1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <climits>
29 #include <locale>
30 #include <cmath>
31 
32 #include "string-to-double.h"
33 
34 #include "ieee.h"
35 #include "strtod.h"
36 #include "utils.h"
37 
38 namespace double_conversion {
39 
40 namespace {
41 
ToLower(char ch)42 inline char ToLower(char ch) {
43   static const std::ctype<char>& cType =
44       std::use_facet<std::ctype<char> >(std::locale::classic());
45   return cType.tolower(ch);
46 }
47 
Pass(char ch)48 inline char Pass(char ch) {
49   return ch;
50 }
51 
52 template <class Iterator, class Converter>
ConsumeSubStringImpl(Iterator * current,Iterator end,const char * substring,Converter converter)53 static inline bool ConsumeSubStringImpl(Iterator* current,
54                                         Iterator end,
55                                         const char* substring,
56                                         Converter converter) {
57   DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring);
58   for (substring++; *substring != '\0'; substring++) {
59     ++*current;
60     if (*current == end || converter(**current) != *substring) {
61       return false;
62     }
63   }
64   ++*current;
65   return true;
66 }
67 
68 // Consumes the given substring from the iterator.
69 // Returns false, if the substring does not match.
70 template <class Iterator>
ConsumeSubString(Iterator * current,Iterator end,const char * substring,bool allow_case_insensitivity)71 static bool ConsumeSubString(Iterator* current,
72                              Iterator end,
73                              const char* substring,
74                              bool allow_case_insensitivity) {
75   if (allow_case_insensitivity) {
76     return ConsumeSubStringImpl(current, end, substring, ToLower);
77   } else {
78     return ConsumeSubStringImpl(current, end, substring, Pass);
79   }
80 }
81 
82 // Consumes first character of the str is equal to ch
ConsumeFirstCharacter(char ch,const char * str,bool case_insensitivity)83 inline bool ConsumeFirstCharacter(char ch,
84                                          const char* str,
85                                          bool case_insensitivity) {
86   return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0];
87 }
88 }  // namespace
89 
90 // Maximum number of significant digits in decimal representation.
91 // The longest possible double in decimal representation is
92 // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
93 // (768 digits). If we parse a number whose first digits are equal to a
94 // mean of 2 adjacent doubles (that could have up to 769 digits) the result
95 // must be rounded to the bigger one unless the tail consists of zeros, so
96 // we don't need to preserve all the digits.
97 const int kMaxSignificantDigits = 772;
98 
99 
100 static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
101 static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7);
102 
103 
104 static const uc16 kWhitespaceTable16[] = {
105   160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
106   8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
107 };
108 static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16);
109 
110 
isWhitespace(int x)111 static bool isWhitespace(int x) {
112   if (x < 128) {
113     for (int i = 0; i < kWhitespaceTable7Length; i++) {
114       if (kWhitespaceTable7[i] == x) return true;
115     }
116   } else {
117     for (int i = 0; i < kWhitespaceTable16Length; i++) {
118       if (kWhitespaceTable16[i] == x) return true;
119     }
120   }
121   return false;
122 }
123 
124 
125 // Returns true if a nonspace found and false if the end has reached.
126 template <class Iterator>
AdvanceToNonspace(Iterator * current,Iterator end)127 static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
128   while (*current != end) {
129     if (!isWhitespace(**current)) return true;
130     ++*current;
131   }
132   return false;
133 }
134 
135 
isDigit(int x,int radix)136 static bool isDigit(int x, int radix) {
137   return (x >= '0' && x <= '9' && x < '0' + radix)
138       || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
139       || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
140 }
141 
142 
SignedZero(bool sign)143 static double SignedZero(bool sign) {
144   return sign ? -0.0 : 0.0;
145 }
146 
147 
148 // Returns true if 'c' is a decimal digit that is valid for the given radix.
149 //
150 // The function is small and could be inlined, but VS2012 emitted a warning
151 // because it constant-propagated the radix and concluded that the last
152 // condition was always true. By moving it into a separate function the
153 // compiler wouldn't warn anymore.
154 #ifdef _MSC_VER
155 #pragma optimize("",off)
IsDecimalDigitForRadix(int c,int radix)156 static bool IsDecimalDigitForRadix(int c, int radix) {
157   return '0' <= c && c <= '9' && (c - '0') < radix;
158 }
159 #pragma optimize("",on)
160 #else
IsDecimalDigitForRadix(int c,int radix)161 static bool inline IsDecimalDigitForRadix(int c, int radix) {
162   return '0' <= c && c <= '9' && (c - '0') < radix;
163 }
164 #endif
165 // Returns true if 'c' is a character digit that is valid for the given radix.
166 // The 'a_character' should be 'a' or 'A'.
167 //
168 // The function is small and could be inlined, but VS2012 emitted a warning
169 // because it constant-propagated the radix and concluded that the first
170 // condition was always false. By moving it into a separate function the
171 // compiler wouldn't warn anymore.
IsCharacterDigitForRadix(int c,int radix,char a_character)172 static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
173   return radix > 10 && c >= a_character && c < a_character + radix - 10;
174 }
175 
176 // Returns true, when the iterator is equal to end.
177 template<class Iterator>
Advance(Iterator * it,uc16 separator,int base,Iterator & end)178 static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) {
179   if (separator == StringToDoubleConverter::kNoSeparator) {
180     ++(*it);
181     return *it == end;
182   }
183   if (!isDigit(**it, base)) {
184     ++(*it);
185     return *it == end;
186   }
187   ++(*it);
188   if (*it == end) return true;
189   if (*it + 1 == end) return false;
190   if (**it == separator && isDigit(*(*it + 1), base)) {
191     ++(*it);
192   }
193   return *it == end;
194 }
195 
196 // Checks whether the string in the range start-end is a hex-float string.
197 // This function assumes that the leading '0x'/'0X' is already consumed.
198 //
199 // Hex float strings are of one of the following forms:
200 //   - hex_digits+ 'p' ('+'|'-')? exponent_digits+
201 //   - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+
202 //   - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+
203 template<class Iterator>
IsHexFloatString(Iterator start,Iterator end,uc16 separator,bool allow_trailing_junk)204 static bool IsHexFloatString(Iterator start,
205                              Iterator end,
206                              uc16 separator,
207                              bool allow_trailing_junk) {
208   DOUBLE_CONVERSION_ASSERT(start != end);
209 
210   Iterator current = start;
211 
212   bool saw_digit = false;
213   while (isDigit(*current, 16)) {
214     saw_digit = true;
215     if (Advance(&current, separator, 16, end)) return false;
216   }
217   if (*current == '.') {
218     if (Advance(&current, separator, 16, end)) return false;
219     while (isDigit(*current, 16)) {
220       saw_digit = true;
221       if (Advance(&current, separator, 16, end)) return false;
222     }
223   }
224   if (!saw_digit) return false;
225   if (*current != 'p' && *current != 'P') return false;
226   if (Advance(&current, separator, 16, end)) return false;
227   if (*current == '+' || *current == '-') {
228     if (Advance(&current, separator, 16, end)) return false;
229   }
230   if (!isDigit(*current, 10)) return false;
231   if (Advance(&current, separator, 16, end)) return true;
232   while (isDigit(*current, 10)) {
233     if (Advance(&current, separator, 16, end)) return true;
234   }
235   return allow_trailing_junk || !AdvanceToNonspace(&current, end);
236 }
237 
238 
239 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
240 //
241 // If parse_as_hex_float is true, then the string must be a valid
242 // hex-float.
243 template <int radix_log_2, class Iterator>
RadixStringToIeee(Iterator * current,Iterator end,bool sign,uc16 separator,bool parse_as_hex_float,bool allow_trailing_junk,double junk_string_value,bool read_as_double,bool * result_is_junk)244 static double RadixStringToIeee(Iterator* current,
245                                 Iterator end,
246                                 bool sign,
247                                 uc16 separator,
248                                 bool parse_as_hex_float,
249                                 bool allow_trailing_junk,
250                                 double junk_string_value,
251                                 bool read_as_double,
252                                 bool* result_is_junk) {
253   DOUBLE_CONVERSION_ASSERT(*current != end);
254   DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float ||
255       IsHexFloatString(*current, end, separator, allow_trailing_junk));
256 
257   const int kDoubleSize = Double::kSignificandSize;
258   const int kSingleSize = Single::kSignificandSize;
259   const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
260 
261   *result_is_junk = true;
262 
263   int64_t number = 0;
264   int exponent = 0;
265   const int radix = (1 << radix_log_2);
266   // Whether we have encountered a '.' and are parsing the decimal digits.
267   // Only relevant if parse_as_hex_float is true.
268   bool post_decimal = false;
269 
270   // Skip leading 0s.
271   while (**current == '0') {
272     if (Advance(current, separator, radix, end)) {
273       *result_is_junk = false;
274       return SignedZero(sign);
275     }
276   }
277 
278   while (true) {
279     int digit;
280     if (IsDecimalDigitForRadix(**current, radix)) {
281       digit = static_cast<char>(**current) - '0';
282       if (post_decimal) exponent -= radix_log_2;
283     } else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
284       digit = static_cast<char>(**current) - 'a' + 10;
285       if (post_decimal) exponent -= radix_log_2;
286     } else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
287       digit = static_cast<char>(**current) - 'A' + 10;
288       if (post_decimal) exponent -= radix_log_2;
289     } else if (parse_as_hex_float && **current == '.') {
290       post_decimal = true;
291       Advance(current, separator, radix, end);
292       DOUBLE_CONVERSION_ASSERT(*current != end);
293       continue;
294     } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) {
295       break;
296     } else {
297       if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
298         break;
299       } else {
300         return junk_string_value;
301       }
302     }
303 
304     number = number * radix + digit;
305     int overflow = static_cast<int>(number >> kSignificandSize);
306     if (overflow != 0) {
307       // Overflow occurred. Need to determine which direction to round the
308       // result.
309       int overflow_bits_count = 1;
310       while (overflow > 1) {
311         overflow_bits_count++;
312         overflow >>= 1;
313       }
314 
315       int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
316       int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
317       number >>= overflow_bits_count;
318       exponent += overflow_bits_count;
319 
320       bool zero_tail = true;
321       for (;;) {
322         if (Advance(current, separator, radix, end)) break;
323         if (parse_as_hex_float && **current == '.') {
324           // Just run over the '.'. We are just trying to see whether there is
325           // a non-zero digit somewhere.
326           Advance(current, separator, radix, end);
327           DOUBLE_CONVERSION_ASSERT(*current != end);
328           post_decimal = true;
329         }
330         if (!isDigit(**current, radix)) break;
331         zero_tail = zero_tail && **current == '0';
332         if (!post_decimal) exponent += radix_log_2;
333       }
334 
335       if (!parse_as_hex_float &&
336           !allow_trailing_junk &&
337           AdvanceToNonspace(current, end)) {
338         return junk_string_value;
339       }
340 
341       int middle_value = (1 << (overflow_bits_count - 1));
342       if (dropped_bits > middle_value) {
343         number++;  // Rounding up.
344       } else if (dropped_bits == middle_value) {
345         // Rounding to even to consistency with decimals: half-way case rounds
346         // up if significant part is odd and down otherwise.
347         if ((number & 1) != 0 || !zero_tail) {
348           number++;  // Rounding up.
349         }
350       }
351 
352       // Rounding up may cause overflow.
353       if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
354         exponent++;
355         number >>= 1;
356       }
357       break;
358     }
359     if (Advance(current, separator, radix, end)) break;
360   }
361 
362   DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize));
363   DOUBLE_CONVERSION_ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
364 
365   *result_is_junk = false;
366 
367   if (parse_as_hex_float) {
368     DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P');
369     Advance(current, separator, radix, end);
370     DOUBLE_CONVERSION_ASSERT(*current != end);
371     bool is_negative = false;
372     if (**current == '+') {
373       Advance(current, separator, radix, end);
374       DOUBLE_CONVERSION_ASSERT(*current != end);
375     } else if (**current == '-') {
376       is_negative = true;
377       Advance(current, separator, radix, end);
378       DOUBLE_CONVERSION_ASSERT(*current != end);
379     }
380     int written_exponent = 0;
381     while (IsDecimalDigitForRadix(**current, 10)) {
382       // No need to read exponents if they are too big. That could potentially overflow
383       // the `written_exponent` variable.
384       if (abs(written_exponent) <= 100 * Double::kMaxExponent) {
385         written_exponent = 10 * written_exponent + **current - '0';
386       }
387       if (Advance(current, separator, radix, end)) break;
388     }
389     if (is_negative) written_exponent = -written_exponent;
390     exponent += written_exponent;
391   }
392 
393   if (exponent == 0 || number == 0) {
394     if (sign) {
395       if (number == 0) return -0.0;
396       number = -number;
397     }
398     return static_cast<double>(number);
399   }
400 
401   DOUBLE_CONVERSION_ASSERT(number != 0);
402   double result = Double(DiyFp(number, exponent)).value();
403   return sign ? -result : result;
404 }
405 
406 template <class Iterator>
StringToIeee(Iterator input,int length,bool read_as_double,int * processed_characters_count) const407 double StringToDoubleConverter::StringToIeee(
408     Iterator input,
409     int length,
410     bool read_as_double,
411     int* processed_characters_count) const {
412   Iterator current = input;
413   Iterator end = input + length;
414 
415   *processed_characters_count = 0;
416 
417   const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
418   const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
419   const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
420   const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
421   const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0;
422 
423   // To make sure that iterator dereferencing is valid the following
424   // convention is used:
425   // 1. Each '++current' statement is followed by check for equality to 'end'.
426   // 2. If AdvanceToNonspace returned false then current == end.
427   // 3. If 'current' becomes equal to 'end' the function returns or goes to
428   // 'parsing_done'.
429   // 4. 'current' is not dereferenced after the 'parsing_done' label.
430   // 5. Code before 'parsing_done' may rely on 'current != end'.
431   if (current == end) return empty_string_value_;
432 
433   if (allow_leading_spaces || allow_trailing_spaces) {
434     if (!AdvanceToNonspace(&current, end)) {
435       *processed_characters_count = static_cast<int>(current - input);
436       return empty_string_value_;
437     }
438     if (!allow_leading_spaces && (input != current)) {
439       // No leading spaces allowed, but AdvanceToNonspace moved forward.
440       return junk_string_value_;
441     }
442   }
443 
444   // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
445   const int kBufferSize = kMaxSignificantDigits + 10;
446   char buffer[kBufferSize];  // NOLINT: size is known at compile time.
447   int buffer_pos = 0;
448 
449   // Exponent will be adjusted if insignificant digits of the integer part
450   // or insignificant leading zeros of the fractional part are dropped.
451   int exponent = 0;
452   int significant_digits = 0;
453   int insignificant_digits = 0;
454   bool nonzero_digit_dropped = false;
455 
456   bool sign = false;
457 
458   if (*current == '+' || *current == '-') {
459     sign = (*current == '-');
460     ++current;
461     Iterator next_non_space = current;
462     // Skip following spaces (if allowed).
463     if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
464     if (!allow_spaces_after_sign && (current != next_non_space)) {
465       return junk_string_value_;
466     }
467     current = next_non_space;
468   }
469 
470   if (infinity_symbol_ != NULL) {
471     if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) {
472       if (!ConsumeSubString(&current, end, infinity_symbol_, allow_case_insensitivity)) {
473         return junk_string_value_;
474       }
475 
476       if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
477         return junk_string_value_;
478       }
479       if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
480         return junk_string_value_;
481       }
482 
483       DOUBLE_CONVERSION_ASSERT(buffer_pos == 0);
484       *processed_characters_count = static_cast<int>(current - input);
485       return sign ? -Double::Infinity() : Double::Infinity();
486     }
487   }
488 
489   if (nan_symbol_ != NULL) {
490     if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) {
491       if (!ConsumeSubString(&current, end, nan_symbol_, allow_case_insensitivity)) {
492         return junk_string_value_;
493       }
494 
495       if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
496         return junk_string_value_;
497       }
498       if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
499         return junk_string_value_;
500       }
501 
502       DOUBLE_CONVERSION_ASSERT(buffer_pos == 0);
503       *processed_characters_count = static_cast<int>(current - input);
504       return sign ? -Double::NaN() : Double::NaN();
505     }
506   }
507 
508   bool leading_zero = false;
509   if (*current == '0') {
510     if (Advance(&current, separator_, 10, end)) {
511       *processed_characters_count = static_cast<int>(current - input);
512       return SignedZero(sign);
513     }
514 
515     leading_zero = true;
516 
517     // It could be hexadecimal value.
518     if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) &&
519         (*current == 'x' || *current == 'X')) {
520       ++current;
521 
522       if (current == end) return junk_string_value_;  // "0x"
523 
524       bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) &&
525                 IsHexFloatString(current, end, separator_, allow_trailing_junk);
526 
527       if (!parse_as_hex_float && !isDigit(*current, 16)) {
528         return junk_string_value_;
529       }
530 
531       bool result_is_junk;
532       double result = RadixStringToIeee<4>(&current,
533                                            end,
534                                            sign,
535                                            separator_,
536                                            parse_as_hex_float,
537                                            allow_trailing_junk,
538                                            junk_string_value_,
539                                            read_as_double,
540                                            &result_is_junk);
541       if (!result_is_junk) {
542         if (allow_trailing_spaces) AdvanceToNonspace(&current, end);
543         *processed_characters_count = static_cast<int>(current - input);
544       }
545       return result;
546     }
547 
548     // Ignore leading zeros in the integer part.
549     while (*current == '0') {
550       if (Advance(&current, separator_, 10, end)) {
551         *processed_characters_count = static_cast<int>(current - input);
552         return SignedZero(sign);
553       }
554     }
555   }
556 
557   bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
558 
559   // Copy significant digits of the integer part (if any) to the buffer.
560   while (*current >= '0' && *current <= '9') {
561     if (significant_digits < kMaxSignificantDigits) {
562       DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
563       buffer[buffer_pos++] = static_cast<char>(*current);
564       significant_digits++;
565       // Will later check if it's an octal in the buffer.
566     } else {
567       insignificant_digits++;  // Move the digit into the exponential part.
568       nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
569     }
570     octal = octal && *current < '8';
571     if (Advance(&current, separator_, 10, end)) goto parsing_done;
572   }
573 
574   if (significant_digits == 0) {
575     octal = false;
576   }
577 
578   if (*current == '.') {
579     if (octal && !allow_trailing_junk) return junk_string_value_;
580     if (octal) goto parsing_done;
581 
582     if (Advance(&current, separator_, 10, end)) {
583       if (significant_digits == 0 && !leading_zero) {
584         return junk_string_value_;
585       } else {
586         goto parsing_done;
587       }
588     }
589 
590     if (significant_digits == 0) {
591       // octal = false;
592       // Integer part consists of 0 or is absent. Significant digits start after
593       // leading zeros (if any).
594       while (*current == '0') {
595         if (Advance(&current, separator_, 10, end)) {
596           *processed_characters_count = static_cast<int>(current - input);
597           return SignedZero(sign);
598         }
599         exponent--;  // Move this 0 into the exponent.
600       }
601     }
602 
603     // There is a fractional part.
604     // We don't emit a '.', but adjust the exponent instead.
605     while (*current >= '0' && *current <= '9') {
606       if (significant_digits < kMaxSignificantDigits) {
607         DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
608         buffer[buffer_pos++] = static_cast<char>(*current);
609         significant_digits++;
610         exponent--;
611       } else {
612         // Ignore insignificant digits in the fractional part.
613         nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
614       }
615       if (Advance(&current, separator_, 10, end)) goto parsing_done;
616     }
617   }
618 
619   if (!leading_zero && exponent == 0 && significant_digits == 0) {
620     // If leading_zeros is true then the string contains zeros.
621     // If exponent < 0 then string was [+-]\.0*...
622     // If significant_digits != 0 the string is not equal to 0.
623     // Otherwise there are no digits in the string.
624     return junk_string_value_;
625   }
626 
627   // Parse exponential part.
628   if (*current == 'e' || *current == 'E') {
629     if (octal && !allow_trailing_junk) return junk_string_value_;
630     if (octal) goto parsing_done;
631     Iterator junk_begin = current;
632     ++current;
633     if (current == end) {
634       if (allow_trailing_junk) {
635         current = junk_begin;
636         goto parsing_done;
637       } else {
638         return junk_string_value_;
639       }
640     }
641     char exponen_sign = '+';
642     if (*current == '+' || *current == '-') {
643       exponen_sign = static_cast<char>(*current);
644       ++current;
645       if (current == end) {
646         if (allow_trailing_junk) {
647           current = junk_begin;
648           goto parsing_done;
649         } else {
650           return junk_string_value_;
651         }
652       }
653     }
654 
655     if (current == end || *current < '0' || *current > '9') {
656       if (allow_trailing_junk) {
657         current = junk_begin;
658         goto parsing_done;
659       } else {
660         return junk_string_value_;
661       }
662     }
663 
664     const int max_exponent = INT_MAX / 2;
665     DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
666     int num = 0;
667     do {
668       // Check overflow.
669       int digit = *current - '0';
670       if (num >= max_exponent / 10
671           && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
672         num = max_exponent;
673       } else {
674         num = num * 10 + digit;
675       }
676       ++current;
677     } while (current != end && *current >= '0' && *current <= '9');
678 
679     exponent += (exponen_sign == '-' ? -num : num);
680   }
681 
682   if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
683     return junk_string_value_;
684   }
685   if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
686     return junk_string_value_;
687   }
688   if (allow_trailing_spaces) {
689     AdvanceToNonspace(&current, end);
690   }
691 
692   parsing_done:
693   exponent += insignificant_digits;
694 
695   if (octal) {
696     double result;
697     bool result_is_junk;
698     char* start = buffer;
699     result = RadixStringToIeee<3>(&start,
700                                   buffer + buffer_pos,
701                                   sign,
702                                   separator_,
703                                   false, // Don't parse as hex_float.
704                                   allow_trailing_junk,
705                                   junk_string_value_,
706                                   read_as_double,
707                                   &result_is_junk);
708     DOUBLE_CONVERSION_ASSERT(!result_is_junk);
709     *processed_characters_count = static_cast<int>(current - input);
710     return result;
711   }
712 
713   if (nonzero_digit_dropped) {
714     buffer[buffer_pos++] = '1';
715     exponent--;
716   }
717 
718   DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
719   buffer[buffer_pos] = '\0';
720 
721   double converted;
722   if (read_as_double) {
723     converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
724   } else {
725     converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
726   }
727   *processed_characters_count = static_cast<int>(current - input);
728   return sign? -converted: converted;
729 }
730 
731 
StringToDouble(const char * buffer,int length,int * processed_characters_count) const732 double StringToDoubleConverter::StringToDouble(
733     const char* buffer,
734     int length,
735     int* processed_characters_count) const {
736   return StringToIeee(buffer, length, true, processed_characters_count);
737 }
738 
739 
StringToDouble(const uc16 * buffer,int length,int * processed_characters_count) const740 double StringToDoubleConverter::StringToDouble(
741     const uc16* buffer,
742     int length,
743     int* processed_characters_count) const {
744   return StringToIeee(buffer, length, true, processed_characters_count);
745 }
746 
747 
StringToFloat(const char * buffer,int length,int * processed_characters_count) const748 float StringToDoubleConverter::StringToFloat(
749     const char* buffer,
750     int length,
751     int* processed_characters_count) const {
752   return static_cast<float>(StringToIeee(buffer, length, false,
753                                          processed_characters_count));
754 }
755 
756 
StringToFloat(const uc16 * buffer,int length,int * processed_characters_count) const757 float StringToDoubleConverter::StringToFloat(
758     const uc16* buffer,
759     int length,
760     int* processed_characters_count) const {
761   return static_cast<float>(StringToIeee(buffer, length, false,
762                                          processed_characters_count));
763 }
764 
765 }  // namespace double_conversion
766