1 /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
2 /* Cairo - a vector graphics library with display and print output
3  *
4  * Copyright © 2007 Mozilla Corporation
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it either under the terms of the GNU Lesser General Public
8  * License version 2.1 as published by the Free Software Foundation
9  * (the "LGPL") or, at your option, under the terms of the Mozilla
10  * Public License Version 1.1 (the "MPL"). If you do not alter this
11  * notice, a recipient may use your version of this file under either
12  * the MPL or the LGPL.
13  *
14  * You should have received a copy of the LGPL along with this library
15  * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17  * You should have received a copy of the MPL along with this library
18  * in the file COPYING-MPL-1.1
19  *
20  * The contents of this file are subject to the Mozilla Public License
21  * Version 1.1 (the "License"); you may not use this file except in
22  * compliance with the License. You may obtain a copy of the License at
23  * http://www.mozilla.org/MPL/
24  *
25  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26  * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27  * the specific language governing rights and limitations.
28  *
29  * The Original Code is the cairo graphics library.
30  *
31  * The Initial Developer of the Original Code is Mozilla Foundation
32  *
33  * Contributor(s):
34  *	Vladimir Vukicevic <vladimir@pobox.com>
35  */
36 
37 #ifndef CAIRO_FIXED_PRIVATE_H
38 #define CAIRO_FIXED_PRIVATE_H
39 
40 #include "cairo-fixed-type-private.h"
41 
42 #include "cairo-wideint-private.h"
43 #include "cairoint.h"
44 
45 /* Implementation */
46 
47 #if (CAIRO_FIXED_BITS != 32)
48 # error CAIRO_FIXED_BITS must be 32, and the type must be a 32-bit type.
49 # error To remove this limitation, you will have to fix the tessellator.
50 #endif
51 
52 #define CAIRO_FIXED_ONE        ((cairo_fixed_t)(1 << CAIRO_FIXED_FRAC_BITS))
53 #define CAIRO_FIXED_ONE_DOUBLE ((double)(1 << CAIRO_FIXED_FRAC_BITS))
54 #define CAIRO_FIXED_EPSILON    ((cairo_fixed_t)(1))
55 
56 #define CAIRO_FIXED_ERROR_DOUBLE (1. / (2 * CAIRO_FIXED_ONE_DOUBLE))
57 
58 #define CAIRO_FIXED_FRAC_MASK  ((cairo_fixed_t)(((cairo_fixed_unsigned_t)(-1)) >> (CAIRO_FIXED_BITS - CAIRO_FIXED_FRAC_BITS)))
59 #define CAIRO_FIXED_WHOLE_MASK (~CAIRO_FIXED_FRAC_MASK)
60 
61 static inline cairo_fixed_t
_cairo_fixed_from_int(int i)62 _cairo_fixed_from_int (int i)
63 {
64     return i << CAIRO_FIXED_FRAC_BITS;
65 }
66 
67 /* This is the "magic number" approach to converting a double into fixed
68  * point as described here:
69  *
70  * http://www.stereopsis.com/sree/fpu2006.html (an overview)
71  * http://www.d6.com/users/checker/pdfs/gdmfp.pdf (in detail)
72  *
73  * The basic idea is to add a large enough number to the double that the
74  * literal floating point is moved up to the extent that it forces the
75  * double's value to be shifted down to the bottom of the mantissa (to make
76  * room for the large number being added in). Since the mantissa is, at a
77  * given moment in time, a fixed point integer itself, one can convert a
78  * float to various fixed point representations by moving around the point
79  * of a floating point number through arithmetic operations. This behavior
80  * is reliable on most modern platforms as it is mandated by the IEEE-754
81  * standard for floating point arithmetic.
82  *
83  * For our purposes, a "magic number" must be carefully selected that is
84  * both large enough to produce the desired point-shifting effect, and also
85  * has no lower bits in its representation that would interfere with our
86  * value at the bottom of the mantissa. The magic number is calculated as
87  * follows:
88  *
89  *          (2 ^ (MANTISSA_SIZE - FRACTIONAL_SIZE)) * 1.5
90  *
91  * where in our case:
92  *  - MANTISSA_SIZE for 64-bit doubles is 52
93  *  - FRACTIONAL_SIZE for 16.16 fixed point is 16
94  *
95  * Although this approach provides a very large speedup of this function
96  * on a wide-array of systems, it does come with two caveats:
97  *
98  * 1) It uses banker's rounding as opposed to arithmetic rounding.
99  * 2) It doesn't function properly if the FPU is in single-precision
100  *    mode.
101  */
102 
103 /* The 16.16 number must always be available */
104 #define CAIRO_MAGIC_NUMBER_FIXED_16_16 (103079215104.0)
105 
106 #if CAIRO_FIXED_BITS <= 32
107 #define CAIRO_MAGIC_NUMBER_FIXED ((1LL << (52 - CAIRO_FIXED_FRAC_BITS)) * 1.5)
108 
109 /* For 32-bit fixed point numbers */
110 static inline cairo_fixed_t
_cairo_fixed_from_double(double d)111 _cairo_fixed_from_double (double d)
112 {
113     union {
114         double d;
115         int32_t i[2];
116     } u;
117 
118     u.d = d + CAIRO_MAGIC_NUMBER_FIXED;
119 #ifdef FLOAT_WORDS_BIGENDIAN
120     return u.i[1];
121 #else
122     return u.i[0];
123 #endif
124 }
125 
126 #else
127 # error Please define a magic number for your fixed point type!
128 # error See cairo-fixed-private.h for details.
129 #endif
130 
131 static inline cairo_fixed_t
_cairo_fixed_from_26_6(uint32_t i)132 _cairo_fixed_from_26_6 (uint32_t i)
133 {
134 #if CAIRO_FIXED_FRAC_BITS > 6
135     return i << (CAIRO_FIXED_FRAC_BITS - 6);
136 #else
137     return i >> (6 - CAIRO_FIXED_FRAC_BITS);
138 #endif
139 }
140 
141 static inline cairo_fixed_t
_cairo_fixed_from_16_16(uint32_t i)142 _cairo_fixed_from_16_16 (uint32_t i)
143 {
144 #if CAIRO_FIXED_FRAC_BITS > 16
145     return i << (CAIRO_FIXED_FRAC_BITS - 16);
146 #else
147     return i >> (16 - CAIRO_FIXED_FRAC_BITS);
148 #endif
149 }
150 
151 static inline double
_cairo_fixed_to_double(cairo_fixed_t f)152 _cairo_fixed_to_double (cairo_fixed_t f)
153 {
154     return ((double) f) / CAIRO_FIXED_ONE_DOUBLE;
155 }
156 
157 static inline int
_cairo_fixed_is_integer(cairo_fixed_t f)158 _cairo_fixed_is_integer (cairo_fixed_t f)
159 {
160     return (f & CAIRO_FIXED_FRAC_MASK) == 0;
161 }
162 
163 static inline cairo_fixed_t
_cairo_fixed_floor(cairo_fixed_t f)164 _cairo_fixed_floor (cairo_fixed_t f)
165 {
166     return f & ~CAIRO_FIXED_FRAC_MASK;
167 }
168 
169 static inline cairo_fixed_t
_cairo_fixed_ceil(cairo_fixed_t f)170 _cairo_fixed_ceil (cairo_fixed_t f)
171 {
172     return _cairo_fixed_floor (f + CAIRO_FIXED_FRAC_MASK);
173 }
174 
175 static inline cairo_fixed_t
_cairo_fixed_round(cairo_fixed_t f)176 _cairo_fixed_round (cairo_fixed_t f)
177 {
178     return _cairo_fixed_floor (f + (CAIRO_FIXED_FRAC_MASK+1)/2);
179 }
180 
181 static inline cairo_fixed_t
_cairo_fixed_round_down(cairo_fixed_t f)182 _cairo_fixed_round_down (cairo_fixed_t f)
183 {
184     return _cairo_fixed_floor (f + CAIRO_FIXED_FRAC_MASK/2);
185 }
186 
187 static inline int
_cairo_fixed_integer_part(cairo_fixed_t f)188 _cairo_fixed_integer_part (cairo_fixed_t f)
189 {
190     return f >> CAIRO_FIXED_FRAC_BITS;
191 }
192 
193 static inline int
_cairo_fixed_integer_round(cairo_fixed_t f)194 _cairo_fixed_integer_round (cairo_fixed_t f)
195 {
196     return _cairo_fixed_integer_part (f + (CAIRO_FIXED_FRAC_MASK+1)/2);
197 }
198 
199 static inline int
_cairo_fixed_integer_round_down(cairo_fixed_t f)200 _cairo_fixed_integer_round_down (cairo_fixed_t f)
201 {
202     return _cairo_fixed_integer_part (f + CAIRO_FIXED_FRAC_MASK/2);
203 }
204 
205 static inline int
_cairo_fixed_fractional_part(cairo_fixed_t f)206 _cairo_fixed_fractional_part (cairo_fixed_t f)
207 {
208     return f & CAIRO_FIXED_FRAC_MASK;
209 }
210 
211 static inline int
_cairo_fixed_integer_floor(cairo_fixed_t f)212 _cairo_fixed_integer_floor (cairo_fixed_t f)
213 {
214     if (f >= 0)
215         return f >> CAIRO_FIXED_FRAC_BITS;
216     else
217         return -((-f - 1) >> CAIRO_FIXED_FRAC_BITS) - 1;
218 }
219 
220 static inline int
_cairo_fixed_integer_ceil(cairo_fixed_t f)221 _cairo_fixed_integer_ceil (cairo_fixed_t f)
222 {
223     if (f > 0)
224 	return ((f - 1)>>CAIRO_FIXED_FRAC_BITS) + 1;
225     else
226 	return - ((cairo_fixed_t)(-(cairo_fixed_unsigned_t)f) >> CAIRO_FIXED_FRAC_BITS);
227 }
228 
229 /* A bunch of explicit 16.16 operators; we need these
230  * to interface with pixman and other backends that require
231  * 16.16 fixed point types.
232  */
233 static inline cairo_fixed_16_16_t
_cairo_fixed_to_16_16(cairo_fixed_t f)234 _cairo_fixed_to_16_16 (cairo_fixed_t f)
235 {
236 #if (CAIRO_FIXED_FRAC_BITS == 16) && (CAIRO_FIXED_BITS == 32)
237     return f;
238 #elif CAIRO_FIXED_FRAC_BITS > 16
239     /* We're just dropping the low bits, so we won't ever got over/underflow here */
240     return f >> (CAIRO_FIXED_FRAC_BITS - 16);
241 #else
242     cairo_fixed_16_16_t x;
243 
244     /* Handle overflow/underflow by clamping to the lowest/highest
245      * value representable as 16.16
246      */
247     if ((f >> CAIRO_FIXED_FRAC_BITS) < INT16_MIN) {
248 	x = INT32_MIN;
249     } else if ((f >> CAIRO_FIXED_FRAC_BITS) > INT16_MAX) {
250 	x = INT32_MAX;
251     } else {
252 	x = f << (16 - CAIRO_FIXED_FRAC_BITS);
253     }
254 
255     return x;
256 #endif
257 }
258 
259 static inline cairo_fixed_16_16_t
_cairo_fixed_16_16_from_double(double d)260 _cairo_fixed_16_16_from_double (double d)
261 {
262     union {
263         double d;
264         int32_t i[2];
265     } u;
266 
267     u.d = d + CAIRO_MAGIC_NUMBER_FIXED_16_16;
268 #ifdef FLOAT_WORDS_BIGENDIAN
269     return u.i[1];
270 #else
271     return u.i[0];
272 #endif
273 }
274 
275 static inline int
_cairo_fixed_16_16_floor(cairo_fixed_16_16_t f)276 _cairo_fixed_16_16_floor (cairo_fixed_16_16_t f)
277 {
278     if (f >= 0)
279 	return f >> 16;
280     else
281 	return -((-f - 1) >> 16) - 1;
282 }
283 
284 static inline double
_cairo_fixed_16_16_to_double(cairo_fixed_16_16_t f)285 _cairo_fixed_16_16_to_double (cairo_fixed_16_16_t f)
286 {
287     return ((double) f) / (double) (1 << 16);
288 }
289 
290 #if CAIRO_FIXED_BITS == 32
291 
292 static inline cairo_fixed_t
_cairo_fixed_mul(cairo_fixed_t a,cairo_fixed_t b)293 _cairo_fixed_mul (cairo_fixed_t a, cairo_fixed_t b)
294 {
295     cairo_int64_t temp = _cairo_int32x32_64_mul (a, b);
296     return _cairo_int64_to_int32(_cairo_int64_rsl (temp, CAIRO_FIXED_FRAC_BITS));
297 }
298 
299 /* computes round (a * b / c) */
300 static inline cairo_fixed_t
_cairo_fixed_mul_div(cairo_fixed_t a,cairo_fixed_t b,cairo_fixed_t c)301 _cairo_fixed_mul_div (cairo_fixed_t a, cairo_fixed_t b, cairo_fixed_t c)
302 {
303     cairo_int64_t ab  = _cairo_int32x32_64_mul (a, b);
304     cairo_int64_t c64 = _cairo_int32_to_int64 (c);
305     return _cairo_int64_to_int32 (_cairo_int64_divrem (ab, c64).quo);
306 }
307 
308 /* computes floor (a * b / c) */
309 static inline cairo_fixed_t
_cairo_fixed_mul_div_floor(cairo_fixed_t a,cairo_fixed_t b,cairo_fixed_t c)310 _cairo_fixed_mul_div_floor (cairo_fixed_t a, cairo_fixed_t b, cairo_fixed_t c)
311 {
312     return _cairo_int64_32_div (_cairo_int32x32_64_mul (a, b), c);
313 }
314 
315 /* compute y from x so that (x,y), p1, and p2 are collinear */
316 static inline cairo_fixed_t
_cairo_edge_compute_intersection_y_for_x(const cairo_point_t * p1,const cairo_point_t * p2,cairo_fixed_t x)317 _cairo_edge_compute_intersection_y_for_x (const cairo_point_t *p1,
318 					  const cairo_point_t *p2,
319 					  cairo_fixed_t x)
320 {
321     cairo_fixed_t y, dx;
322 
323     if (x == p1->x)
324 	return p1->y;
325     if (x == p2->x)
326 	return p2->y;
327 
328     y = p1->y;
329     dx = p2->x - p1->x;
330     if (dx != 0)
331 	y += _cairo_fixed_mul_div_floor (x - p1->x, p2->y - p1->y, dx);
332 
333     return y;
334 }
335 
336 /* compute x from y so that (x,y), p1, and p2 are collinear */
337 static inline cairo_fixed_t
_cairo_edge_compute_intersection_x_for_y(const cairo_point_t * p1,const cairo_point_t * p2,cairo_fixed_t y)338 _cairo_edge_compute_intersection_x_for_y (const cairo_point_t *p1,
339 					  const cairo_point_t *p2,
340 					  cairo_fixed_t y)
341 {
342     cairo_fixed_t x, dy;
343 
344     if (y == p1->y)
345 	return p1->x;
346     if (y == p2->y)
347 	return p2->x;
348 
349     x = p1->x;
350     dy = p2->y - p1->y;
351     if (dy != 0)
352 	x += _cairo_fixed_mul_div_floor (y - p1->y, p2->x - p1->x, dy);
353 
354     return x;
355 }
356 
357 /* Intersect two segments based on the algorithm described at
358  * http://paulbourke.net/geometry/pointlineplane/. This implementation
359  * uses floating point math. */
360 static inline cairo_bool_t
_slow_segment_intersection(const cairo_point_t * seg1_p1,const cairo_point_t * seg1_p2,const cairo_point_t * seg2_p1,const cairo_point_t * seg2_p2,cairo_point_t * intersection)361 _slow_segment_intersection (const cairo_point_t *seg1_p1,
362 			    const cairo_point_t *seg1_p2,
363 			    const cairo_point_t *seg2_p1,
364 			    const cairo_point_t *seg2_p2,
365 			    cairo_point_t *intersection)
366 {
367     double denominator, u_a, u_b;
368     double seg1_dx, seg1_dy, seg2_dx, seg2_dy, seg_start_dx, seg_start_dy;
369 
370     seg1_dx = _cairo_fixed_to_double (seg1_p2->x - seg1_p1->x);
371     seg1_dy = _cairo_fixed_to_double (seg1_p2->y - seg1_p1->y);
372     seg2_dx = _cairo_fixed_to_double (seg2_p2->x - seg2_p1->x);
373     seg2_dy = _cairo_fixed_to_double (seg2_p2->y - seg2_p1->y);
374     denominator = (seg2_dy * seg1_dx) - (seg2_dx * seg1_dy);
375     if (denominator == 0)
376 	return FALSE;
377 
378     seg_start_dx = _cairo_fixed_to_double (seg1_p1->x - seg2_p1->x);
379     seg_start_dy = _cairo_fixed_to_double (seg1_p1->y - seg2_p1->y);
380     u_a = ((seg2_dx * seg_start_dy) - (seg2_dy * seg_start_dx)) / denominator;
381     u_b = ((seg1_dx * seg_start_dy) - (seg1_dy * seg_start_dx)) / denominator;
382 
383     if (u_a <= 0 || u_a >= 1 || u_b <= 0 || u_b >= 1)
384 	return FALSE;
385 
386     intersection->x = seg1_p1->x + _cairo_fixed_from_double ((u_a * seg1_dx));
387     intersection->y = seg1_p1->y + _cairo_fixed_from_double ((u_a * seg1_dy));
388     return TRUE;
389 }
390 
391 #else
392 # error Please define multiplication and other operands for your fixed-point type size
393 #endif
394 
395 #endif /* CAIRO_FIXED_PRIVATE_H */
396