1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkPoint3.h"
9 #include "include/private/SkTemplates.h"
10 #include "src/core/SkGeometry.h"
11 #include "src/core/SkMatrixPriv.h"
12 #include "src/core/SkPointPriv.h"
13 #include "src/core/SkRectPriv.h"
14 #include "src/core/SkStroke.h"
15 #include "src/gpu/GrAuditTrail.h"
16 #include "src/gpu/GrBuffer.h"
17 #include "src/gpu/GrCaps.h"
18 #include "src/gpu/GrClip.h"
19 #include "src/gpu/GrDefaultGeoProcFactory.h"
20 #include "src/gpu/GrDrawOpTest.h"
21 #include "src/gpu/GrOpFlushState.h"
22 #include "src/gpu/GrProcessor.h"
23 #include "src/gpu/GrResourceProvider.h"
24 #include "src/gpu/GrStyle.h"
25 #include "src/gpu/effects/GrBezierEffect.h"
26 #include "src/gpu/geometry/GrPathUtils.h"
27 #include "src/gpu/geometry/GrShape.h"
28 #include "src/gpu/ops/GrAAHairLinePathRenderer.h"
29 #include "src/gpu/ops/GrMeshDrawOp.h"
30 #include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h"
31
32 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
33
34 // quadratics are rendered as 5-sided polys in order to bound the
35 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
36 // bloat_quad. Quadratics and conics share an index buffer
37
38 // lines are rendered as:
39 // *______________*
40 // |\ -_______ /|
41 // | \ \ / |
42 // | *--------* |
43 // | / ______/ \ |
44 // */_-__________\*
45 // For: 6 vertices and 18 indices (for 6 triangles)
46
47 // Each quadratic is rendered as a five sided polygon. This poly bounds
48 // the quadratic's bounding triangle but has been expanded so that the
49 // 1-pixel wide area around the curve is inside the poly.
50 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
51 // that is rendered would look like this:
52 // b0
53 // b
54 //
55 // a0 c0
56 // a c
57 // a1 c1
58 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
59 // specified by these 9 indices:
60 static const uint16_t kQuadIdxBufPattern[] = {
61 0, 1, 2,
62 2, 4, 3,
63 1, 4, 2
64 };
65
66 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
67 static const int kQuadNumVertices = 5;
68 static const int kQuadsNumInIdxBuffer = 256;
69 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
70
get_quads_index_buffer(GrResourceProvider * resourceProvider)71 static sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
72 GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
73 return resourceProvider->findOrCreatePatternedIndexBuffer(
74 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
75 gQuadsIndexBufferKey);
76 }
77
78
79 // Each line segment is rendered as two quads and two triangles.
80 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
81 // The four external points are offset 1 pixel perpendicular to the
82 // line and half a pixel parallel to the line.
83 //
84 // p4 p5
85 // p0 p1
86 // p2 p3
87 //
88 // Each is drawn as six triangles specified by these 18 indices:
89
90 static const uint16_t kLineSegIdxBufPattern[] = {
91 0, 1, 3,
92 0, 3, 2,
93 0, 4, 5,
94 0, 5, 1,
95 0, 2, 4,
96 1, 5, 3
97 };
98
99 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
100 static const int kLineSegNumVertices = 6;
101 static const int kLineSegsNumInIdxBuffer = 256;
102
103 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
104
get_lines_index_buffer(GrResourceProvider * resourceProvider)105 static sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
106 GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
107 return resourceProvider->findOrCreatePatternedIndexBuffer(
108 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
109 gLinesIndexBufferKey);
110 }
111
112 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)113 static int get_float_exp(float x) {
114 GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
115 #ifdef SK_DEBUG
116 static bool tested;
117 if (!tested) {
118 tested = true;
119 SkASSERT(get_float_exp(0.25f) == -2);
120 SkASSERT(get_float_exp(0.3f) == -2);
121 SkASSERT(get_float_exp(0.5f) == -1);
122 SkASSERT(get_float_exp(1.f) == 0);
123 SkASSERT(get_float_exp(2.f) == 1);
124 SkASSERT(get_float_exp(2.5f) == 1);
125 SkASSERT(get_float_exp(8.f) == 3);
126 SkASSERT(get_float_exp(100.f) == 6);
127 SkASSERT(get_float_exp(1000.f) == 9);
128 SkASSERT(get_float_exp(1024.f) == 10);
129 SkASSERT(get_float_exp(3000000.f) == 21);
130 }
131 #endif
132 const int* iptr = (const int*)&x;
133 return (((*iptr) & 0x7f800000) >> 23) - 127;
134 }
135
136 // Uses the max curvature function for quads to estimate
137 // where to chop the conic. If the max curvature is not
138 // found along the curve segment it will return 1 and
139 // dst[0] is the original conic. If it returns 2 the dst[0]
140 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)141 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
142 SkScalar t = SkFindQuadMaxCurvature(src);
143 if (t == 0 || t == 1) {
144 if (dst) {
145 dst[0].set(src, weight);
146 }
147 return 1;
148 } else {
149 if (dst) {
150 SkConic conic;
151 conic.set(src, weight);
152 if (!conic.chopAt(t, dst)) {
153 dst[0].set(src, weight);
154 return 1;
155 }
156 }
157 return 2;
158 }
159 }
160
161 // Calls split_conic on the entire conic and then once more on each subsection.
162 // Most cases will result in either 1 conic (chop point is not within t range)
163 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)164 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
165 SkConic dstTemp[2];
166 int conicCnt = split_conic(src, dstTemp, weight);
167 if (2 == conicCnt) {
168 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
169 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
170 } else {
171 dst[0] = dstTemp[0];
172 }
173 return conicCnt;
174 }
175
176 // returns 0 if quad/conic is degen or close to it
177 // in this case approx the path with lines
178 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)179 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
180 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
181 static const SkScalar gDegenerateToLineTolSqd =
182 gDegenerateToLineTol * gDegenerateToLineTol;
183
184 if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
185 SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
186 return 1;
187 }
188
189 *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
190 if (*dsqd < gDegenerateToLineTolSqd) {
191 return 1;
192 }
193
194 if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
195 return 1;
196 }
197 return 0;
198 }
199
is_degen_quad_or_conic(const SkPoint p[3])200 static int is_degen_quad_or_conic(const SkPoint p[3]) {
201 SkScalar dsqd;
202 return is_degen_quad_or_conic(p, &dsqd);
203 }
204
205 // we subdivide the quads to avoid huge overfill
206 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])207 static int num_quad_subdivs(const SkPoint p[3]) {
208 SkScalar dsqd;
209 if (is_degen_quad_or_conic(p, &dsqd)) {
210 return -1;
211 }
212
213 // tolerance of triangle height in pixels
214 // tuned on windows Quadro FX 380 / Z600
215 // trade off of fill vs cpu time on verts
216 // maybe different when do this using gpu (geo or tess shaders)
217 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
218
219 if (dsqd <= gSubdivTol * gSubdivTol) {
220 return 0;
221 } else {
222 static const int kMaxSub = 4;
223 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
224 // = log4(d*d/tol*tol)/2
225 // = log2(d*d/tol*tol)
226
227 // +1 since we're ignoring the mantissa contribution.
228 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
229 log = SkTMin(SkTMax(0, log), kMaxSub);
230 return log;
231 }
232 }
233
234 /**
235 * Generates the lines and quads to be rendered. Lines are always recorded in
236 * device space. We will do a device space bloat to account for the 1pixel
237 * thickness.
238 * Quads are recorded in device space unless m contains
239 * perspective, then in they are in src space. We do this because we will
240 * subdivide large quads to reduce over-fill. This subdivision has to be
241 * performed before applying the perspective matrix.
242 */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,SkScalar capLength,bool convertConicsToQuads,GrAAHairLinePathRenderer::PtArray * lines,GrAAHairLinePathRenderer::PtArray * quads,GrAAHairLinePathRenderer::PtArray * conics,GrAAHairLinePathRenderer::IntArray * quadSubdivCnts,GrAAHairLinePathRenderer::FloatArray * conicWeights)243 static int gather_lines_and_quads(const SkPath& path,
244 const SkMatrix& m,
245 const SkIRect& devClipBounds,
246 SkScalar capLength,
247 bool convertConicsToQuads,
248 GrAAHairLinePathRenderer::PtArray* lines,
249 GrAAHairLinePathRenderer::PtArray* quads,
250 GrAAHairLinePathRenderer::PtArray* conics,
251 GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
252 GrAAHairLinePathRenderer::FloatArray* conicWeights) {
253 SkPath::Iter iter(path, false);
254
255 int totalQuadCount = 0;
256 SkRect bounds;
257 SkIRect ibounds;
258
259 bool persp = m.hasPerspective();
260
261 // Whenever a degenerate, zero-length contour is encountered, this code will insert a
262 // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
263 // suffice for AA square & circle capping.
264 int verbsInContour = 0; // Does not count moves
265 bool seenZeroLengthVerb = false;
266 SkPoint zeroVerbPt;
267
268 // Adds a quad that has already been chopped to the list and checks for quads that are close to
269 // lines. Also does a bounding box check. It takes points that are in src space and device
270 // space. The src points are only required if the view matrix has perspective.
271 auto addChoppedQuad = [&](const SkPoint srcPts[3], const SkPoint devPts[4],
272 bool isContourStart) {
273 SkRect bounds;
274 SkIRect ibounds;
275 bounds.setBounds(devPts, 3);
276 bounds.outset(SK_Scalar1, SK_Scalar1);
277 bounds.roundOut(&ibounds);
278 // We only need the src space space pts when not in perspective.
279 SkASSERT(srcPts || !persp);
280 if (SkIRect::Intersects(devClipBounds, ibounds)) {
281 int subdiv = num_quad_subdivs(devPts);
282 SkASSERT(subdiv >= -1);
283 if (-1 == subdiv) {
284 SkPoint* pts = lines->push_back_n(4);
285 pts[0] = devPts[0];
286 pts[1] = devPts[1];
287 pts[2] = devPts[1];
288 pts[3] = devPts[2];
289 if (isContourStart && pts[0] == pts[1] && pts[2] == pts[3]) {
290 seenZeroLengthVerb = true;
291 zeroVerbPt = pts[0];
292 }
293 } else {
294 // when in perspective keep quads in src space
295 const SkPoint* qPts = persp ? srcPts : devPts;
296 SkPoint* pts = quads->push_back_n(3);
297 pts[0] = qPts[0];
298 pts[1] = qPts[1];
299 pts[2] = qPts[2];
300 quadSubdivCnts->push_back() = subdiv;
301 totalQuadCount += 1 << subdiv;
302 }
303 }
304 };
305
306 // Applies the view matrix to quad src points and calls the above helper.
307 auto addSrcChoppedQuad = [&](const SkPoint srcSpaceQuadPts[3], bool isContourStart) {
308 SkPoint devPts[3];
309 m.mapPoints(devPts, srcSpaceQuadPts, 3);
310 addChoppedQuad(srcSpaceQuadPts, devPts, isContourStart);
311 };
312
313 for (;;) {
314 SkPoint pathPts[4];
315 SkPath::Verb verb = iter.next(pathPts);
316 switch (verb) {
317 case SkPath::kConic_Verb:
318 if (convertConicsToQuads) {
319 SkScalar weight = iter.conicWeight();
320 SkAutoConicToQuads converter;
321 const SkPoint* quadPts = converter.computeQuads(pathPts, weight, 0.25f);
322 for (int i = 0; i < converter.countQuads(); ++i) {
323 addSrcChoppedQuad(quadPts + 2 * i, !verbsInContour && 0 == i);
324 }
325 } else {
326 SkConic dst[4];
327 // We chop the conics to create tighter clipping to hide error
328 // that appears near max curvature of very thin conics. Thin
329 // hyperbolas with high weight still show error.
330 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
331 for (int i = 0; i < conicCnt; ++i) {
332 SkPoint devPts[4];
333 SkPoint* chopPnts = dst[i].fPts;
334 m.mapPoints(devPts, chopPnts, 3);
335 bounds.setBounds(devPts, 3);
336 bounds.outset(SK_Scalar1, SK_Scalar1);
337 bounds.roundOut(&ibounds);
338 if (SkIRect::Intersects(devClipBounds, ibounds)) {
339 if (is_degen_quad_or_conic(devPts)) {
340 SkPoint* pts = lines->push_back_n(4);
341 pts[0] = devPts[0];
342 pts[1] = devPts[1];
343 pts[2] = devPts[1];
344 pts[3] = devPts[2];
345 if (verbsInContour == 0 && i == 0 && pts[0] == pts[1] &&
346 pts[2] == pts[3]) {
347 seenZeroLengthVerb = true;
348 zeroVerbPt = pts[0];
349 }
350 } else {
351 // when in perspective keep conics in src space
352 SkPoint* cPts = persp ? chopPnts : devPts;
353 SkPoint* pts = conics->push_back_n(3);
354 pts[0] = cPts[0];
355 pts[1] = cPts[1];
356 pts[2] = cPts[2];
357 conicWeights->push_back() = dst[i].fW;
358 }
359 }
360 }
361 }
362 verbsInContour++;
363 break;
364 case SkPath::kMove_Verb:
365 // New contour (and last one was unclosed). If it was just a zero length drawing
366 // operation, and we're supposed to draw caps, then add a tiny line.
367 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
368 SkPoint* pts = lines->push_back_n(2);
369 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
370 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
371 }
372 verbsInContour = 0;
373 seenZeroLengthVerb = false;
374 break;
375 case SkPath::kLine_Verb: {
376 SkPoint devPts[2];
377 m.mapPoints(devPts, pathPts, 2);
378 bounds.setBounds(devPts, 2);
379 bounds.outset(SK_Scalar1, SK_Scalar1);
380 bounds.roundOut(&ibounds);
381 if (SkIRect::Intersects(devClipBounds, ibounds)) {
382 SkPoint* pts = lines->push_back_n(2);
383 pts[0] = devPts[0];
384 pts[1] = devPts[1];
385 if (verbsInContour == 0 && pts[0] == pts[1]) {
386 seenZeroLengthVerb = true;
387 zeroVerbPt = pts[0];
388 }
389 }
390 verbsInContour++;
391 break;
392 }
393 case SkPath::kQuad_Verb: {
394 SkPoint choppedPts[5];
395 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
396 // When it is degenerate it allows the approximation with lines to work since the
397 // chop point (if there is one) will be at the parabola's vertex. In the nearly
398 // degenerate the QuadUVMatrix computed for the points is almost singular which
399 // can cause rendering artifacts.
400 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
401 for (int i = 0; i < n; ++i) {
402 addSrcChoppedQuad(choppedPts + i * 2, !verbsInContour && 0 == i);
403 }
404 verbsInContour++;
405 break;
406 }
407 case SkPath::kCubic_Verb: {
408 SkPoint devPts[4];
409 m.mapPoints(devPts, pathPts, 4);
410 bounds.setBounds(devPts, 4);
411 bounds.outset(SK_Scalar1, SK_Scalar1);
412 bounds.roundOut(&ibounds);
413 if (SkIRect::Intersects(devClipBounds, ibounds)) {
414 PREALLOC_PTARRAY(32) q;
415 // We convert cubics to quadratics (for now).
416 // In perspective have to do conversion in src space.
417 if (persp) {
418 SkScalar tolScale =
419 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
420 GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
421 } else {
422 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
423 }
424 for (int i = 0; i < q.count(); i += 3) {
425 if (persp) {
426 addSrcChoppedQuad(&q[i], !verbsInContour && 0 == i);
427 } else {
428 addChoppedQuad(nullptr, &q[i], !verbsInContour && 0 == i);
429 }
430 }
431 }
432 verbsInContour++;
433 break;
434 }
435 case SkPath::kClose_Verb:
436 // Contour is closed, so we don't need to grow the starting line, unless it's
437 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
438 if (capLength > 0) {
439 if (seenZeroLengthVerb && verbsInContour == 1) {
440 SkPoint* pts = lines->push_back_n(2);
441 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
442 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
443 } else if (verbsInContour == 0) {
444 // Contour was (moveTo, close). Add a line.
445 SkPoint devPts[2];
446 m.mapPoints(devPts, pathPts, 1);
447 devPts[1] = devPts[0];
448 bounds.setBounds(devPts, 2);
449 bounds.outset(SK_Scalar1, SK_Scalar1);
450 bounds.roundOut(&ibounds);
451 if (SkIRect::Intersects(devClipBounds, ibounds)) {
452 SkPoint* pts = lines->push_back_n(2);
453 pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
454 pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
455 }
456 }
457 }
458 break;
459 case SkPath::kDone_Verb:
460 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
461 // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
462 // degenerate, we need to draw a line.
463 SkPoint* pts = lines->push_back_n(2);
464 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
465 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
466 }
467 return totalQuadCount;
468 }
469 }
470 }
471
472 struct LineVertex {
473 SkPoint fPos;
474 float fCoverage;
475 };
476
477 struct BezierVertex {
478 SkPoint fPos;
479 union {
480 struct {
481 SkScalar fKLM[3];
482 } fConic;
483 SkVector fQuadCoord;
484 struct {
485 SkScalar fBogus[4];
486 };
487 };
488 };
489
490 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
491
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)492 static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
493 const SkPoint& ptB, const SkVector& normB,
494 SkPoint* result) {
495
496 SkScalar lineAW = -normA.dot(ptA);
497 SkScalar lineBW = -normB.dot(ptB);
498
499 SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
500 wInv = SkScalarInvert(wInv);
501 if (!SkScalarIsFinite(wInv)) {
502 // lines are parallel, pick the point in between
503 *result = (ptA + ptB)*SK_ScalarHalf;
504 *result += normA;
505 } else {
506 result->fX = normA.fY * lineBW - lineAW * normB.fY;
507 result->fX *= wInv;
508
509 result->fY = lineAW * normB.fX - normA.fX * lineBW;
510 result->fY *= wInv;
511 }
512 }
513
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])514 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
515 // this should be in the src space, not dev coords, when we have perspective
516 GrPathUtils::QuadUVMatrix DevToUV(qpts);
517 DevToUV.apply(verts, kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint));
518 }
519
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])520 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
521 const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
522 SkASSERT(!toDevice == !toSrc);
523 // original quad is specified by tri a,b,c
524 SkPoint a = qpts[0];
525 SkPoint b = qpts[1];
526 SkPoint c = qpts[2];
527
528 if (toDevice) {
529 toDevice->mapPoints(&a, 1);
530 toDevice->mapPoints(&b, 1);
531 toDevice->mapPoints(&c, 1);
532 }
533 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
534 // to edges ab and bc:
535 //
536 // before | after
537 // | b0
538 // b |
539 // |
540 // | a0 c0
541 // a c | a1 c1
542 //
543 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
544 // respectively.
545 BezierVertex& a0 = verts[0];
546 BezierVertex& a1 = verts[1];
547 BezierVertex& b0 = verts[2];
548 BezierVertex& c0 = verts[3];
549 BezierVertex& c1 = verts[4];
550
551 SkVector ab = b;
552 ab -= a;
553 SkVector ac = c;
554 ac -= a;
555 SkVector cb = b;
556 cb -= c;
557
558 // After the transform we might have a line, try to do something reasonable
559 if (toDevice && SkPointPriv::LengthSqd(ab) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
560 ab = cb;
561 }
562 if (toDevice && SkPointPriv::LengthSqd(cb) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
563 cb = ab;
564 }
565
566 // We should have already handled degenerates
567 SkASSERT(toDevice || (ab.length() > 0 && cb.length() > 0));
568
569 ab.normalize();
570 SkVector abN = SkPointPriv::MakeOrthog(ab, SkPointPriv::kLeft_Side);
571 if (abN.dot(ac) > 0) {
572 abN.negate();
573 }
574
575 cb.normalize();
576 SkVector cbN = SkPointPriv::MakeOrthog(cb, SkPointPriv::kLeft_Side);
577 if (cbN.dot(ac) < 0) {
578 cbN.negate();
579 }
580
581 a0.fPos = a;
582 a0.fPos += abN;
583 a1.fPos = a;
584 a1.fPos -= abN;
585
586 if (toDevice && SkPointPriv::LengthSqd(ac) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
587 c = b;
588 }
589 c0.fPos = c;
590 c0.fPos += cbN;
591 c1.fPos = c;
592 c1.fPos -= cbN;
593
594 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
595
596 if (toSrc) {
597 SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
598 kQuadNumVertices);
599 }
600 }
601
602 // Equations based off of Loop-Blinn Quadratic GPU Rendering
603 // Input Parametric:
604 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
605 // Output Implicit:
606 // f(x, y, w) = f(P) = K^2 - LM
607 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
608 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)609 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
610 const SkScalar weight) {
611 SkMatrix klm;
612
613 GrPathUtils::getConicKLM(p, weight, &klm);
614
615 for (int i = 0; i < kQuadNumVertices; ++i) {
616 const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
617 klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
618 }
619 }
620
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)621 static void add_conics(const SkPoint p[3],
622 const SkScalar weight,
623 const SkMatrix* toDevice,
624 const SkMatrix* toSrc,
625 BezierVertex** vert) {
626 bloat_quad(p, toDevice, toSrc, *vert);
627 set_conic_coeffs(p, *vert, weight);
628 *vert += kQuadNumVertices;
629 }
630
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)631 static void add_quads(const SkPoint p[3],
632 int subdiv,
633 const SkMatrix* toDevice,
634 const SkMatrix* toSrc,
635 BezierVertex** vert) {
636 SkASSERT(subdiv >= 0);
637 if (subdiv) {
638 SkPoint newP[5];
639 SkChopQuadAtHalf(p, newP);
640 add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
641 add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
642 } else {
643 bloat_quad(p, toDevice, toSrc, *vert);
644 set_uv_quad(p, *vert);
645 *vert += kQuadNumVertices;
646 }
647 }
648
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)649 static void add_line(const SkPoint p[2],
650 const SkMatrix* toSrc,
651 uint8_t coverage,
652 LineVertex** vert) {
653 const SkPoint& a = p[0];
654 const SkPoint& b = p[1];
655
656 SkVector ortho, vec = b;
657 vec -= a;
658
659 SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
660
661 if (vec.setLength(SK_ScalarHalf)) {
662 // Create a vector orthogonal to 'vec' and of unit length
663 ortho.fX = 2.0f * vec.fY;
664 ortho.fY = -2.0f * vec.fX;
665
666 float floatCoverage = GrNormalizeByteToFloat(coverage);
667
668 if (lengthSqd >= 1.0f) {
669 // Relative to points a and b:
670 // The inner vertices are inset half a pixel along the line a,b
671 (*vert)[0].fPos = a + vec;
672 (*vert)[0].fCoverage = floatCoverage;
673 (*vert)[1].fPos = b - vec;
674 (*vert)[1].fCoverage = floatCoverage;
675 } else {
676 // The inner vertices are inset a distance of length(a,b) from the outer edge of
677 // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
678 // The coverage is then modulated by the length. This gives us the correct
679 // coverage for rects shorter than a pixel as they get translated subpixel amounts
680 // inside of a pixel.
681 SkScalar length = SkScalarSqrt(lengthSqd);
682 (*vert)[0].fPos = b - vec;
683 (*vert)[0].fCoverage = floatCoverage * length;
684 (*vert)[1].fPos = a + vec;
685 (*vert)[1].fCoverage = floatCoverage * length;
686 }
687 // Relative to points a and b:
688 // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
689 // orthogonally.
690 (*vert)[2].fPos = a - vec + ortho;
691 (*vert)[2].fCoverage = 0;
692 (*vert)[3].fPos = b + vec + ortho;
693 (*vert)[3].fCoverage = 0;
694 (*vert)[4].fPos = a - vec - ortho;
695 (*vert)[4].fCoverage = 0;
696 (*vert)[5].fPos = b + vec - ortho;
697 (*vert)[5].fCoverage = 0;
698
699 if (toSrc) {
700 SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
701 kLineSegNumVertices);
702 }
703 } else {
704 // just make it degenerate and likely offscreen
705 for (int i = 0; i < kLineSegNumVertices; ++i) {
706 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
707 }
708 }
709
710 *vert += kLineSegNumVertices;
711 }
712
713 ///////////////////////////////////////////////////////////////////////////////
714
715 GrPathRenderer::CanDrawPath
onCanDrawPath(const CanDrawPathArgs & args) const716 GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
717 if (GrAAType::kCoverage != args.fAAType) {
718 return CanDrawPath::kNo;
719 }
720
721 if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
722 return CanDrawPath::kNo;
723 }
724
725 // We don't currently handle dashing in this class though perhaps we should.
726 if (args.fShape->style().pathEffect()) {
727 return CanDrawPath::kNo;
728 }
729
730 if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
731 args.fCaps->shaderCaps()->shaderDerivativeSupport()) {
732 return CanDrawPath::kYes;
733 }
734
735 return CanDrawPath::kNo;
736 }
737
738 template <class VertexType>
check_bounds(const SkMatrix & viewMatrix,const SkRect & devBounds,void * vertices,int vCount)739 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
740 {
741 SkRect tolDevBounds = devBounds;
742 // The bounds ought to be tight, but in perspective the below code runs the verts
743 // through the view matrix to get back to dev coords, which can introduce imprecision.
744 if (viewMatrix.hasPerspective()) {
745 tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
746 } else {
747 // Non-persp matrices cause this path renderer to draw in device space.
748 SkASSERT(viewMatrix.isIdentity());
749 }
750 SkRect actualBounds;
751
752 VertexType* verts = reinterpret_cast<VertexType*>(vertices);
753 bool first = true;
754 for (int i = 0; i < vCount; ++i) {
755 SkPoint pos = verts[i].fPos;
756 // This is a hack to workaround the fact that we move some degenerate segments offscreen.
757 if (SK_ScalarMax == pos.fX) {
758 continue;
759 }
760 viewMatrix.mapPoints(&pos, 1);
761 if (first) {
762 actualBounds.setLTRB(pos.fX, pos.fY, pos.fX, pos.fY);
763 first = false;
764 } else {
765 SkRectPriv::GrowToInclude(&actualBounds, pos);
766 }
767 }
768 if (!first) {
769 return tolDevBounds.contains(actualBounds);
770 }
771
772 return true;
773 }
774
775 namespace {
776
777 class AAHairlineOp final : public GrMeshDrawOp {
778 private:
779 using Helper = GrSimpleMeshDrawOpHelperWithStencil;
780
781 public:
782 DEFINE_OP_CLASS_ID
783
Make(GrRecordingContext * context,GrPaint && paint,const SkMatrix & viewMatrix,const SkPath & path,const GrStyle & style,const SkIRect & devClipBounds,const GrUserStencilSettings * stencilSettings)784 static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
785 GrPaint&& paint,
786 const SkMatrix& viewMatrix,
787 const SkPath& path,
788 const GrStyle& style,
789 const SkIRect& devClipBounds,
790 const GrUserStencilSettings* stencilSettings) {
791 SkScalar hairlineCoverage;
792 uint8_t newCoverage = 0xff;
793 if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
794 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
795 }
796
797 const SkStrokeRec& stroke = style.strokeRec();
798 SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
799
800 return Helper::FactoryHelper<AAHairlineOp>(context, std::move(paint), newCoverage,
801 viewMatrix, path,
802 devClipBounds, capLength, stencilSettings);
803 }
804
AAHairlineOp(const Helper::MakeArgs & helperArgs,const SkPMColor4f & color,uint8_t coverage,const SkMatrix & viewMatrix,const SkPath & path,SkIRect devClipBounds,SkScalar capLength,const GrUserStencilSettings * stencilSettings)805 AAHairlineOp(const Helper::MakeArgs& helperArgs,
806 const SkPMColor4f& color,
807 uint8_t coverage,
808 const SkMatrix& viewMatrix,
809 const SkPath& path,
810 SkIRect devClipBounds,
811 SkScalar capLength,
812 const GrUserStencilSettings* stencilSettings)
813 : INHERITED(ClassID())
814 , fHelper(helperArgs, GrAAType::kCoverage, stencilSettings)
815 , fColor(color)
816 , fCoverage(coverage) {
817 fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
818
819 this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
820 IsHairline::kYes);
821 }
822
name() const823 const char* name() const override { return "AAHairlineOp"; }
824
visitProxies(const VisitProxyFunc & func) const825 void visitProxies(const VisitProxyFunc& func) const override {
826 fHelper.visitProxies(func);
827 }
828
829 #ifdef SK_DEBUG
dumpInfo() const830 SkString dumpInfo() const override {
831 SkString string;
832 string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor.toBytes_RGBA(),
833 fCoverage, fPaths.count());
834 string += INHERITED::dumpInfo();
835 string += fHelper.dumpInfo();
836 return string;
837 }
838 #endif
839
fixedFunctionFlags() const840 FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
841
finalize(const GrCaps & caps,const GrAppliedClip * clip,bool hasMixedSampledCoverage,GrClampType clampType)842 GrProcessorSet::Analysis finalize(
843 const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage,
844 GrClampType clampType) override {
845 // This Op uses uniform (not vertex) color, so doesn't need to track wide color.
846 return fHelper.finalizeProcessors(caps, clip, hasMixedSampledCoverage, clampType,
847 GrProcessorAnalysisCoverage::kSingleChannel, &fColor,
848 nullptr);
849 }
850
851 private:
852 void onPrepareDraws(Target*) override;
853 void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
854
855 typedef SkTArray<SkPoint, true> PtArray;
856 typedef SkTArray<int, true> IntArray;
857 typedef SkTArray<float, true> FloatArray;
858
onCombineIfPossible(GrOp * t,const GrCaps & caps)859 CombineResult onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
860 AAHairlineOp* that = t->cast<AAHairlineOp>();
861
862 if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
863 return CombineResult::kCannotCombine;
864 }
865
866 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
867 return CombineResult::kCannotCombine;
868 }
869
870 // We go to identity if we don't have perspective
871 if (this->viewMatrix().hasPerspective() &&
872 !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
873 return CombineResult::kCannotCombine;
874 }
875
876 // TODO we can actually combine hairlines if they are the same color in a kind of bulk
877 // method but we haven't implemented this yet
878 // TODO investigate going to vertex color and coverage?
879 if (this->coverage() != that->coverage()) {
880 return CombineResult::kCannotCombine;
881 }
882
883 if (this->color() != that->color()) {
884 return CombineResult::kCannotCombine;
885 }
886
887 if (fHelper.usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
888 return CombineResult::kCannotCombine;
889 }
890
891 fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
892 return CombineResult::kMerged;
893 }
894
color() const895 const SkPMColor4f& color() const { return fColor; }
coverage() const896 uint8_t coverage() const { return fCoverage; }
viewMatrix() const897 const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
898
899 struct PathData {
900 SkMatrix fViewMatrix;
901 SkPath fPath;
902 SkIRect fDevClipBounds;
903 SkScalar fCapLength;
904 };
905
906 SkSTArray<1, PathData, true> fPaths;
907 Helper fHelper;
908 SkPMColor4f fColor;
909 uint8_t fCoverage;
910
911 typedef GrMeshDrawOp INHERITED;
912 };
913
914 } // anonymous namespace
915
onPrepareDraws(Target * target)916 void AAHairlineOp::onPrepareDraws(Target* target) {
917 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
918 SkMatrix invert;
919 if (!this->viewMatrix().invert(&invert)) {
920 return;
921 }
922
923 // we will transform to identity space if the viewmatrix does not have perspective
924 bool hasPerspective = this->viewMatrix().hasPerspective();
925 const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
926 const SkMatrix* geometryProcessorLocalM = &invert;
927 const SkMatrix* toDevice = nullptr;
928 const SkMatrix* toSrc = nullptr;
929 if (hasPerspective) {
930 geometryProcessorViewM = &this->viewMatrix();
931 geometryProcessorLocalM = &SkMatrix::I();
932 toDevice = &this->viewMatrix();
933 toSrc = &invert;
934 }
935
936 // This is hand inlined for maximum performance.
937 PREALLOC_PTARRAY(128) lines;
938 PREALLOC_PTARRAY(128) quads;
939 PREALLOC_PTARRAY(128) conics;
940 IntArray qSubdivs;
941 FloatArray cWeights;
942 int quadCount = 0;
943
944 int instanceCount = fPaths.count();
945 bool convertConicsToQuads = !target->caps().shaderCaps()->floatIs32Bits();
946 for (int i = 0; i < instanceCount; i++) {
947 const PathData& args = fPaths[i];
948 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
949 args.fCapLength, convertConicsToQuads, &lines, &quads,
950 &conics, &qSubdivs, &cWeights);
951 }
952
953 int lineCount = lines.count() / 2;
954 int conicCount = conics.count() / 3;
955 int quadAndConicCount = conicCount + quadCount;
956
957 static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
958 static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
959 if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
960 return;
961 }
962
963 // do lines first
964 if (lineCount) {
965 sk_sp<GrGeometryProcessor> lineGP;
966 {
967 using namespace GrDefaultGeoProcFactory;
968
969 Color color(this->color());
970 LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
971 : LocalCoords::kUnused_Type);
972 localCoords.fMatrix = geometryProcessorLocalM;
973 lineGP = GrDefaultGeoProcFactory::Make(target->caps().shaderCaps(),
974 color, Coverage::kAttribute_Type, localCoords,
975 *geometryProcessorViewM);
976 }
977
978 sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
979
980 sk_sp<const GrBuffer> vertexBuffer;
981 int firstVertex;
982
983 SkASSERT(sizeof(LineVertex) == lineGP->vertexStride());
984 int vertexCount = kLineSegNumVertices * lineCount;
985 LineVertex* verts = reinterpret_cast<LineVertex*>(target->makeVertexSpace(
986 sizeof(LineVertex), vertexCount, &vertexBuffer, &firstVertex));
987
988 if (!verts|| !linesIndexBuffer) {
989 SkDebugf("Could not allocate vertices\n");
990 return;
991 }
992
993 for (int i = 0; i < lineCount; ++i) {
994 add_line(&lines[2*i], toSrc, this->coverage(), &verts);
995 }
996
997 GrMesh* mesh = target->allocMesh(GrPrimitiveType::kTriangles);
998 mesh->setIndexedPatterned(std::move(linesIndexBuffer), kIdxsPerLineSeg, kLineSegNumVertices,
999 lineCount, kLineSegsNumInIdxBuffer);
1000 mesh->setVertexData(std::move(vertexBuffer), firstVertex);
1001 target->recordDraw(std::move(lineGP), mesh);
1002 }
1003
1004 if (quadCount || conicCount) {
1005 sk_sp<GrGeometryProcessor> quadGP(GrQuadEffect::Make(this->color(),
1006 *geometryProcessorViewM,
1007 GrClipEdgeType::kHairlineAA,
1008 target->caps(),
1009 *geometryProcessorLocalM,
1010 fHelper.usesLocalCoords(),
1011 this->coverage()));
1012
1013 sk_sp<GrGeometryProcessor> conicGP(GrConicEffect::Make(this->color(),
1014 *geometryProcessorViewM,
1015 GrClipEdgeType::kHairlineAA,
1016 target->caps(),
1017 *geometryProcessorLocalM,
1018 fHelper.usesLocalCoords(),
1019 this->coverage()));
1020
1021 sk_sp<const GrBuffer> vertexBuffer;
1022 int firstVertex;
1023
1024 sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
1025
1026 SkASSERT(sizeof(BezierVertex) == quadGP->vertexStride());
1027 SkASSERT(sizeof(BezierVertex) == conicGP->vertexStride());
1028 int vertexCount = kQuadNumVertices * quadAndConicCount;
1029 void* vertices = target->makeVertexSpace(sizeof(BezierVertex), vertexCount, &vertexBuffer,
1030 &firstVertex);
1031
1032 if (!vertices || !quadsIndexBuffer) {
1033 SkDebugf("Could not allocate vertices\n");
1034 return;
1035 }
1036
1037 // Setup vertices
1038 BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
1039
1040 int unsubdivQuadCnt = quads.count() / 3;
1041 for (int i = 0; i < unsubdivQuadCnt; ++i) {
1042 SkASSERT(qSubdivs[i] >= 0);
1043 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
1044 }
1045
1046 // Start Conics
1047 for (int i = 0; i < conicCount; ++i) {
1048 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
1049 }
1050
1051 if (quadCount > 0) {
1052 GrMesh* mesh = target->allocMesh(GrPrimitiveType::kTriangles);
1053 mesh->setIndexedPatterned(quadsIndexBuffer, kIdxsPerQuad, kQuadNumVertices, quadCount,
1054 kQuadsNumInIdxBuffer);
1055 mesh->setVertexData(vertexBuffer, firstVertex);
1056 target->recordDraw(std::move(quadGP), mesh);
1057 firstVertex += quadCount * kQuadNumVertices;
1058 }
1059
1060 if (conicCount > 0) {
1061 GrMesh* mesh = target->allocMesh(GrPrimitiveType::kTriangles);
1062 mesh->setIndexedPatterned(std::move(quadsIndexBuffer), kIdxsPerQuad, kQuadNumVertices,
1063 conicCount, kQuadsNumInIdxBuffer);
1064 mesh->setVertexData(std::move(vertexBuffer), firstVertex);
1065 target->recordDraw(std::move(conicGP), mesh);
1066 }
1067 }
1068 }
1069
onExecute(GrOpFlushState * flushState,const SkRect & chainBounds)1070 void AAHairlineOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
1071 fHelper.executeDrawsAndUploads(this, flushState, chainBounds);
1072 }
1073
onDrawPath(const DrawPathArgs & args)1074 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
1075 GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
1076 "GrAAHairlinePathRenderer::onDrawPath");
1077 SkASSERT(args.fRenderTargetContext->numSamples() <= 1);
1078
1079 SkIRect devClipBounds;
1080 args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
1081 args.fRenderTargetContext->height(),
1082 &devClipBounds);
1083 SkPath path;
1084 args.fShape->asPath(&path);
1085 std::unique_ptr<GrDrawOp> op =
1086 AAHairlineOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path,
1087 args.fShape->style(), devClipBounds, args.fUserStencilSettings);
1088 args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op));
1089 return true;
1090 }
1091
1092 ///////////////////////////////////////////////////////////////////////////////////////////////////
1093
1094 #if GR_TEST_UTILS
1095
GR_DRAW_OP_TEST_DEFINE(AAHairlineOp)1096 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
1097 SkMatrix viewMatrix = GrTest::TestMatrix(random);
1098 SkPath path = GrTest::TestPath(random);
1099 SkIRect devClipBounds;
1100 devClipBounds.setEmpty();
1101 return AAHairlineOp::Make(context, std::move(paint), viewMatrix, path,
1102 GrStyle::SimpleHairline(), devClipBounds,
1103 GrGetRandomStencil(random, context));
1104 }
1105
1106 #endif
1107