1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *
6 *   Copyright (C) 1997-2016, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 ******************************************************************************
10 *
11 * File CMEMORY.H
12 *
13 *  Contains stdlib.h/string.h memory functions
14 *
15 * @author       Bertrand A. Damiba
16 *
17 * Modification History:
18 *
19 *   Date        Name        Description
20 *   6/20/98     Bertrand    Created.
21 *  05/03/99     stephen     Changed from functions to macros.
22 *
23 ******************************************************************************
24 */
25 
26 #ifndef CMEMORY_H
27 #define CMEMORY_H
28 
29 #include "unicode/utypes.h"
30 
31 #include <stddef.h>
32 #include <string.h>
33 #include "unicode/localpointer.h"
34 
35 #if U_DEBUG && defined(UPRV_MALLOC_COUNT)
36 #include <stdio.h>
37 #endif
38 
39 
40 #define uprv_memcpy(dst, src, size) U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size)
41 #define uprv_memmove(dst, src, size) U_STANDARD_CPP_NAMESPACE memmove(dst, src, size)
42 
43 /**
44  * \def UPRV_LENGTHOF
45  * Convenience macro to determine the length of a fixed array at compile-time.
46  * @param array A fixed length array
47  * @return The length of the array, in elements
48  * @internal
49  */
50 #define UPRV_LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
51 #define uprv_memset(buffer, mark, size) U_STANDARD_CPP_NAMESPACE memset(buffer, mark, size)
52 #define uprv_memcmp(buffer1, buffer2, size) U_STANDARD_CPP_NAMESPACE memcmp(buffer1, buffer2,size)
53 #define uprv_memchr(ptr, value, num) U_STANDARD_CPP_NAMESPACE memchr(ptr, value, num)
54 
55 U_CAPI void * U_EXPORT2
56 uprv_malloc(size_t s) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR(1);
57 
58 U_CAPI void * U_EXPORT2
59 uprv_realloc(void *mem, size_t size) U_ALLOC_SIZE_ATTR(2);
60 
61 U_CAPI void U_EXPORT2
62 uprv_free(void *mem);
63 
64 U_CAPI void * U_EXPORT2
65 uprv_calloc(size_t num, size_t size) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR2(1,2);
66 
67 /**
68  * Get the least significant bits of a pointer (a memory address).
69  * For example, with a mask of 3, the macro gets the 2 least significant bits,
70  * which will be 0 if the pointer is 32-bit (4-byte) aligned.
71  *
72  * uintptr_t is the most appropriate integer type to cast to.
73  */
74 #define U_POINTER_MASK_LSB(ptr, mask) ((uintptr_t)(ptr) & (mask))
75 
76 /**
77  * Create & return an instance of "type" in statically allocated storage.
78  * e.g.
79  *    static std::mutex *myMutex = STATIC_NEW(std::mutex);
80  * To destroy an object created in this way, invoke the destructor explicitly, e.g.
81  *    myMutex->~mutex();
82  * DO NOT use delete.
83  * DO NOT use with class UMutex, which has specific support for static instances.
84  *
85  * STATIC_NEW is intended for use when
86  *   - We want a static (or global) object.
87  *   - We don't want it to ever be destructed, or to explicitly control destruction,
88  *     to avoid use-after-destruction problems.
89  *   - We want to avoid an ordinary heap allocated object,
90  *     to avoid the possibility of memory allocation failures, and
91  *     to avoid memory leak reports, from valgrind, for example.
92  * This is defined as a macro rather than a template function because each invocation
93  * must define distinct static storage for the object being returned.
94  */
95 #define STATIC_NEW(type) [] () { \
96     alignas(type) static char storage[sizeof(type)]; \
97     return new(storage) type();} ()
98 
99 /**
100   *  Heap clean up function, called from u_cleanup()
101   *    Clears any user heap functions from u_setMemoryFunctions()
102   *    Does NOT deallocate any remaining allocated memory.
103   */
104 U_CFUNC UBool
105 cmemory_cleanup(void);
106 
107 /**
108  * A function called by <TT>uhash_remove</TT>,
109  * <TT>uhash_close</TT>, or <TT>uhash_put</TT> to delete
110  * an existing key or value.
111  * @param obj A key or value stored in a hashtable
112  * @see uprv_deleteUObject
113  */
114 typedef void U_CALLCONV UObjectDeleter(void* obj);
115 
116 /**
117  * Deleter for UObject instances.
118  * Works for all subclasses of UObject because it has a virtual destructor.
119  */
120 U_CAPI void U_EXPORT2
121 uprv_deleteUObject(void *obj);
122 
123 #ifdef __cplusplus
124 
125 #include <utility>
126 #include "unicode/uobject.h"
127 
128 U_NAMESPACE_BEGIN
129 
130 /**
131  * "Smart pointer" class, deletes memory via uprv_free().
132  * For most methods see the LocalPointerBase base class.
133  * Adds operator[] for array item access.
134  *
135  * @see LocalPointerBase
136  */
137 template<typename T>
138 class LocalMemory : public LocalPointerBase<T> {
139 public:
140     using LocalPointerBase<T>::operator*;
141     using LocalPointerBase<T>::operator->;
142     /**
143      * Constructor takes ownership.
144      * @param p simple pointer to an array of T items that is adopted
145      */
146     explicit LocalMemory(T *p=NULL) : LocalPointerBase<T>(p) {}
147     /**
148      * Move constructor, leaves src with isNull().
149      * @param src source smart pointer
150      */
LocalMemory(LocalMemory<T> && src)151     LocalMemory(LocalMemory<T> &&src) U_NOEXCEPT : LocalPointerBase<T>(src.ptr) {
152         src.ptr=NULL;
153     }
154     /**
155      * Destructor deletes the memory it owns.
156      */
~LocalMemory()157     ~LocalMemory() {
158         uprv_free(LocalPointerBase<T>::ptr);
159     }
160     /**
161      * Move assignment operator, leaves src with isNull().
162      * The behavior is undefined if *this and src are the same object.
163      * @param src source smart pointer
164      * @return *this
165      */
166     LocalMemory<T> &operator=(LocalMemory<T> &&src) U_NOEXCEPT {
167         uprv_free(LocalPointerBase<T>::ptr);
168         LocalPointerBase<T>::ptr=src.ptr;
169         src.ptr=NULL;
170         return *this;
171     }
172     /**
173      * Swap pointers.
174      * @param other other smart pointer
175      */
swap(LocalMemory<T> & other)176     void swap(LocalMemory<T> &other) U_NOEXCEPT {
177         T *temp=LocalPointerBase<T>::ptr;
178         LocalPointerBase<T>::ptr=other.ptr;
179         other.ptr=temp;
180     }
181     /**
182      * Non-member LocalMemory swap function.
183      * @param p1 will get p2's pointer
184      * @param p2 will get p1's pointer
185      */
swap(LocalMemory<T> & p1,LocalMemory<T> & p2)186     friend inline void swap(LocalMemory<T> &p1, LocalMemory<T> &p2) U_NOEXCEPT {
187         p1.swap(p2);
188     }
189     /**
190      * Deletes the array it owns,
191      * and adopts (takes ownership of) the one passed in.
192      * @param p simple pointer to an array of T items that is adopted
193      */
adoptInstead(T * p)194     void adoptInstead(T *p) {
195         uprv_free(LocalPointerBase<T>::ptr);
196         LocalPointerBase<T>::ptr=p;
197     }
198     /**
199      * Deletes the array it owns, allocates a new one and reset its bytes to 0.
200      * Returns the new array pointer.
201      * If the allocation fails, then the current array is unchanged and
202      * this method returns NULL.
203      * @param newCapacity must be >0
204      * @return the allocated array pointer, or NULL if the allocation failed
205      */
206     inline T *allocateInsteadAndReset(int32_t newCapacity=1);
207     /**
208      * Deletes the array it owns and allocates a new one, copying length T items.
209      * Returns the new array pointer.
210      * If the allocation fails, then the current array is unchanged and
211      * this method returns NULL.
212      * @param newCapacity must be >0
213      * @param length number of T items to be copied from the old array to the new one;
214      *               must be no more than the capacity of the old array,
215      *               which the caller must track because the LocalMemory does not track it
216      * @return the allocated array pointer, or NULL if the allocation failed
217      */
218     inline T *allocateInsteadAndCopy(int32_t newCapacity=1, int32_t length=0);
219     /**
220      * Array item access (writable).
221      * No index bounds check.
222      * @param i array index
223      * @return reference to the array item
224      */
225     T &operator[](ptrdiff_t i) const { return LocalPointerBase<T>::ptr[i]; }
226 };
227 
228 template<typename T>
allocateInsteadAndReset(int32_t newCapacity)229 inline T *LocalMemory<T>::allocateInsteadAndReset(int32_t newCapacity) {
230     if(newCapacity>0) {
231         T *p=(T *)uprv_malloc(newCapacity*sizeof(T));
232         if(p!=NULL) {
233             uprv_memset(p, 0, newCapacity*sizeof(T));
234             uprv_free(LocalPointerBase<T>::ptr);
235             LocalPointerBase<T>::ptr=p;
236         }
237         return p;
238     } else {
239         return NULL;
240     }
241 }
242 
243 
244 template<typename T>
allocateInsteadAndCopy(int32_t newCapacity,int32_t length)245 inline T *LocalMemory<T>::allocateInsteadAndCopy(int32_t newCapacity, int32_t length) {
246     if(newCapacity>0) {
247         T *p=(T *)uprv_malloc(newCapacity*sizeof(T));
248         if(p!=NULL) {
249             if(length>0) {
250                 if(length>newCapacity) {
251                     length=newCapacity;
252                 }
253                 uprv_memcpy(p, LocalPointerBase<T>::ptr, (size_t)length*sizeof(T));
254             }
255             uprv_free(LocalPointerBase<T>::ptr);
256             LocalPointerBase<T>::ptr=p;
257         }
258         return p;
259     } else {
260         return NULL;
261     }
262 }
263 
264 /**
265  * Simple array/buffer management class using uprv_malloc() and uprv_free().
266  * Provides an internal array with fixed capacity. Can alias another array
267  * or allocate one.
268  *
269  * The array address is properly aligned for type T. It might not be properly
270  * aligned for types larger than T (or larger than the largest subtype of T).
271  *
272  * Unlike LocalMemory and LocalArray, this class never adopts
273  * (takes ownership of) another array.
274  *
275  * WARNING: MaybeStackArray only works with primitive (plain-old data) types.
276  * It does NOT know how to call a destructor! If you work with classes with
277  * destructors, consider:
278  *
279  * - LocalArray in localpointer.h if you know the length ahead of time
280  * - MaybeStackVector if you know the length at runtime
281  */
282 template<typename T, int32_t stackCapacity>
283 class MaybeStackArray {
284 public:
285     // No heap allocation. Use only on the stack.
286     static void* U_EXPORT2 operator new(size_t) U_NOEXCEPT = delete;
287     static void* U_EXPORT2 operator new[](size_t) U_NOEXCEPT = delete;
288 #if U_HAVE_PLACEMENT_NEW
289     static void* U_EXPORT2 operator new(size_t, void*) U_NOEXCEPT = delete;
290 #endif
291 
292     /**
293      * Default constructor initializes with internal T[stackCapacity] buffer.
294      */
MaybeStackArray()295     MaybeStackArray() : ptr(stackArray), capacity(stackCapacity), needToRelease(FALSE) {}
296     /**
297      * Automatically allocates the heap array if the argument is larger than the stack capacity.
298      * Intended for use when an approximate capacity is known at compile time but the true
299      * capacity is not known until runtime.
300      */
MaybeStackArray(int32_t newCapacity)301     MaybeStackArray(int32_t newCapacity) : MaybeStackArray() {
302         if (capacity < newCapacity) { resize(newCapacity); }
303     }
304     /**
305      * Destructor deletes the array (if owned).
306      */
~MaybeStackArray()307     ~MaybeStackArray() { releaseArray(); }
308     /**
309      * Move constructor: transfers ownership or copies the stack array.
310      */
311     MaybeStackArray(MaybeStackArray<T, stackCapacity> &&src) U_NOEXCEPT;
312     /**
313      * Move assignment: transfers ownership or copies the stack array.
314      */
315     MaybeStackArray<T, stackCapacity> &operator=(MaybeStackArray<T, stackCapacity> &&src) U_NOEXCEPT;
316     /**
317      * Returns the array capacity (number of T items).
318      * @return array capacity
319      */
getCapacity()320     int32_t getCapacity() const { return capacity; }
321     /**
322      * Access without ownership change.
323      * @return the array pointer
324      */
getAlias()325     T *getAlias() const { return ptr; }
326     /**
327      * Returns the array limit. Simple convenience method.
328      * @return getAlias()+getCapacity()
329      */
getArrayLimit()330     T *getArrayLimit() const { return getAlias()+capacity; }
331     // No "operator T *() const" because that can make
332     // expressions like mbs[index] ambiguous for some compilers.
333     /**
334      * Array item access (const).
335      * No index bounds check.
336      * @param i array index
337      * @return reference to the array item
338      */
339     const T &operator[](ptrdiff_t i) const { return ptr[i]; }
340     /**
341      * Array item access (writable).
342      * No index bounds check.
343      * @param i array index
344      * @return reference to the array item
345      */
346     T &operator[](ptrdiff_t i) { return ptr[i]; }
347     /**
348      * Deletes the array (if owned) and aliases another one, no transfer of ownership.
349      * If the arguments are illegal, then the current array is unchanged.
350      * @param otherArray must not be NULL
351      * @param otherCapacity must be >0
352      */
aliasInstead(T * otherArray,int32_t otherCapacity)353     void aliasInstead(T *otherArray, int32_t otherCapacity) {
354         if(otherArray!=NULL && otherCapacity>0) {
355             releaseArray();
356             ptr=otherArray;
357             capacity=otherCapacity;
358             needToRelease=FALSE;
359         }
360     }
361     /**
362      * Deletes the array (if owned) and allocates a new one, copying length T items.
363      * Returns the new array pointer.
364      * If the allocation fails, then the current array is unchanged and
365      * this method returns NULL.
366      * @param newCapacity can be less than or greater than the current capacity;
367      *                    must be >0
368      * @param length number of T items to be copied from the old array to the new one
369      * @return the allocated array pointer, or NULL if the allocation failed
370      */
371     inline T *resize(int32_t newCapacity, int32_t length=0);
372     /**
373      * Gives up ownership of the array if owned, or else clones it,
374      * copying length T items; resets itself to the internal stack array.
375      * Returns NULL if the allocation failed.
376      * @param length number of T items to copy when cloning,
377      *        and capacity of the clone when cloning
378      * @param resultCapacity will be set to the returned array's capacity (output-only)
379      * @return the array pointer;
380      *         caller becomes responsible for deleting the array
381      */
382     inline T *orphanOrClone(int32_t length, int32_t &resultCapacity);
383 private:
384     T *ptr;
385     int32_t capacity;
386     UBool needToRelease;
387     T stackArray[stackCapacity];
releaseArray()388     void releaseArray() {
389         if(needToRelease) {
390             uprv_free(ptr);
391         }
392     }
resetToStackArray()393     void resetToStackArray() {
394         ptr=stackArray;
395         capacity=stackCapacity;
396         needToRelease=FALSE;
397     }
398     /* No comparison operators with other MaybeStackArray's. */
399     bool operator==(const MaybeStackArray & /*other*/) {return FALSE;}
400     bool operator!=(const MaybeStackArray & /*other*/) {return TRUE;}
401     /* No ownership transfer: No copy constructor, no assignment operator. */
MaybeStackArray(const MaybeStackArray &)402     MaybeStackArray(const MaybeStackArray & /*other*/) {}
403     void operator=(const MaybeStackArray & /*other*/) {}
404 };
405 
406 template<typename T, int32_t stackCapacity>
MaybeStackArray(MaybeStackArray<T,stackCapacity> && src)407 icu::MaybeStackArray<T, stackCapacity>::MaybeStackArray(
408         MaybeStackArray <T, stackCapacity>&& src) U_NOEXCEPT
409         : ptr(src.ptr), capacity(src.capacity), needToRelease(src.needToRelease) {
410     if (src.ptr == src.stackArray) {
411         ptr = stackArray;
412         uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity);
413     } else {
414         src.resetToStackArray();  // take ownership away from src
415     }
416 }
417 
418 template<typename T, int32_t stackCapacity>
419 inline MaybeStackArray <T, stackCapacity>&
420 MaybeStackArray<T, stackCapacity>::operator=(MaybeStackArray <T, stackCapacity>&& src) U_NOEXCEPT {
421     releaseArray();  // in case this instance had its own memory allocated
422     capacity = src.capacity;
423     needToRelease = src.needToRelease;
424     if (src.ptr == src.stackArray) {
425         ptr = stackArray;
426         uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity);
427     } else {
428         ptr = src.ptr;
429         src.resetToStackArray();  // take ownership away from src
430     }
431     return *this;
432 }
433 
434 template<typename T, int32_t stackCapacity>
resize(int32_t newCapacity,int32_t length)435 inline T *MaybeStackArray<T, stackCapacity>::resize(int32_t newCapacity, int32_t length) {
436     if(newCapacity>0) {
437 #if U_DEBUG && defined(UPRV_MALLOC_COUNT)
438       ::fprintf(::stderr,"MaybeStacArray (resize) alloc %d * %lu\n", newCapacity,sizeof(T));
439 #endif
440         T *p=(T *)uprv_malloc(newCapacity*sizeof(T));
441         if(p!=NULL) {
442             if(length>0) {
443                 if(length>capacity) {
444                     length=capacity;
445                 }
446                 if(length>newCapacity) {
447                     length=newCapacity;
448                 }
449                 uprv_memcpy(p, ptr, (size_t)length*sizeof(T));
450             }
451             releaseArray();
452             ptr=p;
453             capacity=newCapacity;
454             needToRelease=TRUE;
455         }
456         return p;
457     } else {
458         return NULL;
459     }
460 }
461 
462 template<typename T, int32_t stackCapacity>
orphanOrClone(int32_t length,int32_t & resultCapacity)463 inline T *MaybeStackArray<T, stackCapacity>::orphanOrClone(int32_t length, int32_t &resultCapacity) {
464     T *p;
465     if(needToRelease) {
466         p=ptr;
467     } else if(length<=0) {
468         return NULL;
469     } else {
470         if(length>capacity) {
471             length=capacity;
472         }
473         p=(T *)uprv_malloc(length*sizeof(T));
474 #if U_DEBUG && defined(UPRV_MALLOC_COUNT)
475       ::fprintf(::stderr,"MaybeStacArray (orphan) alloc %d * %lu\n", length,sizeof(T));
476 #endif
477         if(p==NULL) {
478             return NULL;
479         }
480         uprv_memcpy(p, ptr, (size_t)length*sizeof(T));
481     }
482     resultCapacity=length;
483     resetToStackArray();
484     return p;
485 }
486 
487 /**
488  * Variant of MaybeStackArray that allocates a header struct and an array
489  * in one contiguous memory block, using uprv_malloc() and uprv_free().
490  * Provides internal memory with fixed array capacity. Can alias another memory
491  * block or allocate one.
492  * The stackCapacity is the number of T items in the internal memory,
493  * not counting the H header.
494  * Unlike LocalMemory and LocalArray, this class never adopts
495  * (takes ownership of) another memory block.
496  */
497 template<typename H, typename T, int32_t stackCapacity>
498 class MaybeStackHeaderAndArray {
499 public:
500     // No heap allocation. Use only on the stack.
501     static void* U_EXPORT2 operator new(size_t) U_NOEXCEPT = delete;
502     static void* U_EXPORT2 operator new[](size_t) U_NOEXCEPT = delete;
503 #if U_HAVE_PLACEMENT_NEW
504     static void* U_EXPORT2 operator new(size_t, void*) U_NOEXCEPT = delete;
505 #endif
506 
507     /**
508      * Default constructor initializes with internal H+T[stackCapacity] buffer.
509      */
MaybeStackHeaderAndArray()510     MaybeStackHeaderAndArray() : ptr(&stackHeader), capacity(stackCapacity), needToRelease(FALSE) {}
511     /**
512      * Destructor deletes the memory (if owned).
513      */
~MaybeStackHeaderAndArray()514     ~MaybeStackHeaderAndArray() { releaseMemory(); }
515     /**
516      * Returns the array capacity (number of T items).
517      * @return array capacity
518      */
getCapacity()519     int32_t getCapacity() const { return capacity; }
520     /**
521      * Access without ownership change.
522      * @return the header pointer
523      */
getAlias()524     H *getAlias() const { return ptr; }
525     /**
526      * Returns the array start.
527      * @return array start, same address as getAlias()+1
528      */
getArrayStart()529     T *getArrayStart() const { return reinterpret_cast<T *>(getAlias()+1); }
530     /**
531      * Returns the array limit.
532      * @return array limit
533      */
getArrayLimit()534     T *getArrayLimit() const { return getArrayStart()+capacity; }
535     /**
536      * Access without ownership change. Same as getAlias().
537      * A class instance can be used directly in expressions that take a T *.
538      * @return the header pointer
539      */
540     operator H *() const { return ptr; }
541     /**
542      * Array item access (writable).
543      * No index bounds check.
544      * @param i array index
545      * @return reference to the array item
546      */
547     T &operator[](ptrdiff_t i) { return getArrayStart()[i]; }
548     /**
549      * Deletes the memory block (if owned) and aliases another one, no transfer of ownership.
550      * If the arguments are illegal, then the current memory is unchanged.
551      * @param otherArray must not be NULL
552      * @param otherCapacity must be >0
553      */
aliasInstead(H * otherMemory,int32_t otherCapacity)554     void aliasInstead(H *otherMemory, int32_t otherCapacity) {
555         if(otherMemory!=NULL && otherCapacity>0) {
556             releaseMemory();
557             ptr=otherMemory;
558             capacity=otherCapacity;
559             needToRelease=FALSE;
560         }
561     }
562     /**
563      * Deletes the memory block (if owned) and allocates a new one,
564      * copying the header and length T array items.
565      * Returns the new header pointer.
566      * If the allocation fails, then the current memory is unchanged and
567      * this method returns NULL.
568      * @param newCapacity can be less than or greater than the current capacity;
569      *                    must be >0
570      * @param length number of T items to be copied from the old array to the new one
571      * @return the allocated pointer, or NULL if the allocation failed
572      */
573     inline H *resize(int32_t newCapacity, int32_t length=0);
574     /**
575      * Gives up ownership of the memory if owned, or else clones it,
576      * copying the header and length T array items; resets itself to the internal memory.
577      * Returns NULL if the allocation failed.
578      * @param length number of T items to copy when cloning,
579      *        and array capacity of the clone when cloning
580      * @param resultCapacity will be set to the returned array's capacity (output-only)
581      * @return the header pointer;
582      *         caller becomes responsible for deleting the array
583      */
584     inline H *orphanOrClone(int32_t length, int32_t &resultCapacity);
585 private:
586     H *ptr;
587     int32_t capacity;
588     UBool needToRelease;
589     // stackHeader must precede stackArray immediately.
590     H stackHeader;
591     T stackArray[stackCapacity];
releaseMemory()592     void releaseMemory() {
593         if(needToRelease) {
594             uprv_free(ptr);
595         }
596     }
597     /* No comparison operators with other MaybeStackHeaderAndArray's. */
598     bool operator==(const MaybeStackHeaderAndArray & /*other*/) {return FALSE;}
599     bool operator!=(const MaybeStackHeaderAndArray & /*other*/) {return TRUE;}
600     /* No ownership transfer: No copy constructor, no assignment operator. */
MaybeStackHeaderAndArray(const MaybeStackHeaderAndArray &)601     MaybeStackHeaderAndArray(const MaybeStackHeaderAndArray & /*other*/) {}
602     void operator=(const MaybeStackHeaderAndArray & /*other*/) {}
603 };
604 
605 template<typename H, typename T, int32_t stackCapacity>
resize(int32_t newCapacity,int32_t length)606 inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::resize(int32_t newCapacity,
607                                                                 int32_t length) {
608     if(newCapacity>=0) {
609 #if U_DEBUG && defined(UPRV_MALLOC_COUNT)
610       ::fprintf(::stderr,"MaybeStackHeaderAndArray alloc %d + %d * %ul\n", sizeof(H),newCapacity,sizeof(T));
611 #endif
612         H *p=(H *)uprv_malloc(sizeof(H)+newCapacity*sizeof(T));
613         if(p!=NULL) {
614             if(length<0) {
615                 length=0;
616             } else if(length>0) {
617                 if(length>capacity) {
618                     length=capacity;
619                 }
620                 if(length>newCapacity) {
621                     length=newCapacity;
622                 }
623             }
624             uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T));
625             releaseMemory();
626             ptr=p;
627             capacity=newCapacity;
628             needToRelease=TRUE;
629         }
630         return p;
631     } else {
632         return NULL;
633     }
634 }
635 
636 template<typename H, typename T, int32_t stackCapacity>
orphanOrClone(int32_t length,int32_t & resultCapacity)637 inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::orphanOrClone(int32_t length,
638                                                                        int32_t &resultCapacity) {
639     H *p;
640     if(needToRelease) {
641         p=ptr;
642     } else {
643         if(length<0) {
644             length=0;
645         } else if(length>capacity) {
646             length=capacity;
647         }
648 #if U_DEBUG && defined(UPRV_MALLOC_COUNT)
649       ::fprintf(::stderr,"MaybeStackHeaderAndArray (orphan) alloc %ul + %d * %lu\n", sizeof(H),length,sizeof(T));
650 #endif
651         p=(H *)uprv_malloc(sizeof(H)+length*sizeof(T));
652         if(p==NULL) {
653             return NULL;
654         }
655         uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T));
656     }
657     resultCapacity=length;
658     ptr=&stackHeader;
659     capacity=stackCapacity;
660     needToRelease=FALSE;
661     return p;
662 }
663 
664 /**
665  * A simple memory management class that creates new heap allocated objects (of
666  * any class that has a public constructor), keeps track of them and eventually
667  * deletes them all in its own destructor.
668  *
669  * A typical use-case would be code like this:
670  *
671  *     MemoryPool<MyType> pool;
672  *
673  *     MyType* o1 = pool.create();
674  *     if (o1 != nullptr) {
675  *         foo(o1);
676  *     }
677  *
678  *     MyType* o2 = pool.create(1, 2, 3);
679  *     if (o2 != nullptr) {
680  *         bar(o2);
681  *     }
682  *
683  *     // MemoryPool will take care of deleting the MyType objects.
684  *
685  * It doesn't do anything more than that, and is intentionally kept minimalist.
686  */
687 template<typename T, int32_t stackCapacity = 8>
688 class MemoryPool : public UMemory {
689 public:
MemoryPool()690     MemoryPool() : fCount(0), fPool() {}
691 
~MemoryPool()692     ~MemoryPool() {
693         for (int32_t i = 0; i < fCount; ++i) {
694             delete fPool[i];
695         }
696     }
697 
698     MemoryPool(const MemoryPool&) = delete;
699     MemoryPool& operator=(const MemoryPool&) = delete;
700 
MemoryPool(MemoryPool && other)701     MemoryPool(MemoryPool&& other) U_NOEXCEPT : fCount(other.fCount),
702                                                 fPool(std::move(other.fPool)) {
703         other.fCount = 0;
704     }
705 
706     MemoryPool& operator=(MemoryPool&& other) U_NOEXCEPT {
707         fCount = other.fCount;
708         fPool = std::move(other.fPool);
709         other.fCount = 0;
710         return *this;
711     }
712 
713     /**
714      * Creates a new object of typename T, by forwarding any and all arguments
715      * to the typename T constructor.
716      *
717      * @param args Arguments to be forwarded to the typename T constructor.
718      * @return A pointer to the newly created object, or nullptr on error.
719      */
720     template<typename... Args>
create(Args &&...args)721     T* create(Args&&... args) {
722         int32_t capacity = fPool.getCapacity();
723         if (fCount == capacity &&
724             fPool.resize(capacity == stackCapacity ? 4 * capacity : 2 * capacity,
725                          capacity) == nullptr) {
726             return nullptr;
727         }
728         return fPool[fCount++] = new T(std::forward<Args>(args)...);
729     }
730 
731     /**
732      * @return Number of elements that have been allocated.
733      */
count()734     int32_t count() const {
735         return fCount;
736     }
737 
738 protected:
739     int32_t fCount;
740     MaybeStackArray<T*, stackCapacity> fPool;
741 };
742 
743 /**
744  * An internal Vector-like implementation based on MemoryPool.
745  *
746  * Heap-allocates each element and stores pointers.
747  *
748  * To append an item to the vector, use emplaceBack.
749  *
750  *     MaybeStackVector<MyType> vector;
751  *     MyType* element = vector.emplaceBack();
752  *     if (!element) {
753  *         status = U_MEMORY_ALLOCATION_ERROR;
754  *     }
755  *     // do stuff with element
756  *
757  * To loop over the vector, use a for loop with indices:
758  *
759  *     for (int32_t i = 0; i < vector.length(); i++) {
760  *         MyType* element = vector[i];
761  *     }
762  */
763 template<typename T, int32_t stackCapacity = 8>
764 class MaybeStackVector : protected MemoryPool<T, stackCapacity> {
765 public:
766     using MemoryPool<T, stackCapacity>::MemoryPool;
767     using MemoryPool<T, stackCapacity>::operator=;
768 
769     template<typename... Args>
emplaceBack(Args &&...args)770     T* emplaceBack(Args&&... args) {
771         return this->create(args...);
772     }
773 
length()774     int32_t length() const {
775         return this->fCount;
776     }
777 
getAlias()778     T** getAlias() {
779         return this->fPool.getAlias();
780     }
781 
782     /**
783      * Array item access (read-only).
784      * No index bounds check.
785      * @param i array index
786      * @return reference to the array item
787      */
788     const T* operator[](ptrdiff_t i) const {
789         return this->fPool[i];
790     }
791 
792     /**
793      * Array item access (writable).
794      * No index bounds check.
795      * @param i array index
796      * @return reference to the array item
797      */
798     T* operator[](ptrdiff_t i) {
799         return this->fPool[i];
800     }
801 
802     /**
803      * Append all the items from another MaybeStackVector to this one.
804      */
appendAll(const MaybeStackVector & other,UErrorCode & status)805     void appendAll(const MaybeStackVector& other, UErrorCode& status) {
806         for (int32_t i = 0; i < other.fCount; i++) {
807             T* item = emplaceBack(*other[i]);
808             if (!item) {
809                 status = U_MEMORY_ALLOCATION_ERROR;
810                 return;
811             }
812         }
813     }
814 };
815 
816 
817 U_NAMESPACE_END
818 
819 #endif  /* __cplusplus */
820 #endif  /* CMEMORY_H */
821