT(viewMatrix.isIdentity());
738 }
739 SkRect actualBounds;
740
741 VertexType* verts = reinterpret_cast<VertexType*>(vertices);
742 bool first = true;
743 for (int i = 0; i < vCount; ++i) {
744 SkPoint pos = verts[i].fPos;
745 // This is a hack to workaround the fact that we move some degenerate segments offscreen.
746 if (SK_ScalarMax == pos.fX) {
747 continue;
748 }
749 viewMatrix.mapPoints(&pos, 1);
750 if (first) {
751 actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
752 first = false;
753 } else {
754 SkRectPriv::GrowToInclude(&actualBounds, pos);
755 }
756 }
757 if (!first) {
758 return tolDevBounds.contains(actualBounds);
759 }
760
761 return true;
762 }
763
764 namespace {
765
766 class AAHairlineOp final : public GrMeshDrawOp {
767 private:
768 using Helper = GrSimpleMeshDrawOpHelperWithStencil;
769
770 public:
771 DEFINE_OP_CLASS_ID
772
Make(GrPaint && paint,const SkMatrix & viewMatrix,const SkPath & path,const GrStyle & style,const SkIRect & devClipBounds,const GrUserStencilSettings * stencilSettings)773 static std::unique_ptr<GrDrawOp> Make(GrPaint&& paint,
774 const SkMatrix& viewMatrix,
775 const SkPath& path,
776 const GrStyle& style,
777 const SkIRect& devClipBounds,
778 const GrUserStencilSettings* stencilSettings) {
779 SkScalar hairlineCoverage;
780 uint8_t newCoverage = 0xff;
781 if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
782 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
783 }
784
785 const SkStrokeRec& stroke = style.strokeRec();
786 SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
787
788 return Helper::FactoryHelper<AAHairlineOp>(std::move(paint), newCoverage, viewMatrix, path,
789 devClipBounds, capLength, stencilSettings);
790 }
791
AAHairlineOp(const Helper::MakeArgs & helperArgs,GrColor color,uint8_t coverage,const SkMatrix & viewMatrix,const SkPath & path,SkIRect devClipBounds,SkScalar capLength,const GrUserStencilSettings * stencilSettings)792 AAHairlineOp(const Helper::MakeArgs& helperArgs,
793 GrColor color,
794 uint8_t coverage,
795 const SkMatrix& viewMatrix,
796 const SkPath& path,
797 SkIRect devClipBounds,
798 SkScalar capLength,
799 const GrUserStencilSettings* stencilSettings)
800 : INHERITED(ClassID())
801 , fHelper(helperArgs, GrAAType::kCoverage, stencilSettings)
802 , fColor(color)
803 , fCoverage(coverage) {
804 fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
805
806 this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
807 IsZeroArea::kYes);
808 }
809
name() const810 const char* name() const override { return "AAHairlineOp"; }
811
visitProxies(const VisitProxyFunc & func) const812 void visitProxies(const VisitProxyFunc& func) const override {
813 fHelper.visitProxies(func);
814 }
815
dumpInfo() const816 SkString dumpInfo() const override {
817 SkString string;
818 string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor, fCoverage,
819 fPaths.count());
820 string += INHERITED::dumpInfo();
821 string += fHelper.dumpInfo();
822 return string;
823 }
824
fixedFunctionFlags() const825 FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
826
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrPixelConfigIsClamped dstIsClamped)827 RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip,
828 GrPixelConfigIsClamped dstIsClamped) override {
829 return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped,
830 GrProcessorAnalysisCoverage::kSingleChannel, &fColor);
831 }
832
833 private:
834 void onPrepareDraws(Target*) override;
835
836 typedef SkTArray<SkPoint, true> PtArray;
837 typedef SkTArray<int, true> IntArray;
838 typedef SkTArray<float, true> FloatArray;
839
onCombineIfPossible(GrOp * t,const GrCaps & caps)840 bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
841 AAHairlineOp* that = t->cast<AAHairlineOp>();
842
843 if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
844 return false;
845 }
846
847 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
848 return false;
849 }
850
851 // We go to identity if we don't have perspective
852 if (this->viewMatrix().hasPerspective() &&
853 !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
854 return false;
855 }
856
857 // TODO we can actually combine hairlines if they are the same color in a kind of bulk
858 // method but we haven't implemented this yet
859 // TODO investigate going to vertex color and coverage?
860 if (this->coverage() != that->coverage()) {
861 return false;
862 }
863
864 if (this->color() != that->color()) {
865 return false;
866 }
867
868 if (fHelper.usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
869 return false;
870 }
871
872 fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
873 this->joinBounds(*that);
874 return true;
875 }
876
color() const877 GrColor color() const { return fColor; }
coverage() const878 uint8_t coverage() const { return fCoverage; }
viewMatrix() const879 const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
880
881 struct PathData {
882 SkMatrix fViewMatrix;
883 SkPath fPath;
884 SkIRect fDevClipBounds;
885 SkScalar fCapLength;
886 };
887
888 SkSTArray<1, PathData, true> fPaths;
889 Helper fHelper;
890 GrColor fColor;
891 uint8_t fCoverage;
892
893 typedef GrMeshDrawOp INHERITED;
894 };
895
896 } // anonymous namespace
897
onPrepareDraws(Target * target)898 void AAHairlineOp::onPrepareDraws(Target* target) {
899 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
900 SkMatrix invert;
901 if (!this->viewMatrix().invert(&invert)) {
902 return;
903 }
904
905 // we will transform to identity space if the viewmatrix does not have perspective
906 bool hasPerspective = this->viewMatrix().hasPerspective();
907 const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
908 const SkMatrix* geometryProcessorLocalM = &invert;
909 const SkMatrix* toDevice = nullptr;
910 const SkMatrix* toSrc = nullptr;
911 if (hasPerspective) {
912 geometryProcessorViewM = &this->viewMatrix();
913 geometryProcessorLocalM = &SkMatrix::I();
914 toDevice = &this->viewMatrix();
915 toSrc = &invert;
916 }
917
918 // This is hand inlined for maximum performance.
919 PREALLOC_PTARRAY(128) lines;
920 PREALLOC_PTARRAY(128) quads;
921 PREALLOC_PTARRAY(128) conics;
922 IntArray qSubdivs;
923 FloatArray cWeights;
924 int quadCount = 0;
925
926 int instanceCount = fPaths.count();
927 for (int i = 0; i < instanceCount; i++) {
928 const PathData& args = fPaths[i];
929 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
930 args.fCapLength, &lines, &quads, &conics, &qSubdivs,
931 &cWeights);
932 }
933
934 int lineCount = lines.count() / 2;
935 int conicCount = conics.count() / 3;
936 int quadAndConicCount = conicCount + quadCount;
937
938 static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
939 static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
940 if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
941 return;
942 }
943
944 const GrPipeline* pipeline = fHelper.makePipeline(target);
945 // do lines first
946 if (lineCount) {
947 sk_sp<GrGeometryProcessor> lineGP;
948 {
949 using namespace GrDefaultGeoProcFactory;
950
951 Color color(this->color());
952 LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
953 : LocalCoords::kUnused_Type);
954 localCoords.fMatrix = geometryProcessorLocalM;
955 lineGP = GrDefaultGeoProcFactory::Make(color, Coverage::kAttribute_Type, localCoords,
956 *geometryProcessorViewM);
957 }
958
959 sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
960
961 const GrBuffer* vertexBuffer;
962 int firstVertex;
963
964 size_t vertexStride = lineGP->getVertexStride();
965 int vertexCount = kLineSegNumVertices * lineCount;
966 LineVertex* verts = reinterpret_cast<LineVertex*>(
967 target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
968
969 if (!verts|| !linesIndexBuffer) {
970 SkDebugf("Could not allocate vertices\n");
971 return;
972 }
973
974 SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
975
976 for (int i = 0; i < lineCount; ++i) {
977 add_line(&lines[2*i], toSrc, this->coverage(), &verts);
978 }
979
980 GrMesh mesh(GrPrimitiveType::kTriangles);
981 mesh.setIndexedPatterned(linesIndexBuffer.get(), kIdxsPerLineSeg, kLineSegNumVertices,
982 lineCount, kLineSegsNumInIdxBuffer);
983 mesh.setVertexData(vertexBuffer, firstVertex);
984 target->draw(lineGP.get(), pipeline, mesh);
985 }
986
987 if (quadCount || conicCount) {
988 sk_sp<GrGeometryProcessor> quadGP(GrQuadEffect::Make(this->color(),
989 *geometryProcessorViewM,
990 GrClipEdgeType::kHairlineAA,
991 target->caps(),
992 *geometryProcessorLocalM,
993 fHelper.usesLocalCoords(),
994 this->coverage()));
995
996 sk_sp<GrGeometryProcessor> conicGP(GrConicEffect::Make(this->color(),
997 *geometryProcessorViewM,
998 GrClipEdgeType::kHairlineAA,
999 target->caps(),
1000 *geometryProcessorLocalM,
1001 fHelper.usesLocalCoords(),
1002 this->coverage()));
1003
1004 const GrBuffer* vertexBuffer;
1005 int firstVertex;
1006
1007 sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
1008
1009 size_t vertexStride = sizeof(BezierVertex);
1010 int vertexCount = kQuadNumVertices * quadAndConicCount;
1011 void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
1012 &vertexBuffer, &firstVertex);
1013
1014 if (!vertices || !quadsIndexBuffer) {
1015 SkDebugf("Could not allocate vertices\n");
1016 return;
1017 }
1018
1019 // Setup vertices
1020 BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
1021
1022 int unsubdivQuadCnt = quads.count() / 3;
1023 for (int i = 0; i < unsubdivQuadCnt; ++i) {
1024 SkASSERT(qSubdivs[i] >= 0);
1025 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
1026 }
1027
1028 // Start Conics
1029 for (int i = 0; i < conicCount; ++i) {
1030 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
1031 }
1032
1033 if (quadCount > 0) {
1034 GrMesh mesh(GrPrimitiveType::kTriangles);
1035 mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
1036 quadCount, kQuadsNumInIdxBuffer);
1037 mesh.setVertexData(vertexBuffer, firstVertex);
1038 target->draw(quadGP.get(), pipeline, mesh);
1039 firstVertex += quadCount * kQuadNumVertices;
1040 }
1041
1042 if (conicCount > 0) {
1043 GrMesh mesh(GrPrimitiveType::kTriangles);
1044 mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
1045 conicCount, kQuadsNumInIdxBuffer);
1046 mesh.setVertexData(vertexBuffer, firstVertex);
1047 target->draw(conicGP.get(), pipeline, mesh);
1048 }
1049 }
1050 }
1051
onDrawPath(const DrawPathArgs & args)1052 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
1053 GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
1054 "GrAAHairlinePathRenderer::onDrawPath");
1055 SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType());
1056
1057 SkIRect devClipBounds;
1058 args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
1059 args.fRenderTargetContext->height(),
1060 &devClipBounds);
1061 SkPath path;
1062 args.fShape->asPath(&path);
1063 std::unique_ptr<GrDrawOp> op =
1064 AAHairlineOp::Make(std::move(args.fPaint), *args.fViewMatrix, path,
1065 args.fShape->style(), devClipBounds, args.fUserStencilSettings);
1066 args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op));
1067 return true;
1068 }
1069
1070 ///////////////////////////////////////////////////////////////////////////////////////////////////
1071
1072 #if GR_TEST_UTILS
1073
GR_DRAW_OP_TEST_DEFINE(AAHairlineOp)1074 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
1075 SkMatrix viewMatrix = GrTest::TestMatrix(random);
1076 SkPath path = GrTest::TestPath(random);
1077 SkIRect devClipBounds;
1078 devClipBounds.setEmpty();
1079 return AAHairlineOp::Make(std::move(paint), viewMatrix, path, GrStyle::SimpleHairline(),
1080 devClipBounds, GrGetRandomStencil(random, context));
1081 }
1082
1083 #endif
1084