1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6
7 /*
8 * A class used for intermediate representations of the -moz-transform property.
9 */
10
11 #include "nsStyleTransformMatrix.h"
12 #include "nsCSSValue.h"
13 #include "nsLayoutUtils.h"
14 #include "nsPresContext.h"
15 #ifdef MOZ_OLD_STYLE
16 #include "nsRuleNode.h"
17 #endif
18 #include "nsSVGUtils.h"
19 #include "nsCSSKeywords.h"
20 #include "mozilla/RuleNodeCacheConditions.h"
21 #include "mozilla/ServoBindings.h"
22 #include "mozilla/StyleAnimationValue.h"
23 #include "gfxMatrix.h"
24 #include "gfxQuaternion.h"
25
26 using namespace mozilla;
27 using namespace mozilla::gfx;
28
29 namespace nsStyleTransformMatrix {
30
31 /* Note on floating point precision: The transform matrix is an array
32 * of single precision 'float's, and so are most of the input values
33 * we get from the style system, but intermediate calculations
34 * involving angles need to be done in 'double'.
35 */
36
37 // Define UNIFIED_CONTINUATIONS here and in nsDisplayList.cpp
38 // to have the transform property try
39 // to transform content with continuations as one unified block instead of
40 // several smaller ones. This is currently disabled because it doesn't work
41 // correctly, since when the frames are initially being reflowed, their
42 // continuations all compute their bounding rects independently of each other
43 // and consequently get the wrong value.
44 //#define UNIFIED_CONTINUATIONS
45
EnsureDimensionsAreCached()46 void TransformReferenceBox::EnsureDimensionsAreCached() {
47 if (mIsCached) {
48 return;
49 }
50
51 MOZ_ASSERT(mFrame);
52
53 mIsCached = true;
54
55 if (mFrame->GetStateBits() & NS_FRAME_SVG_LAYOUT) {
56 if (!nsLayoutUtils::SVGTransformBoxEnabled()) {
57 mX = -mFrame->GetPosition().x;
58 mY = -mFrame->GetPosition().y;
59 Size contextSize = nsSVGUtils::GetContextSize(mFrame);
60 mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width);
61 mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height);
62 } else if (mFrame->StyleDisplay()->mTransformBox ==
63 StyleGeometryBox::FillBox) {
64 // Percentages in transforms resolve against the SVG bbox, and the
65 // transform is relative to the top-left of the SVG bbox.
66 nsRect bboxInAppUnits = nsLayoutUtils::ComputeGeometryBox(
67 const_cast<nsIFrame*>(mFrame), StyleGeometryBox::FillBox);
68 // The mRect of an SVG nsIFrame is its user space bounds *including*
69 // stroke and markers, whereas bboxInAppUnits is its user space bounds
70 // including fill only. We need to note the offset of the reference box
71 // from the frame's mRect in mX/mY.
72 mX = bboxInAppUnits.x - mFrame->GetPosition().x;
73 mY = bboxInAppUnits.y - mFrame->GetPosition().y;
74 mWidth = bboxInAppUnits.width;
75 mHeight = bboxInAppUnits.height;
76 } else {
77 // The value 'border-box' is treated as 'view-box' for SVG content.
78 MOZ_ASSERT(
79 mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::ViewBox ||
80 mFrame->StyleDisplay()->mTransformBox ==
81 StyleGeometryBox::BorderBox,
82 "Unexpected value for 'transform-box'");
83 // Percentages in transforms resolve against the width/height of the
84 // nearest viewport (or its viewBox if one is applied), and the
85 // transform is relative to {0,0} in current user space.
86 mX = -mFrame->GetPosition().x;
87 mY = -mFrame->GetPosition().y;
88 Size contextSize = nsSVGUtils::GetContextSize(mFrame);
89 mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width);
90 mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height);
91 }
92 return;
93 }
94
95 // If UNIFIED_CONTINUATIONS is not defined, this is simply the frame's
96 // bounding rectangle, translated to the origin. Otherwise, it is the
97 // smallest rectangle containing a frame and all of its continuations. For
98 // example, if there is a <span> element with several continuations split
99 // over several lines, this function will return the rectangle containing all
100 // of those continuations.
101
102 nsRect rect;
103
104 #ifndef UNIFIED_CONTINUATIONS
105 rect = mFrame->GetRect();
106 #else
107 // Iterate the continuation list, unioning together the bounding rects:
108 for (const nsIFrame* currFrame = mFrame->FirstContinuation();
109 currFrame != nullptr; currFrame = currFrame->GetNextContinuation()) {
110 // Get the frame rect in local coordinates, then translate back to the
111 // original coordinates:
112 rect.UnionRect(
113 result, nsRect(currFrame->GetOffsetTo(mFrame), currFrame->GetSize()));
114 }
115 #endif
116
117 mX = 0;
118 mY = 0;
119 mWidth = rect.Width();
120 mHeight = rect.Height();
121 }
122
Init(const nsSize & aDimensions)123 void TransformReferenceBox::Init(const nsSize& aDimensions) {
124 MOZ_ASSERT(!mFrame && !mIsCached);
125
126 mX = 0;
127 mY = 0;
128 mWidth = aDimensions.width;
129 mHeight = aDimensions.height;
130 mIsCached = true;
131 }
132
ProcessTranslatePart(const nsCSSValue & aValue,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox * aRefBox,TransformReferenceBox::DimensionGetter aDimensionGetter)133 float ProcessTranslatePart(
134 const nsCSSValue& aValue, GeckoStyleContext* aContext,
135 nsPresContext* aPresContext, RuleNodeCacheConditions& aConditions,
136 TransformReferenceBox* aRefBox,
137 TransformReferenceBox::DimensionGetter aDimensionGetter) {
138 nscoord offset = 0;
139 float percent = 0.0f;
140
141 if (aValue.GetUnit() == eCSSUnit_Percent) {
142 percent = aValue.GetPercentValue();
143 } else if (aValue.GetUnit() == eCSSUnit_Pixel ||
144 aValue.GetUnit() == eCSSUnit_Number) {
145 // Handle this here (even though nsRuleNode::CalcLength handles it
146 // fine) so that callers are allowed to pass a null style context
147 // and pres context to SetToTransformFunction if they know (as
148 // StyleAnimationValue does) that all lengths within the transform
149 // function have already been computed to pixels and percents.
150 //
151 // Raw numbers are treated as being pixels.
152 //
153 // Don't convert to aValue to AppUnits here to avoid precision issues.
154 return aValue.GetFloatValue();
155 } else if (aValue.IsCalcUnit()) {
156 if (aContext) {
157 #ifdef MOZ_OLD_STYLE
158 // Gecko backend
159 nsRuleNode::ComputedCalc result = nsRuleNode::SpecifiedCalcToComputedCalc(
160 aValue, aContext, aPresContext, aConditions);
161 percent = result.mPercent;
162 offset = result.mLength;
163 #else
164 MOZ_CRASH("old style system disabled");
165 #endif
166 } else {
167 // Servo backend. We can retrieve the Calc value directly because it has
168 // been computed from Servo side and set by nsCSSValue::SetCalcValue().
169 // We don't use nsRuleNode::SpecifiedCalcToComputedCalc() because it
170 // asserts for null context and we always pass null context for Servo
171 // backend.
172 nsStyleCoord::CalcValue calc = aValue.GetCalcValue();
173 percent = calc.mPercent;
174 offset = calc.mLength;
175 }
176 } else {
177 // Note: The unit of nsCSSValue passed from Servo side would be number,
178 // pixel, percent, or eCSSUnit_Calc, so it is impossible to go into
179 // this branch.
180 #ifdef MOZ_OLD_STYLE
181 MOZ_ASSERT(aContext, "We need a valid context to compute the length");
182 offset =
183 nsRuleNode::CalcLength(aValue, aContext, aPresContext, aConditions);
184 #else
185 MOZ_CRASH("unexpected unit in ProcessTranslatePart");
186 #endif
187 }
188
189 float translation =
190 NSAppUnitsToFloatPixels(offset, nsPresContext::AppUnitsPerCSSPixel());
191 // We want to avoid calling aDimensionGetter if there's no percentage to be
192 // resolved (for performance reasons - see TransformReferenceBox).
193 if (percent != 0.0f && aRefBox && !aRefBox->IsEmpty()) {
194 translation +=
195 percent * NSAppUnitsToFloatPixels((aRefBox->*aDimensionGetter)(),
196 nsPresContext::AppUnitsPerCSSPixel());
197 }
198 return translation;
199 }
200
201 /**
202 * Helper functions to process all the transformation function types.
203 *
204 * These take a matrix parameter to accumulate the current matrix.
205 */
206
207 /* Helper function to process a matrix entry. */
ProcessMatrix(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox)208 static void ProcessMatrix(Matrix4x4& aMatrix, const nsCSSValue::Array* aData,
209 GeckoStyleContext* aContext,
210 nsPresContext* aPresContext,
211 RuleNodeCacheConditions& aConditions,
212 TransformReferenceBox& aRefBox) {
213 NS_PRECONDITION(aData->Count() == 7, "Invalid array!");
214
215 gfxMatrix result;
216
217 /* Take the first four elements out of the array as floats and store
218 * them.
219 */
220 result._11 = aData->Item(1).GetFloatValue();
221 result._12 = aData->Item(2).GetFloatValue();
222 result._21 = aData->Item(3).GetFloatValue();
223 result._22 = aData->Item(4).GetFloatValue();
224
225 /* The last two elements have their length parts stored in aDelta
226 * and their percent parts stored in aX[0] and aY[1].
227 */
228 result._31 =
229 ProcessTranslatePart(aData->Item(5), aContext, aPresContext, aConditions,
230 &aRefBox, &TransformReferenceBox::Width);
231 result._32 =
232 ProcessTranslatePart(aData->Item(6), aContext, aPresContext, aConditions,
233 &aRefBox, &TransformReferenceBox::Height);
234
235 aMatrix = result * aMatrix;
236 }
237
ProcessMatrix3D(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox)238 static void ProcessMatrix3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData,
239 GeckoStyleContext* aContext,
240 nsPresContext* aPresContext,
241 RuleNodeCacheConditions& aConditions,
242 TransformReferenceBox& aRefBox) {
243 NS_PRECONDITION(aData->Count() == 17, "Invalid array!");
244
245 Matrix4x4 temp;
246
247 temp._11 = aData->Item(1).GetFloatValue();
248 temp._12 = aData->Item(2).GetFloatValue();
249 temp._13 = aData->Item(3).GetFloatValue();
250 temp._14 = aData->Item(4).GetFloatValue();
251 temp._21 = aData->Item(5).GetFloatValue();
252 temp._22 = aData->Item(6).GetFloatValue();
253 temp._23 = aData->Item(7).GetFloatValue();
254 temp._24 = aData->Item(8).GetFloatValue();
255 temp._31 = aData->Item(9).GetFloatValue();
256 temp._32 = aData->Item(10).GetFloatValue();
257 temp._33 = aData->Item(11).GetFloatValue();
258 temp._34 = aData->Item(12).GetFloatValue();
259 temp._44 = aData->Item(16).GetFloatValue();
260
261 temp._41 =
262 ProcessTranslatePart(aData->Item(13), aContext, aPresContext, aConditions,
263 &aRefBox, &TransformReferenceBox::Width);
264 temp._42 =
265 ProcessTranslatePart(aData->Item(14), aContext, aPresContext, aConditions,
266 &aRefBox, &TransformReferenceBox::Height);
267 temp._43 = ProcessTranslatePart(aData->Item(15), aContext, aPresContext,
268 aConditions, nullptr);
269
270 aMatrix = temp * aMatrix;
271 }
272
273 // For accumulation for transform functions, |aOne| corresponds to |aB| and
274 // |aTwo| corresponds to |aA| for StyleAnimationValue::Accumulate().
275 class Accumulate {
276 public:
277 template <typename T>
operate(const T & aOne,const T & aTwo,double aCoeff)278 static T operate(const T& aOne, const T& aTwo, double aCoeff) {
279 return aOne + aTwo * aCoeff;
280 }
281
operateForPerspective(const Point4D & aOne,const Point4D & aTwo,double aCoeff)282 static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo,
283 double aCoeff) {
284 return (aOne - Point4D(0, 0, 0, 1)) +
285 (aTwo - Point4D(0, 0, 0, 1)) * aCoeff + Point4D(0, 0, 0, 1);
286 }
operateForScale(const Point3D & aOne,const Point3D & aTwo,double aCoeff)287 static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo,
288 double aCoeff) {
289 // For scale, the identify element is 1, see AddTransformScale in
290 // StyleAnimationValue.cpp.
291 return (aOne - Point3D(1, 1, 1)) + (aTwo - Point3D(1, 1, 1)) * aCoeff +
292 Point3D(1, 1, 1);
293 }
294
operateForRotate(const gfxQuaternion & aOne,const gfxQuaternion & aTwo,double aCoeff)295 static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
296 const gfxQuaternion& aTwo, double aCoeff) {
297 if (aCoeff == 0.0) {
298 return aOne.ToMatrix();
299 }
300
301 double theta = acos(mozilla::clamped(aTwo.w, -1.0, 1.0));
302 double scale = (theta != 0.0) ? 1.0 / sin(theta) : 0.0;
303 theta *= aCoeff;
304 scale *= sin(theta);
305
306 gfxQuaternion result = gfxQuaternion(scale * aTwo.x, scale * aTwo.y,
307 scale * aTwo.z, cos(theta)) *
308 aOne;
309 return result.ToMatrix();
310 }
311
operateForFallback(const Matrix4x4 & aMatrix1,const Matrix4x4 & aMatrix2,double aProgress)312 static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
313 const Matrix4x4& aMatrix2,
314 double aProgress) {
315 return aMatrix1;
316 }
317
operateByServo(const Matrix4x4 & aMatrix1,const Matrix4x4 & aMatrix2,double aCount)318 static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
319 const Matrix4x4& aMatrix2, double aCount) {
320 Matrix4x4 result;
321 Servo_MatrixTransform_Operate(MatrixTransformOperator::Accumulate,
322 &aMatrix1.components, &aMatrix2.components,
323 aCount, &result.components);
324 return result;
325 }
326 };
327
328 class Interpolate {
329 public:
330 template <typename T>
operate(const T & aOne,const T & aTwo,double aCoeff)331 static T operate(const T& aOne, const T& aTwo, double aCoeff) {
332 return aOne + (aTwo - aOne) * aCoeff;
333 }
334
operateForPerspective(const Point4D & aOne,const Point4D & aTwo,double aCoeff)335 static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo,
336 double aCoeff) {
337 return aOne + (aTwo - aOne) * aCoeff;
338 }
339
operateForScale(const Point3D & aOne,const Point3D & aTwo,double aCoeff)340 static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo,
341 double aCoeff) {
342 return aOne + (aTwo - aOne) * aCoeff;
343 }
344
operateForRotate(const gfxQuaternion & aOne,const gfxQuaternion & aTwo,double aCoeff)345 static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
346 const gfxQuaternion& aTwo, double aCoeff) {
347 return aOne.Slerp(aTwo, aCoeff).ToMatrix();
348 }
349
operateForFallback(const Matrix4x4 & aMatrix1,const Matrix4x4 & aMatrix2,double aProgress)350 static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
351 const Matrix4x4& aMatrix2,
352 double aProgress) {
353 return aProgress < 0.5 ? aMatrix1 : aMatrix2;
354 }
355
operateByServo(const Matrix4x4 & aMatrix1,const Matrix4x4 & aMatrix2,double aProgress)356 static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
357 const Matrix4x4& aMatrix2, double aProgress) {
358 Matrix4x4 result;
359 Servo_MatrixTransform_Operate(MatrixTransformOperator::Interpolate,
360 &aMatrix1.components, &aMatrix2.components,
361 aProgress, &result.components);
362 return result;
363 }
364 };
365
366 /**
367 * Calculate 2 matrices by decomposing them with Operator.
368 *
369 * @param aMatrix1 First matrix, using CSS pixel units.
370 * @param aMatrix2 Second matrix, using CSS pixel units.
371 * @param aProgress Coefficient for the Operator.
372 */
373 template <typename Operator>
OperateTransformMatrix(const Matrix4x4 & aMatrix1,const Matrix4x4 & aMatrix2,double aProgress)374 static Matrix4x4 OperateTransformMatrix(const Matrix4x4& aMatrix1,
375 const Matrix4x4& aMatrix2,
376 double aProgress) {
377 // Decompose both matrices
378
379 Point3D scale1(1, 1, 1), translate1;
380 Point4D perspective1(0, 0, 0, 1);
381 gfxQuaternion rotate1;
382 nsStyleTransformMatrix::ShearArray shear1{0.0f, 0.0f, 0.0f};
383
384 Point3D scale2(1, 1, 1), translate2;
385 Point4D perspective2(0, 0, 0, 1);
386 gfxQuaternion rotate2;
387 nsStyleTransformMatrix::ShearArray shear2{0.0f, 0.0f, 0.0f};
388
389 // Check if both matrices are decomposable.
390 bool wasDecomposed;
391 Matrix matrix2d1, matrix2d2;
392 if (aMatrix1.Is2D(&matrix2d1) && aMatrix2.Is2D(&matrix2d2)) {
393 wasDecomposed =
394 Decompose2DMatrix(matrix2d1, scale1, shear1, rotate1, translate1) &&
395 Decompose2DMatrix(matrix2d2, scale2, shear2, rotate2, translate2);
396 } else {
397 wasDecomposed = Decompose3DMatrix(aMatrix1, scale1, shear1, rotate1,
398 translate1, perspective1) &&
399 Decompose3DMatrix(aMatrix2, scale2, shear2, rotate2,
400 translate2, perspective2);
401 }
402
403 // Fallback to discrete operation if one of the matrices is not decomposable.
404 if (!wasDecomposed) {
405 return Operator::operateForFallback(aMatrix1, aMatrix2, aProgress);
406 }
407
408 Matrix4x4 result;
409
410 // Operate each of the pieces in response to |Operator|.
411 Point4D perspective =
412 Operator::operateForPerspective(perspective1, perspective2, aProgress);
413 result.SetTransposedVector(3, perspective);
414
415 Point3D translate = Operator::operate(translate1, translate2, aProgress);
416 result.PreTranslate(translate.x, translate.y, translate.z);
417
418 Matrix4x4 rotate = Operator::operateForRotate(rotate1, rotate2, aProgress);
419 if (!rotate.IsIdentity()) {
420 result = rotate * result;
421 }
422
423 // TODO: Would it be better to operate these as angles?
424 // How do we convert back to angles?
425 float yzshear = Operator::operate(shear1[ShearType::YZSHEAR],
426 shear2[ShearType::YZSHEAR], aProgress);
427 if (yzshear != 0.0) {
428 result.SkewYZ(yzshear);
429 }
430
431 float xzshear = Operator::operate(shear1[ShearType::XZSHEAR],
432 shear2[ShearType::XZSHEAR], aProgress);
433 if (xzshear != 0.0) {
434 result.SkewXZ(xzshear);
435 }
436
437 float xyshear = Operator::operate(shear1[ShearType::XYSHEAR],
438 shear2[ShearType::XYSHEAR], aProgress);
439 if (xyshear != 0.0) {
440 result.SkewXY(xyshear);
441 }
442
443 Point3D scale = Operator::operateForScale(scale1, scale2, aProgress);
444 if (scale != Point3D(1.0, 1.0, 1.0)) {
445 result.PreScale(scale.x, scale.y, scale.z);
446 }
447
448 return result;
449 }
450
451 template <typename Operator>
OperateTransformMatrixByServo(const Matrix4x4 & aMatrix1,const Matrix4x4 & aMatrix2,double aProgress)452 static Matrix4x4 OperateTransformMatrixByServo(const Matrix4x4& aMatrix1,
453 const Matrix4x4& aMatrix2,
454 double aProgress) {
455 return Operator::operateByServo(aMatrix1, aMatrix2, aProgress);
456 }
457
458 template <typename Operator>
ProcessMatrixOperator(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox,bool * aContains3dTransform)459 static void ProcessMatrixOperator(Matrix4x4& aMatrix,
460 const nsCSSValue::Array* aData,
461 GeckoStyleContext* aContext,
462 nsPresContext* aPresContext,
463 RuleNodeCacheConditions& aConditions,
464 TransformReferenceBox& aRefBox,
465 bool* aContains3dTransform) {
466 NS_PRECONDITION(aData->Count() == 4, "Invalid array!");
467
468 auto readTransform = [&](const nsCSSValue& aValue) -> Matrix4x4 {
469 const nsCSSValueList* list = nullptr;
470 switch (aValue.GetUnit()) {
471 case eCSSUnit_List:
472 // For Gecko style backend.
473 list = aValue.GetListValue();
474 break;
475 case eCSSUnit_SharedList:
476 // For Servo style backend. The transform lists of interpolatematrix
477 // are not created on the main thread (i.e. during parallel traversal),
478 // and nsCSSValueList_heap is not thread safe. Therefore, we use
479 // nsCSSValueSharedList as a workaround.
480 list = aValue.GetSharedListValue()->mHead;
481 break;
482 default:
483 list = nullptr;
484 }
485
486 Matrix4x4 matrix;
487 if (!list) {
488 return matrix;
489 }
490
491 float appUnitPerCSSPixel = nsPresContext::AppUnitsPerCSSPixel();
492 matrix = nsStyleTransformMatrix::ReadTransforms(list,
493 #ifdef MOZ_OLD_STYLE
494 aContext,
495 #else
496 nullptr,
497 #endif
498 aPresContext, aConditions,
499 aRefBox, appUnitPerCSSPixel,
500 aContains3dTransform);
501 return matrix;
502 };
503
504 Matrix4x4 matrix1 = readTransform(aData->Item(1));
505 Matrix4x4 matrix2 = readTransform(aData->Item(2));
506 double progress = aData->Item(3).GetPercentValue();
507
508 // We cannot use GeckoStyleContext to check if we use Servo backend because
509 // it could be null in Gecko. Instead, use the unit of the nsCSSValue because
510 // we use eCSSUnit_SharedList for Servo backend.
511 if (aData->Item(1).GetUnit() == eCSSUnit_SharedList) {
512 aMatrix =
513 OperateTransformMatrixByServo<Operator>(matrix1, matrix2, progress) *
514 aMatrix;
515 return;
516 }
517
518 aMatrix =
519 OperateTransformMatrix<Operator>(matrix1, matrix2, progress) * aMatrix;
520 }
521
522 /* Helper function to process two matrices that we need to interpolate between
523 */
ProcessInterpolateMatrix(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox,bool * aContains3dTransform)524 void ProcessInterpolateMatrix(Matrix4x4& aMatrix,
525 const nsCSSValue::Array* aData,
526 GeckoStyleContext* aContext,
527 nsPresContext* aPresContext,
528 RuleNodeCacheConditions& aConditions,
529 TransformReferenceBox& aRefBox,
530 bool* aContains3dTransform) {
531 ProcessMatrixOperator<Interpolate>(aMatrix, aData, aContext, aPresContext,
532 aConditions, aRefBox,
533 aContains3dTransform);
534 }
535
ProcessAccumulateMatrix(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox,bool * aContains3dTransform)536 void ProcessAccumulateMatrix(Matrix4x4& aMatrix, const nsCSSValue::Array* aData,
537 GeckoStyleContext* aContext,
538 nsPresContext* aPresContext,
539 RuleNodeCacheConditions& aConditions,
540 TransformReferenceBox& aRefBox,
541 bool* aContains3dTransform) {
542 ProcessMatrixOperator<Accumulate>(aMatrix, aData, aContext, aPresContext,
543 aConditions, aRefBox, aContains3dTransform);
544 }
545
546 /* Helper function to process a translatex function. */
ProcessTranslateX(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox)547 static void ProcessTranslateX(Matrix4x4& aMatrix,
548 const nsCSSValue::Array* aData,
549 GeckoStyleContext* aContext,
550 nsPresContext* aPresContext,
551 RuleNodeCacheConditions& aConditions,
552 TransformReferenceBox& aRefBox) {
553 NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
554
555 Point3D temp;
556
557 temp.x =
558 ProcessTranslatePart(aData->Item(1), aContext, aPresContext, aConditions,
559 &aRefBox, &TransformReferenceBox::Width);
560 aMatrix.PreTranslate(temp);
561 }
562
563 /* Helper function to process a translatey function. */
ProcessTranslateY(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox)564 static void ProcessTranslateY(Matrix4x4& aMatrix,
565 const nsCSSValue::Array* aData,
566 GeckoStyleContext* aContext,
567 nsPresContext* aPresContext,
568 RuleNodeCacheConditions& aConditions,
569 TransformReferenceBox& aRefBox) {
570 NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
571
572 Point3D temp;
573
574 temp.y =
575 ProcessTranslatePart(aData->Item(1), aContext, aPresContext, aConditions,
576 &aRefBox, &TransformReferenceBox::Height);
577 aMatrix.PreTranslate(temp);
578 }
579
ProcessTranslateZ(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions)580 static void ProcessTranslateZ(Matrix4x4& aMatrix,
581 const nsCSSValue::Array* aData,
582 GeckoStyleContext* aContext,
583 nsPresContext* aPresContext,
584 RuleNodeCacheConditions& aConditions) {
585 NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
586
587 Point3D temp;
588
589 temp.z = ProcessTranslatePart(aData->Item(1), aContext, aPresContext,
590 aConditions, nullptr);
591 aMatrix.PreTranslate(temp);
592 }
593
594 /* Helper function to process a translate function. */
ProcessTranslate(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox)595 static void ProcessTranslate(Matrix4x4& aMatrix, const nsCSSValue::Array* aData,
596 GeckoStyleContext* aContext,
597 nsPresContext* aPresContext,
598 RuleNodeCacheConditions& aConditions,
599 TransformReferenceBox& aRefBox) {
600 NS_PRECONDITION(aData->Count() == 2 || aData->Count() == 3, "Invalid array!");
601
602 Point3D temp;
603
604 temp.x =
605 ProcessTranslatePart(aData->Item(1), aContext, aPresContext, aConditions,
606 &aRefBox, &TransformReferenceBox::Width);
607
608 /* If we read in a Y component, set it appropriately */
609 if (aData->Count() == 3) {
610 temp.y = ProcessTranslatePart(aData->Item(2), aContext, aPresContext,
611 aConditions, &aRefBox,
612 &TransformReferenceBox::Height);
613 }
614 aMatrix.PreTranslate(temp);
615 }
616
ProcessTranslate3D(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox)617 static void ProcessTranslate3D(Matrix4x4& aMatrix,
618 const nsCSSValue::Array* aData,
619 GeckoStyleContext* aContext,
620 nsPresContext* aPresContext,
621 RuleNodeCacheConditions& aConditions,
622 TransformReferenceBox& aRefBox) {
623 NS_PRECONDITION(aData->Count() == 4, "Invalid array!");
624
625 Point3D temp;
626
627 temp.x =
628 ProcessTranslatePart(aData->Item(1), aContext, aPresContext, aConditions,
629 &aRefBox, &TransformReferenceBox::Width);
630
631 temp.y =
632 ProcessTranslatePart(aData->Item(2), aContext, aPresContext, aConditions,
633 &aRefBox, &TransformReferenceBox::Height);
634
635 temp.z = ProcessTranslatePart(aData->Item(3), aContext, aPresContext,
636 aConditions, nullptr);
637
638 aMatrix.PreTranslate(temp);
639 }
640
641 /* Helper function to set up a scale matrix. */
ProcessScaleHelper(Matrix4x4 & aMatrix,float aXScale,float aYScale,float aZScale)642 static void ProcessScaleHelper(Matrix4x4& aMatrix, float aXScale, float aYScale,
643 float aZScale) {
644 aMatrix.PreScale(aXScale, aYScale, aZScale);
645 }
646
647 /* Process a scalex function. */
ProcessScaleX(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)648 static void ProcessScaleX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
649 NS_PRECONDITION(aData->Count() == 2, "Bad array!");
650 ProcessScaleHelper(aMatrix, aData->Item(1).GetFloatValue(), 1.0f, 1.0f);
651 }
652
653 /* Process a scaley function. */
ProcessScaleY(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)654 static void ProcessScaleY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
655 NS_PRECONDITION(aData->Count() == 2, "Bad array!");
656 ProcessScaleHelper(aMatrix, 1.0f, aData->Item(1).GetFloatValue(), 1.0f);
657 }
658
ProcessScaleZ(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)659 static void ProcessScaleZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
660 NS_PRECONDITION(aData->Count() == 2, "Bad array!");
661 ProcessScaleHelper(aMatrix, 1.0f, 1.0f, aData->Item(1).GetFloatValue());
662 }
663
ProcessScale3D(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)664 static void ProcessScale3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
665 NS_PRECONDITION(aData->Count() == 4, "Bad array!");
666 ProcessScaleHelper(aMatrix, aData->Item(1).GetFloatValue(),
667 aData->Item(2).GetFloatValue(),
668 aData->Item(3).GetFloatValue());
669 }
670
671 /* Process a scale function. */
ProcessScale(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)672 static void ProcessScale(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
673 NS_PRECONDITION(aData->Count() == 2 || aData->Count() == 3, "Bad array!");
674 /* We either have one element or two. If we have one, it's for both X and Y.
675 * Otherwise it's one for each.
676 */
677 const nsCSSValue& scaleX = aData->Item(1);
678 const nsCSSValue& scaleY = (aData->Count() == 2 ? scaleX : aData->Item(2));
679
680 ProcessScaleHelper(aMatrix, scaleX.GetFloatValue(), scaleY.GetFloatValue(),
681 1.0f);
682 }
683
684 /* Helper function that, given a set of angles, constructs the appropriate
685 * skew matrix.
686 */
ProcessSkewHelper(Matrix4x4 & aMatrix,double aXAngle,double aYAngle)687 static void ProcessSkewHelper(Matrix4x4& aMatrix, double aXAngle,
688 double aYAngle) {
689 aMatrix.SkewXY(aXAngle, aYAngle);
690 }
691
692 /* Function that converts a skewx transform into a matrix. */
ProcessSkewX(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)693 static void ProcessSkewX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
694 NS_ASSERTION(aData->Count() == 2, "Bad array!");
695 ProcessSkewHelper(aMatrix, aData->Item(1).GetAngleValueInRadians(), 0.0);
696 }
697
698 /* Function that converts a skewy transform into a matrix. */
ProcessSkewY(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)699 static void ProcessSkewY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
700 NS_ASSERTION(aData->Count() == 2, "Bad array!");
701 ProcessSkewHelper(aMatrix, 0.0, aData->Item(1).GetAngleValueInRadians());
702 }
703
704 /* Function that converts a skew transform into a matrix. */
ProcessSkew(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)705 static void ProcessSkew(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
706 NS_ASSERTION(aData->Count() == 2 || aData->Count() == 3, "Bad array!");
707
708 double xSkew = aData->Item(1).GetAngleValueInRadians();
709 double ySkew =
710 (aData->Count() == 2 ? 0.0 : aData->Item(2).GetAngleValueInRadians());
711
712 ProcessSkewHelper(aMatrix, xSkew, ySkew);
713 }
714
715 /* Function that converts a rotate transform into a matrix. */
ProcessRotateZ(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)716 static void ProcessRotateZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
717 NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
718 double theta = aData->Item(1).GetAngleValueInRadians();
719 aMatrix.RotateZ(theta);
720 }
721
ProcessRotateX(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)722 static void ProcessRotateX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
723 NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
724 double theta = aData->Item(1).GetAngleValueInRadians();
725 aMatrix.RotateX(theta);
726 }
727
ProcessRotateY(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)728 static void ProcessRotateY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) {
729 NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
730 double theta = aData->Item(1).GetAngleValueInRadians();
731 aMatrix.RotateY(theta);
732 }
733
ProcessRotate3D(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData)734 static void ProcessRotate3D(Matrix4x4& aMatrix,
735 const nsCSSValue::Array* aData) {
736 NS_PRECONDITION(aData->Count() == 5, "Invalid array!");
737
738 double theta = aData->Item(4).GetAngleValueInRadians();
739 float x = aData->Item(1).GetFloatValue();
740 float y = aData->Item(2).GetFloatValue();
741 float z = aData->Item(3).GetFloatValue();
742
743 Matrix4x4 temp;
744 temp.SetRotateAxisAngle(x, y, z, theta);
745
746 aMatrix = temp * aMatrix;
747 }
748
ProcessPerspective(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions)749 static void ProcessPerspective(Matrix4x4& aMatrix,
750 const nsCSSValue::Array* aData,
751 GeckoStyleContext* aContext,
752 nsPresContext* aPresContext,
753 RuleNodeCacheConditions& aConditions) {
754 NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
755
756 float depth = ProcessTranslatePart(aData->Item(1), aContext, aPresContext,
757 aConditions, nullptr);
758 ApplyPerspectiveToMatrix(aMatrix, depth);
759 }
760
761 /**
762 * SetToTransformFunction is essentially a giant switch statement that fans
763 * out to many smaller helper functions.
764 */
MatrixForTransformFunction(Matrix4x4 & aMatrix,const nsCSSValue::Array * aData,GeckoStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox,bool * aContains3dTransform)765 static void MatrixForTransformFunction(Matrix4x4& aMatrix,
766 const nsCSSValue::Array* aData,
767 GeckoStyleContext* aContext,
768 nsPresContext* aPresContext,
769 RuleNodeCacheConditions& aConditions,
770 TransformReferenceBox& aRefBox,
771 bool* aContains3dTransform) {
772 MOZ_ASSERT(aContains3dTransform);
773 NS_PRECONDITION(aData, "Why did you want to get data from a null array?");
774 // It's OK if aContext and aPresContext are null if the caller already
775 // knows that all length units have been converted to pixels (as
776 // StyleAnimationValue does).
777
778 /* Get the keyword for the transform. */
779 switch (TransformFunctionOf(aData)) {
780 case eCSSKeyword_translatex:
781 ProcessTranslateX(aMatrix, aData, aContext, aPresContext, aConditions,
782 aRefBox);
783 break;
784 case eCSSKeyword_translatey:
785 ProcessTranslateY(aMatrix, aData, aContext, aPresContext, aConditions,
786 aRefBox);
787 break;
788 case eCSSKeyword_translatez:
789 *aContains3dTransform = true;
790 ProcessTranslateZ(aMatrix, aData, aContext, aPresContext, aConditions);
791 break;
792 case eCSSKeyword_translate:
793 ProcessTranslate(aMatrix, aData, aContext, aPresContext, aConditions,
794 aRefBox);
795 break;
796 case eCSSKeyword_translate3d:
797 *aContains3dTransform = true;
798 ProcessTranslate3D(aMatrix, aData, aContext, aPresContext, aConditions,
799 aRefBox);
800 break;
801 case eCSSKeyword_scalex:
802 ProcessScaleX(aMatrix, aData);
803 break;
804 case eCSSKeyword_scaley:
805 ProcessScaleY(aMatrix, aData);
806 break;
807 case eCSSKeyword_scalez:
808 *aContains3dTransform = true;
809 ProcessScaleZ(aMatrix, aData);
810 break;
811 case eCSSKeyword_scale:
812 ProcessScale(aMatrix, aData);
813 break;
814 case eCSSKeyword_scale3d:
815 *aContains3dTransform = true;
816 ProcessScale3D(aMatrix, aData);
817 break;
818 case eCSSKeyword_skewx:
819 ProcessSkewX(aMatrix, aData);
820 break;
821 case eCSSKeyword_skewy:
822 ProcessSkewY(aMatrix, aData);
823 break;
824 case eCSSKeyword_skew:
825 ProcessSkew(aMatrix, aData);
826 break;
827 case eCSSKeyword_rotatex:
828 *aContains3dTransform = true;
829 ProcessRotateX(aMatrix, aData);
830 break;
831 case eCSSKeyword_rotatey:
832 *aContains3dTransform = true;
833 ProcessRotateY(aMatrix, aData);
834 break;
835 case eCSSKeyword_rotatez:
836 *aContains3dTransform = true;
837 MOZ_FALLTHROUGH;
838 case eCSSKeyword_rotate:
839 ProcessRotateZ(aMatrix, aData);
840 break;
841 case eCSSKeyword_rotate3d:
842 *aContains3dTransform = true;
843 ProcessRotate3D(aMatrix, aData);
844 break;
845 case eCSSKeyword_matrix:
846 ProcessMatrix(aMatrix, aData, aContext, aPresContext, aConditions,
847 aRefBox);
848 break;
849 case eCSSKeyword_matrix3d:
850 *aContains3dTransform = true;
851 ProcessMatrix3D(aMatrix, aData, aContext, aPresContext, aConditions,
852 aRefBox);
853 break;
854 case eCSSKeyword_interpolatematrix:
855 ProcessMatrixOperator<Interpolate>(aMatrix, aData, aContext, aPresContext,
856 aConditions, aRefBox,
857 aContains3dTransform);
858 break;
859 case eCSSKeyword_accumulatematrix:
860 ProcessMatrixOperator<Accumulate>(aMatrix, aData, aContext, aPresContext,
861 aConditions, aRefBox,
862 aContains3dTransform);
863 break;
864 case eCSSKeyword_perspective:
865 *aContains3dTransform = true;
866 ProcessPerspective(aMatrix, aData, aContext, aPresContext, aConditions);
867 break;
868 default:
869 NS_NOTREACHED("Unknown transform function!");
870 }
871 }
872
873 /**
874 * Return the transform function, as an nsCSSKeyword, for the given
875 * nsCSSValue::Array from a transform list.
876 */
TransformFunctionOf(const nsCSSValue::Array * aData)877 nsCSSKeyword TransformFunctionOf(const nsCSSValue::Array* aData) {
878 MOZ_ASSERT(aData->Item(0).GetUnit() == eCSSUnit_Enumerated);
879 return aData->Item(0).GetKeywordValue();
880 }
881
SetIdentityMatrix(nsCSSValue::Array * aMatrix)882 void SetIdentityMatrix(nsCSSValue::Array* aMatrix) {
883 MOZ_ASSERT(aMatrix, "aMatrix should be non-null");
884
885 nsCSSKeyword tfunc = TransformFunctionOf(aMatrix);
886 MOZ_ASSERT(tfunc == eCSSKeyword_matrix || tfunc == eCSSKeyword_matrix3d,
887 "Only accept matrix and matrix3d");
888
889 if (tfunc == eCSSKeyword_matrix) {
890 MOZ_ASSERT(aMatrix->Count() == 7, "Invalid matrix");
891 Matrix m;
892 for (size_t i = 0; i < 6; ++i) {
893 aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number);
894 }
895 return;
896 }
897
898 MOZ_ASSERT(aMatrix->Count() == 17, "Invalid matrix3d");
899 Matrix4x4 m;
900 for (size_t i = 0; i < 16; ++i) {
901 aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number);
902 }
903 }
904
ReadTransforms(const nsCSSValueList * aList,nsStyleContext * aContext,nsPresContext * aPresContext,RuleNodeCacheConditions & aConditions,TransformReferenceBox & aRefBox,float aAppUnitsPerMatrixUnit,bool * aContains3dTransform)905 Matrix4x4 ReadTransforms(const nsCSSValueList* aList, nsStyleContext* aContext,
906 nsPresContext* aPresContext,
907 RuleNodeCacheConditions& aConditions,
908 TransformReferenceBox& aRefBox,
909 float aAppUnitsPerMatrixUnit,
910 bool* aContains3dTransform) {
911 Matrix4x4 result;
912 GeckoStyleContext* contextIfGecko =
913 #ifdef MOZ_OLD_STYLE
914 aContext ? aContext->GetAsGecko() : nullptr;
915 #else
916 nullptr;
917 #endif
918
919 for (const nsCSSValueList* curr = aList; curr != nullptr;
920 curr = curr->mNext) {
921 const nsCSSValue& currElem = curr->mValue;
922 if (currElem.GetUnit() != eCSSUnit_Function) {
923 NS_ASSERTION(currElem.GetUnit() == eCSSUnit_None && !aList->mNext,
924 "stream should either be a list of functions or a "
925 "lone None");
926 continue;
927 }
928 NS_ASSERTION(currElem.GetArrayValue()->Count() >= 1,
929 "Incoming function is too short!");
930
931 /* Read in a single transform matrix. */
932 MatrixForTransformFunction(result, currElem.GetArrayValue(), contextIfGecko,
933 aPresContext, aConditions, aRefBox,
934 aContains3dTransform);
935 }
936
937 float scale =
938 float(nsPresContext::AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit;
939 result.PreScale(1 / scale, 1 / scale, 1 / scale);
940 result.PostScale(scale, scale, scale);
941
942 return result;
943 }
944
Convert2DPosition(nsStyleCoord const (& aValue)[2],TransformReferenceBox & aRefBox,int32_t aAppUnitsPerDevPixel)945 Point Convert2DPosition(nsStyleCoord const (&aValue)[2],
946 TransformReferenceBox& aRefBox,
947 int32_t aAppUnitsPerDevPixel) {
948 float position[2];
949 nsStyleTransformMatrix::TransformReferenceBox::DimensionGetter
950 dimensionGetter[] = {
951 &nsStyleTransformMatrix::TransformReferenceBox::Width,
952 &nsStyleTransformMatrix::TransformReferenceBox::Height};
953 for (uint8_t index = 0; index < 2; ++index) {
954 const nsStyleCoord& value = aValue[index];
955 if (value.GetUnit() == eStyleUnit_Calc) {
956 const nsStyleCoord::Calc* calc = value.GetCalcValue();
957 position[index] =
958 NSAppUnitsToFloatPixels((aRefBox.*dimensionGetter[index])(),
959 aAppUnitsPerDevPixel) *
960 calc->mPercent +
961 NSAppUnitsToFloatPixels(calc->mLength, aAppUnitsPerDevPixel);
962 } else if (value.GetUnit() == eStyleUnit_Percent) {
963 position[index] =
964 NSAppUnitsToFloatPixels((aRefBox.*dimensionGetter[index])(),
965 aAppUnitsPerDevPixel) *
966 value.GetPercentValue();
967 } else {
968 MOZ_ASSERT(value.GetUnit() == eStyleUnit_Coord, "unexpected unit");
969 position[index] =
970 NSAppUnitsToFloatPixels(value.GetCoordValue(), aAppUnitsPerDevPixel);
971 }
972 }
973
974 return Point(position[0], position[1]);
975 }
976
977 /*
978 * The relevant section of the transitions specification:
979 * http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types-
980 * defers all of the details to the 2-D and 3-D transforms specifications.
981 * For the 2-D transforms specification (all that's relevant for us, right
982 * now), the relevant section is:
983 * http://dev.w3.org/csswg/css3-2d-transforms/#animation
984 * This, in turn, refers to the unmatrix program in Graphics Gems,
985 * available from http://tog.acm.org/resources/GraphicsGems/ , and in
986 * particular as the file GraphicsGems/gemsii/unmatrix.c
987 * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
988 *
989 * The unmatrix reference is for general 3-D transform matrices (any of the
990 * 16 components can have any value).
991 *
992 * For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant:
993 *
994 * [ A C E ]
995 * [ B D F ]
996 * [ 0 0 1 ]
997 *
998 * For that case, I believe the algorithm in unmatrix reduces to:
999 *
1000 * (1) If A * D - B * C == 0, the matrix is singular. Fail.
1001 *
1002 * (2) Set translation components (Tx and Ty) to the translation parts of
1003 * the matrix (E and F) and then ignore them for the rest of the time.
1004 * (For us, E and F each actually consist of three constants: a
1005 * length, a multiplier for the width, and a multiplier for the
1006 * height. This actually requires its own decomposition, but I'll
1007 * keep that separate.)
1008 *
1009 * (3) Let the X scale (Sx) be sqrt(A^2 + B^2). Then divide both A and B
1010 * by it.
1011 *
1012 * (4) Let the XY shear (K) be A * C + B * D. From C, subtract A times
1013 * the XY shear. From D, subtract B times the XY shear.
1014 *
1015 * (5) Let the Y scale (Sy) be sqrt(C^2 + D^2). Divide C, D, and the XY
1016 * shear (K) by it.
1017 *
1018 * (6) At this point, A * D - B * C is either 1 or -1. If it is -1,
1019 * negate the XY shear (K), the X scale (Sx), and A, B, C, and D.
1020 * (Alternatively, we could negate the XY shear (K) and the Y scale
1021 * (Sy).)
1022 *
1023 * (7) Let the rotation be R = atan2(B, A).
1024 *
1025 * Then the resulting decomposed transformation is:
1026 *
1027 * translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy)
1028 *
1029 * An interesting result of this is that all of the simple transform
1030 * functions (i.e., all functions other than matrix()), in isolation,
1031 * decompose back to themselves except for:
1032 * 'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes
1033 * to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the
1034 * alternate sign possibilities that would get fixed in step 6):
1035 * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
1036 * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
1037 * sin(φ). In step 4, the XY shear is sin(φ). Thus, after step 4, C =
1038 * -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ). Thus, in step 5, the Y scale
1039 * is sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ). Thus, after step 5, C =
1040 * -sin(φ), D = cos(φ), and the XY shear is tan(φ). Thus, in step 6, A * D -
1041 * B * C = cos²(φ) + sin²(φ) = 1. In step 7, the rotation is thus φ.
1042 *
1043 * skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes
1044 * to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring
1045 * the alternate sign possibilities that would get fixed in step 6):
1046 * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
1047 * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
1048 * sin(φ). In step 4, the XY shear is cos(φ)tan(θ) + sin(φ). Thus, after
1049 * step 4, C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) -
1050 * cos(φ)sin(φ) D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) -
1051 * sin(φ)cos(φ)tan(θ) Thus, in step 5, the Y scale is sqrt(C² + D²) =
1052 * sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) -
1053 * 2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) +
1054 * (sin²(φ)cos²(φ) + cos⁴(φ))) =
1055 * sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) =
1056 * cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so
1057 * we avoid flipping in step 6).
1058 * After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is
1059 * (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) =
1060 * (dividing both numerator and denominator by cos(φ))
1061 * (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ).
1062 * (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .)
1063 * Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
1064 * In step 7, the rotation is thus φ.
1065 *
1066 * To check this result, we can multiply things back together:
1067 *
1068 * [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ) 0 ]
1069 * [ sin(φ) cos(φ) ] [ 0 1 ] [ 0 cos(φ) ]
1070 *
1071 * [ cos(φ) cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ) 0 ]
1072 * [ sin(φ) sin(φ)tan(θ + φ) + cos(φ) ] [ 0 cos(φ) ]
1073 *
1074 * but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)),
1075 * cos(φ)tan(θ + φ) - sin(φ)
1076 * = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ)
1077 * = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ)
1078 * = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ)
1079 * = tan(θ) (cos(φ) + sin(φ)tan(φ))
1080 * = tan(θ) sec(φ) (cos²(φ) + sin²(φ))
1081 * = tan(θ) sec(φ)
1082 * and
1083 * sin(φ)tan(θ + φ) + cos(φ)
1084 * = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ)
1085 * = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ)
1086 * = sec(φ) (sin²(φ) + cos²(φ))
1087 * = sec(φ)
1088 * so the above is:
1089 * [ cos(φ) tan(θ) sec(φ) ] [ sec(φ) 0 ]
1090 * [ sin(φ) sec(φ) ] [ 0 cos(φ) ]
1091 *
1092 * [ 1 tan(θ) ]
1093 * [ tan(φ) 1 ]
1094 */
1095
1096 /*
1097 * Decompose2DMatrix implements the above decomposition algorithm.
1098 */
1099
Decompose2DMatrix(const Matrix & aMatrix,Point3D & aScale,ShearArray & aShear,gfxQuaternion & aRotate,Point3D & aTranslate)1100 bool Decompose2DMatrix(const Matrix& aMatrix, Point3D& aScale,
1101 ShearArray& aShear, gfxQuaternion& aRotate,
1102 Point3D& aTranslate) {
1103 float A = aMatrix._11, B = aMatrix._12, C = aMatrix._21, D = aMatrix._22;
1104 if (A * D == B * C) {
1105 // singular matrix
1106 return false;
1107 }
1108
1109 float scaleX = sqrt(A * A + B * B);
1110 A /= scaleX;
1111 B /= scaleX;
1112
1113 float XYshear = A * C + B * D;
1114 C -= A * XYshear;
1115 D -= B * XYshear;
1116
1117 float scaleY = sqrt(C * C + D * D);
1118 C /= scaleY;
1119 D /= scaleY;
1120 XYshear /= scaleY;
1121
1122 float determinant = A * D - B * C;
1123 // Determinant should now be 1 or -1.
1124 if (0.99 > Abs(determinant) || Abs(determinant) > 1.01) {
1125 return false;
1126 }
1127
1128 if (determinant < 0) {
1129 A = -A;
1130 B = -B;
1131 C = -C;
1132 D = -D;
1133 XYshear = -XYshear;
1134 scaleX = -scaleX;
1135 }
1136
1137 float rotate = atan2f(B, A);
1138 aRotate = gfxQuaternion(0, 0, sin(rotate / 2), cos(rotate / 2));
1139 aShear[ShearType::XYSHEAR] = XYshear;
1140 aScale.x = scaleX;
1141 aScale.y = scaleY;
1142 aTranslate.x = aMatrix._31;
1143 aTranslate.y = aMatrix._32;
1144 return true;
1145 }
1146
1147 /**
1148 * Implementation of the unmatrix algorithm, specified by:
1149 *
1150 * http://dev.w3.org/csswg/css3-2d-transforms/#unmatrix
1151 *
1152 * This, in turn, refers to the unmatrix program in Graphics Gems,
1153 * available from http://tog.acm.org/resources/GraphicsGems/ , and in
1154 * particular as the file GraphicsGems/gemsii/unmatrix.c
1155 * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
1156 */
Decompose3DMatrix(const Matrix4x4 & aMatrix,Point3D & aScale,ShearArray & aShear,gfxQuaternion & aRotate,Point3D & aTranslate,Point4D & aPerspective)1157 bool Decompose3DMatrix(const Matrix4x4& aMatrix, Point3D& aScale,
1158 ShearArray& aShear, gfxQuaternion& aRotate,
1159 Point3D& aTranslate, Point4D& aPerspective) {
1160 Matrix4x4 local = aMatrix;
1161
1162 if (local[3][3] == 0) {
1163 return false;
1164 }
1165 /* Normalize the matrix */
1166 local.Normalize();
1167
1168 /**
1169 * perspective is used to solve for perspective, but it also provides
1170 * an easy way to test for singularity of the upper 3x3 component.
1171 */
1172 Matrix4x4 perspective = local;
1173 Point4D empty(0, 0, 0, 1);
1174 perspective.SetTransposedVector(3, empty);
1175
1176 if (perspective.Determinant() == 0.0) {
1177 return false;
1178 }
1179
1180 /* First, isolate perspective. */
1181 if (local[0][3] != 0 || local[1][3] != 0 || local[2][3] != 0) {
1182 /* aPerspective is the right hand side of the equation. */
1183 aPerspective = local.TransposedVector(3);
1184
1185 /**
1186 * Solve the equation by inverting perspective and multiplying
1187 * aPerspective by the inverse.
1188 */
1189 perspective.Invert();
1190 aPerspective = perspective.TransposeTransform4D(aPerspective);
1191
1192 /* Clear the perspective partition */
1193 local.SetTransposedVector(3, empty);
1194 } else {
1195 aPerspective = Point4D(0, 0, 0, 1);
1196 }
1197
1198 /* Next take care of translation */
1199 for (int i = 0; i < 3; i++) {
1200 aTranslate[i] = local[3][i];
1201 local[3][i] = 0;
1202 }
1203
1204 /* Now get scale and shear. */
1205
1206 /* Compute X scale factor and normalize first row. */
1207 aScale.x = local[0].Length();
1208 local[0] /= aScale.x;
1209
1210 /* Compute XY shear factor and make 2nd local orthogonal to 1st. */
1211 aShear[ShearType::XYSHEAR] = local[0].DotProduct(local[1]);
1212 local[1] -= local[0] * aShear[ShearType::XYSHEAR];
1213
1214 /* Now, compute Y scale and normalize 2nd local. */
1215 aScale.y = local[1].Length();
1216 local[1] /= aScale.y;
1217 aShear[ShearType::XYSHEAR] /= aScale.y;
1218
1219 /* Compute XZ and YZ shears, make 3rd local orthogonal */
1220 aShear[ShearType::XZSHEAR] = local[0].DotProduct(local[2]);
1221 local[2] -= local[0] * aShear[ShearType::XZSHEAR];
1222 aShear[ShearType::YZSHEAR] = local[1].DotProduct(local[2]);
1223 local[2] -= local[1] * aShear[ShearType::YZSHEAR];
1224
1225 /* Next, get Z scale and normalize 3rd local. */
1226 aScale.z = local[2].Length();
1227 local[2] /= aScale.z;
1228
1229 aShear[ShearType::XZSHEAR] /= aScale.z;
1230 aShear[ShearType::YZSHEAR] /= aScale.z;
1231
1232 /**
1233 * At this point, the matrix (in locals) is orthonormal.
1234 * Check for a coordinate system flip. If the determinant
1235 * is -1, then negate the matrix and the scaling factors.
1236 */
1237 if (local[0].DotProduct(local[1].CrossProduct(local[2])) < 0) {
1238 aScale *= -1;
1239 for (int i = 0; i < 3; i++) {
1240 local[i] *= -1;
1241 }
1242 }
1243
1244 /* Now, get the rotations out */
1245 aRotate = gfxQuaternion(local);
1246
1247 return true;
1248 }
1249
CSSValueArrayTo2DMatrix(nsCSSValue::Array * aArray)1250 Matrix CSSValueArrayTo2DMatrix(nsCSSValue::Array* aArray) {
1251 MOZ_ASSERT(aArray && TransformFunctionOf(aArray) == eCSSKeyword_matrix &&
1252 aArray->Count() == 7);
1253 Matrix m(aArray->Item(1).GetFloatValue(), aArray->Item(2).GetFloatValue(),
1254 aArray->Item(3).GetFloatValue(), aArray->Item(4).GetFloatValue(),
1255 aArray->Item(5).GetFloatValue(), aArray->Item(6).GetFloatValue());
1256 return m;
1257 }
1258
CSSValueArrayTo3DMatrix(nsCSSValue::Array * aArray)1259 Matrix4x4 CSSValueArrayTo3DMatrix(nsCSSValue::Array* aArray) {
1260 MOZ_ASSERT(aArray && TransformFunctionOf(aArray) == eCSSKeyword_matrix3d &&
1261 aArray->Count() == 17);
1262 gfx::Float array[16];
1263 for (size_t i = 0; i < 16; ++i) {
1264 array[i] = aArray->Item(i + 1).GetFloatValue();
1265 }
1266 Matrix4x4 m(array);
1267 return m;
1268 }
1269
GetScaleValue(const nsCSSValueSharedList * aList,const nsIFrame * aForFrame)1270 Size GetScaleValue(const nsCSSValueSharedList* aList,
1271 const nsIFrame* aForFrame) {
1272 MOZ_ASSERT(aList && aList->mHead);
1273 MOZ_ASSERT(aForFrame);
1274
1275 RuleNodeCacheConditions dontCare;
1276 bool dontCareBool;
1277 TransformReferenceBox refBox(aForFrame);
1278 Matrix4x4 transform = ReadTransforms(
1279 aList->mHead, aForFrame->StyleContext(), aForFrame->PresContext(),
1280 dontCare, refBox, aForFrame->PresContext()->AppUnitsPerDevPixel(),
1281 &dontCareBool);
1282 Matrix transform2d;
1283 bool canDraw2D = transform.CanDraw2D(&transform2d);
1284 if (!canDraw2D) {
1285 return Size();
1286 }
1287
1288 return transform2d.ScaleFactors(true);
1289 }
1290
1291 } // namespace nsStyleTransformMatrix
1292