1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef DOUBLE_CONVERSION_UTILS_H_
29 #define DOUBLE_CONVERSION_UTILS_H_
30 
31 #include <cstdlib>
32 #include <cstring>
33 
34 #include "mozilla/Assertions.h"
35 #ifndef DOUBLE_CONVERSION_ASSERT
36 #define DOUBLE_CONVERSION_ASSERT(condition)         \
37     MOZ_ASSERT(condition)
38 #endif
39 #ifndef DOUBLE_CONVERSION_UNIMPLEMENTED
40 #define DOUBLE_CONVERSION_UNIMPLEMENTED() MOZ_CRASH()
41 #endif
42 #ifndef DOUBLE_CONVERSION_NO_RETURN
43 #ifdef _MSC_VER
44 #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn)
45 #else
46 #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn))
47 #endif
48 #endif
49 #ifndef DOUBLE_CONVERSION_UNREACHABLE
50 #ifdef _MSC_VER
51 void DOUBLE_CONVERSION_NO_RETURN abort_noreturn();
abort_noreturn()52 inline void abort_noreturn() { MOZ_CRASH(); }
53 #define DOUBLE_CONVERSION_UNREACHABLE()   (abort_noreturn())
54 #else
55 #define DOUBLE_CONVERSION_UNREACHABLE()   MOZ_CRASH()
56 #endif
57 #endif
58 
59 #ifndef DOUBLE_CONVERSION_UNUSED
60 #ifdef __GNUC__
61 #define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
62 #else
63 #define DOUBLE_CONVERSION_UNUSED
64 #endif
65 #endif
66 
67 // Double operations detection based on target architecture.
68 // Linux uses a 80bit wide floating point stack on x86. This induces double
69 // rounding, which in turn leads to wrong results.
70 // An easy way to test if the floating-point operations are correct is to
71 // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
72 // the result is equal to 89255e-22.
73 // The best way to test this, is to create a division-function and to compare
74 // the output of the division with the expected result. (Inlining must be
75 // disabled.)
76 // On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
77 //
78 // For example:
79 /*
80 // -- in div.c
81 double Div_double(double x, double y) { return x / y; }
82 
83 // -- in main.c
84 double Div_double(double x, double y);  // Forward declaration.
85 
86 int main(int argc, char** argv) {
87   return Div_double(89255.0, 1e22) == 89255e-22;
88 }
89 */
90 // Run as follows ./main || echo "correct"
91 //
92 // If it prints "correct" then the architecture should be here, in the "correct" section.
93 #if defined(_M_X64) || defined(__x86_64__) || \
94     defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
95     defined(__hppa__) || defined(__ia64__) || \
96     defined(__mips__) || \
97     defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
98     defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
99     defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
100     defined(__SH4__) || defined(__alpha__) || \
101     defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\
102     defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
103     defined(__riscv) || defined(__e2k__) || \
104     defined(__or1k__) || defined(__arc__) || \
105     defined(__EMSCRIPTEN__)
106 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
107 #elif defined(__mc68000__) || \
108     defined(__pnacl__) || defined(__native_client__)
109 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
110 #elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
111 #if defined(_WIN32)
112 // Windows uses a 64bit wide floating point stack.
113 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
114 #else
115 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
116 #endif  // _WIN32
117 #else
118 #error Target architecture was not detected as supported by Double-Conversion.
119 #endif
120 
121 #if defined(_WIN32) && !defined(__MINGW32__)
122 
123 typedef signed char int8_t;
124 typedef unsigned char uint8_t;
125 typedef short int16_t;  // NOLINT
126 typedef unsigned short uint16_t;  // NOLINT
127 typedef int int32_t;
128 typedef unsigned int uint32_t;
129 typedef __int64 int64_t;
130 typedef unsigned __int64 uint64_t;
131 // intptr_t and friends are defined in crtdefs.h through stdio.h.
132 
133 #else
134 
135 #include <stdint.h>
136 
137 #endif
138 
139 typedef uint16_t uc16;
140 
141 // The following macro works on both 32 and 64-bit platforms.
142 // Usage: instead of writing 0x1234567890123456
143 //      write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456);
144 #define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
145 
146 
147 // The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type
148 // size_t which represents the number of elements of the given
149 // array. You should only use DOUBLE_CONVERSION_ARRAY_SIZE on statically allocated
150 // arrays.
151 #ifndef DOUBLE_CONVERSION_ARRAY_SIZE
152 #define DOUBLE_CONVERSION_ARRAY_SIZE(a)                                   \
153   ((sizeof(a) / sizeof(*(a))) /                         \
154   static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
155 #endif
156 
157 // A macro to disallow the evil copy constructor and operator= functions
158 // This should be used in the private: declarations for a class
159 #ifndef DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN
160 #define DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)      \
161   TypeName(const TypeName&);                    \
162   void operator=(const TypeName&)
163 #endif
164 
165 // A macro to disallow all the implicit constructors, namely the
166 // default constructor, copy constructor and operator= functions.
167 //
168 // This should be used in the private: declarations for a class
169 // that wants to prevent anyone from instantiating it. This is
170 // especially useful for classes containing only static methods.
171 #ifndef DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS
172 #define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
173   TypeName();                                    \
174   DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)
175 #endif
176 
177 namespace double_conversion {
178 
StrLength(const char * string)179 inline int StrLength(const char* string) {
180   size_t length = strlen(string);
181   DOUBLE_CONVERSION_ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
182   return static_cast<int>(length);
183 }
184 
185 // This is a simplified version of V8's Vector class.
186 template <typename T>
187 class Vector {
188  public:
Vector()189   Vector() : start_(NULL), length_(0) {}
Vector(T * data,int len)190   Vector(T* data, int len) : start_(data), length_(len) {
191     DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != NULL));
192   }
193 
194   // Returns a vector using the same backing storage as this one,
195   // spanning from and including 'from', to but not including 'to'.
SubVector(int from,int to)196   Vector<T> SubVector(int from, int to) {
197     DOUBLE_CONVERSION_ASSERT(to <= length_);
198     DOUBLE_CONVERSION_ASSERT(from < to);
199     DOUBLE_CONVERSION_ASSERT(0 <= from);
200     return Vector<T>(start() + from, to - from);
201   }
202 
203   // Returns the length of the vector.
length()204   int length() const { return length_; }
205 
206   // Returns whether or not the vector is empty.
is_empty()207   bool is_empty() const { return length_ == 0; }
208 
209   // Returns the pointer to the start of the data in the vector.
start()210   T* start() const { return start_; }
211 
212   // Access individual vector elements - checks bounds in debug mode.
213   T& operator[](int index) const {
214     DOUBLE_CONVERSION_ASSERT(0 <= index && index < length_);
215     return start_[index];
216   }
217 
first()218   T& first() { return start_[0]; }
219 
last()220   T& last() { return start_[length_ - 1]; }
221 
pop_back()222   void pop_back() {
223     DOUBLE_CONVERSION_ASSERT(!is_empty());
224     --length_;
225   }
226 
227  private:
228   T* start_;
229   int length_;
230 };
231 
232 
233 // Helper class for building result strings in a character buffer. The
234 // purpose of the class is to use safe operations that checks the
235 // buffer bounds on all operations in debug mode.
236 class StringBuilder {
237  public:
StringBuilder(char * buffer,int buffer_size)238   StringBuilder(char* buffer, int buffer_size)
239       : buffer_(buffer, buffer_size), position_(0) { }
240 
~StringBuilder()241   ~StringBuilder() { if (!is_finalized()) Finalize(); }
242 
size()243   int size() const { return buffer_.length(); }
244 
245   // Get the current position in the builder.
position()246   int position() const {
247     DOUBLE_CONVERSION_ASSERT(!is_finalized());
248     return position_;
249   }
250 
251   // Reset the position.
Reset()252   void Reset() { position_ = 0; }
253 
254   // Add a single character to the builder. It is not allowed to add
255   // 0-characters; use the Finalize() method to terminate the string
256   // instead.
AddCharacter(char c)257   void AddCharacter(char c) {
258     DOUBLE_CONVERSION_ASSERT(c != '\0');
259     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
260     buffer_[position_++] = c;
261   }
262 
263   // Add an entire string to the builder. Uses strlen() internally to
264   // compute the length of the input string.
AddString(const char * s)265   void AddString(const char* s) {
266     AddSubstring(s, StrLength(s));
267   }
268 
269   // Add the first 'n' characters of the given string 's' to the
270   // builder. The input string must have enough characters.
AddSubstring(const char * s,int n)271   void AddSubstring(const char* s, int n) {
272     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length());
273     DOUBLE_CONVERSION_ASSERT(static_cast<size_t>(n) <= strlen(s));
274     memmove(&buffer_[position_], s, n);
275     position_ += n;
276   }
277 
278 
279   // Add character padding to the builder. If count is non-positive,
280   // nothing is added to the builder.
AddPadding(char c,int count)281   void AddPadding(char c, int count) {
282     for (int i = 0; i < count; i++) {
283       AddCharacter(c);
284     }
285   }
286 
287   // Finalize the string by 0-terminating it and returning the buffer.
Finalize()288   char* Finalize() {
289     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
290     buffer_[position_] = '\0';
291     // Make sure nobody managed to add a 0-character to the
292     // buffer while building the string.
293     DOUBLE_CONVERSION_ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
294     position_ = -1;
295     DOUBLE_CONVERSION_ASSERT(is_finalized());
296     return buffer_.start();
297   }
298 
299  private:
300   Vector<char> buffer_;
301   int position_;
302 
is_finalized()303   bool is_finalized() const { return position_ < 0; }
304 
305   DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
306 };
307 
308 // The type-based aliasing rule allows the compiler to assume that pointers of
309 // different types (for some definition of different) never alias each other.
310 // Thus the following code does not work:
311 //
312 // float f = foo();
313 // int fbits = *(int*)(&f);
314 //
315 // The compiler 'knows' that the int pointer can't refer to f since the types
316 // don't match, so the compiler may cache f in a register, leaving random data
317 // in fbits.  Using C++ style casts makes no difference, however a pointer to
318 // char data is assumed to alias any other pointer.  This is the 'memcpy
319 // exception'.
320 //
321 // Bit_cast uses the memcpy exception to move the bits from a variable of one
322 // type of a variable of another type.  Of course the end result is likely to
323 // be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
324 // will completely optimize BitCast away.
325 //
326 // There is an additional use for BitCast.
327 // Recent gccs will warn when they see casts that may result in breakage due to
328 // the type-based aliasing rule.  If you have checked that there is no breakage
329 // you can use BitCast to cast one pointer type to another.  This confuses gcc
330 // enough that it can no longer see that you have cast one pointer type to
331 // another thus avoiding the warning.
332 template <class Dest, class Source>
BitCast(const Source & source)333 Dest BitCast(const Source& source) {
334   // Compile time assertion: sizeof(Dest) == sizeof(Source)
335   // A compile error here means your Dest and Source have different sizes.
336 #if __cplusplus >= 201103L
337   static_assert(sizeof(Dest) == sizeof(Source),
338                 "source and destination size mismatch");
339 #else
340   DOUBLE_CONVERSION_UNUSED
341   typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
342 #endif
343 
344   Dest dest;
345   memmove(&dest, &source, sizeof(dest));
346   return dest;
347 }
348 
349 template <class Dest, class Source>
BitCast(Source * source)350 Dest BitCast(Source* source) {
351   return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
352 }
353 
354 }  // namespace double_conversion
355 
356 #endif  // DOUBLE_CONVERSION_UTILS_H_
357