1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 *   Copyright (C) 2008-2011, International Business Machines
7 *   Corporation, Google and others.  All Rights Reserved.
8 *
9 *******************************************************************************
10 */
11 // Author : eldawy@google.com (Mohamed Eldawy)
12 // ucnvsel.cpp
13 //
14 // Purpose: To generate a list of encodings capable of handling
15 // a given Unicode text
16 //
17 // Started 09-April-2008
18 
19 /**
20  * \file
21  *
22  * This is an implementation of an encoding selector.
23  * The goal is, given a unicode string, find the encodings
24  * this string can be mapped to. To make processing faster
25  * a trie is built when you call ucnvsel_open() that
26  * stores all encodings a codepoint can map to
27  */
28 
29 #include "unicode/ucnvsel.h"
30 
31 #if !UCONFIG_NO_CONVERSION
32 
33 #include <string.h>
34 
35 #include "unicode/uchar.h"
36 #include "unicode/uniset.h"
37 #include "unicode/ucnv.h"
38 #include "unicode/ustring.h"
39 #include "unicode/uchriter.h"
40 #include "utrie2.h"
41 #include "propsvec.h"
42 #include "uassert.h"
43 #include "ucmndata.h"
44 #include "udataswp.h"
45 #include "uenumimp.h"
46 #include "cmemory.h"
47 #include "cstring.h"
48 
49 U_NAMESPACE_USE
50 
51 struct UConverterSelector {
52   UTrie2 *trie;              // 16 bit trie containing offsets into pv
53   uint32_t* pv;              // table of bits!
54   int32_t pvCount;
55   char** encodings;          // which encodings did user ask to use?
56   int32_t encodingsCount;
57   int32_t encodingStrLength;
58   uint8_t* swapped;
59   UBool ownPv, ownEncodingStrings;
60 };
61 
generateSelectorData(UConverterSelector * result,UPropsVectors * upvec,const USet * excludedCodePoints,const UConverterUnicodeSet whichSet,UErrorCode * status)62 static void generateSelectorData(UConverterSelector* result,
63                                  UPropsVectors *upvec,
64                                  const USet* excludedCodePoints,
65                                  const UConverterUnicodeSet whichSet,
66                                  UErrorCode* status) {
67   if (U_FAILURE(*status)) {
68     return;
69   }
70 
71   int32_t columns = (result->encodingsCount+31)/32;
72 
73   // set errorValue to all-ones
74   for (int32_t col = 0; col < columns; col++) {
75     upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
76                    col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0), status);
77   }
78 
79   for (int32_t i = 0; i < result->encodingsCount; ++i) {
80     uint32_t mask;
81     uint32_t column;
82     int32_t item_count;
83     int32_t j;
84     UConverter* test_converter = ucnv_open(result->encodings[i], status);
85     if (U_FAILURE(*status)) {
86       return;
87     }
88     USet* unicode_point_set;
89     unicode_point_set = uset_open(1, 0);  // empty set
90 
91     ucnv_getUnicodeSet(test_converter, unicode_point_set,
92                        whichSet, status);
93     if (U_FAILURE(*status)) {
94       ucnv_close(test_converter);
95       return;
96     }
97 
98     column = i / 32;
99     mask = 1 << (i%32);
100     // now iterate over intervals on set i!
101     item_count = uset_getItemCount(unicode_point_set);
102 
103     for (j = 0; j < item_count; ++j) {
104       UChar32 start_char;
105       UChar32 end_char;
106       UErrorCode smallStatus = U_ZERO_ERROR;
107       uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
108                    &smallStatus);
109       if (U_FAILURE(smallStatus)) {
110         // this will be reached for the converters that fill the set with
111         // strings. Those should be ignored by our system
112       } else {
113         upvec_setValue(upvec, start_char, end_char, column, static_cast<uint32_t>(~0), mask,
114                        status);
115       }
116     }
117     ucnv_close(test_converter);
118     uset_close(unicode_point_set);
119     if (U_FAILURE(*status)) {
120       return;
121     }
122   }
123 
124   // handle excluded encodings! Simply set their values to all 1's in the upvec
125   if (excludedCodePoints) {
126     int32_t item_count = uset_getItemCount(excludedCodePoints);
127     for (int32_t j = 0; j < item_count; ++j) {
128       UChar32 start_char;
129       UChar32 end_char;
130 
131       uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
132                    status);
133       for (int32_t col = 0; col < columns; col++) {
134         upvec_setValue(upvec, start_char, end_char, col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0),
135                       status);
136       }
137     }
138   }
139 
140   // alright. Now, let's put things in the same exact form you'd get when you
141   // unserialize things.
142   result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
143   result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
144   result->pvCount *= columns;  // number of uint32_t = rows * columns
145   result->ownPv = TRUE;
146 }
147 
148 /* open a selector. If converterListSize is 0, build for all converters.
149    If excludedCodePoints is NULL, don't exclude any codepoints */
150 U_CAPI UConverterSelector* U_EXPORT2
ucnvsel_open(const char * const * converterList,int32_t converterListSize,const USet * excludedCodePoints,const UConverterUnicodeSet whichSet,UErrorCode * status)151 ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
152              const USet* excludedCodePoints,
153              const UConverterUnicodeSet whichSet, UErrorCode* status) {
154   // check if already failed
155   if (U_FAILURE(*status)) {
156     return NULL;
157   }
158   // ensure args make sense!
159   if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
160     *status = U_ILLEGAL_ARGUMENT_ERROR;
161     return NULL;
162   }
163 
164   // allocate a new converter
165   LocalUConverterSelectorPointer newSelector(
166     (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
167   if (newSelector.isNull()) {
168     *status = U_MEMORY_ALLOCATION_ERROR;
169     return NULL;
170   }
171   uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
172 
173   if (converterListSize == 0) {
174     converterList = NULL;
175     converterListSize = ucnv_countAvailable();
176   }
177   newSelector->encodings =
178     (char**)uprv_malloc(converterListSize * sizeof(char*));
179   if (!newSelector->encodings) {
180     *status = U_MEMORY_ALLOCATION_ERROR;
181     return NULL;
182   }
183   newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
184 
185   // make a backup copy of the list of converters
186   int32_t totalSize = 0;
187   int32_t i;
188   for (i = 0; i < converterListSize; i++) {
189     totalSize +=
190       (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
191   }
192   // 4-align the totalSize to 4-align the size of the serialized form
193   int32_t encodingStrPadding = totalSize & 3;
194   if (encodingStrPadding != 0) {
195     encodingStrPadding = 4 - encodingStrPadding;
196   }
197   newSelector->encodingStrLength = totalSize += encodingStrPadding;
198   char* allStrings = (char*) uprv_malloc(totalSize);
199   if (!allStrings) {
200     *status = U_MEMORY_ALLOCATION_ERROR;
201     return NULL;
202   }
203 
204   for (i = 0; i < converterListSize; i++) {
205     newSelector->encodings[i] = allStrings;
206     uprv_strcpy(newSelector->encodings[i],
207                 converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
208     allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
209   }
210   while (encodingStrPadding > 0) {
211     *allStrings++ = 0;
212     --encodingStrPadding;
213   }
214 
215   newSelector->ownEncodingStrings = TRUE;
216   newSelector->encodingsCount = converterListSize;
217   UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
218   generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
219   upvec_close(upvec);
220 
221   if (U_FAILURE(*status)) {
222     return NULL;
223   }
224 
225   return newSelector.orphan();
226 }
227 
228 /* close opened selector */
229 U_CAPI void U_EXPORT2
ucnvsel_close(UConverterSelector * sel)230 ucnvsel_close(UConverterSelector *sel) {
231   if (!sel) {
232     return;
233   }
234   if (sel->ownEncodingStrings) {
235     uprv_free(sel->encodings[0]);
236   }
237   uprv_free(sel->encodings);
238   if (sel->ownPv) {
239     uprv_free(sel->pv);
240   }
241   utrie2_close(sel->trie);
242   uprv_free(sel->swapped);
243   uprv_free(sel);
244 }
245 
246 static const UDataInfo dataInfo = {
247   sizeof(UDataInfo),
248   0,
249 
250   U_IS_BIG_ENDIAN,
251   U_CHARSET_FAMILY,
252   U_SIZEOF_UCHAR,
253   0,
254 
255   { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
256   { 1, 0, 0, 0 },               /* formatVersion */
257   { 0, 0, 0, 0 }                /* dataVersion */
258 };
259 
260 enum {
261   UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
262   UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
263   UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
264   UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
265   UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
266   UCNVSEL_INDEX_COUNT = 16
267 };
268 
269 /*
270  * Serialized form of a UConverterSelector, formatVersion 1:
271  *
272  * The serialized form begins with a standard ICU DataHeader with a UDataInfo
273  * as the template above.
274  * This is followed by:
275  *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
276  *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
277  *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
278  *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
279  */
280 
281 /* serialize a selector */
282 U_CAPI int32_t U_EXPORT2
ucnvsel_serialize(const UConverterSelector * sel,void * buffer,int32_t bufferCapacity,UErrorCode * status)283 ucnvsel_serialize(const UConverterSelector* sel,
284                   void* buffer, int32_t bufferCapacity, UErrorCode* status) {
285   // check if already failed
286   if (U_FAILURE(*status)) {
287     return 0;
288   }
289   // ensure args make sense!
290   uint8_t *p = (uint8_t *)buffer;
291   if (bufferCapacity < 0 ||
292       (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
293   ) {
294     *status = U_ILLEGAL_ARGUMENT_ERROR;
295     return 0;
296   }
297   // add up the size of the serialized form
298   int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
299   if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
300     return 0;
301   }
302   *status = U_ZERO_ERROR;
303 
304   DataHeader header;
305   uprv_memset(&header, 0, sizeof(header));
306   header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
307   header.dataHeader.magic1 = 0xda;
308   header.dataHeader.magic2 = 0x27;
309   uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
310 
311   int32_t indexes[UCNVSEL_INDEX_COUNT] = {
312     serializedTrieSize,
313     sel->pvCount,
314     sel->encodingsCount,
315     sel->encodingStrLength
316   };
317 
318   int32_t totalSize =
319     header.dataHeader.headerSize +
320     (int32_t)sizeof(indexes) +
321     serializedTrieSize +
322     sel->pvCount * 4 +
323     sel->encodingStrLength;
324   indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
325   if (totalSize > bufferCapacity) {
326     *status = U_BUFFER_OVERFLOW_ERROR;
327     return totalSize;
328   }
329   // ok, save!
330   int32_t length = header.dataHeader.headerSize;
331   uprv_memcpy(p, &header, sizeof(header));
332   uprv_memset(p + sizeof(header), 0, length - sizeof(header));
333   p += length;
334 
335   length = (int32_t)sizeof(indexes);
336   uprv_memcpy(p, indexes, length);
337   p += length;
338 
339   utrie2_serialize(sel->trie, p, serializedTrieSize, status);
340   p += serializedTrieSize;
341 
342   length = sel->pvCount * 4;
343   uprv_memcpy(p, sel->pv, length);
344   p += length;
345 
346   uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
347   p += sel->encodingStrLength;
348 
349   return totalSize;
350 }
351 
352 /**
353  * swap a selector into the desired Endianness and Asciiness of
354  * the system. Just as FYI, selectors are always saved in the format
355  * of the system that created them. They are only converted if used
356  * on another system. In other words, selectors created on different
357  * system can be different even if the params are identical (endianness
358  * and Asciiness differences only)
359  *
360  * @param ds pointer to data swapper containing swapping info
361  * @param inData pointer to incoming data
362  * @param length length of inData in bytes
363  * @param outData pointer to output data. Capacity should
364  *                be at least equal to capacity of inData
365  * @param status an in/out ICU UErrorCode
366  * @return 0 on failure, number of bytes swapped on success
367  *         number of bytes swapped can be smaller than length
368  */
369 static int32_t
ucnvsel_swap(const UDataSwapper * ds,const void * inData,int32_t length,void * outData,UErrorCode * status)370 ucnvsel_swap(const UDataSwapper *ds,
371              const void *inData, int32_t length,
372              void *outData, UErrorCode *status) {
373   /* udata_swapDataHeader checks the arguments */
374   int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
375   if(U_FAILURE(*status)) {
376     return 0;
377   }
378 
379   /* check data format and format version */
380   const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
381   if(!(
382     pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
383     pInfo->dataFormat[1] == 0x53 &&
384     pInfo->dataFormat[2] == 0x65 &&
385     pInfo->dataFormat[3] == 0x6c
386   )) {
387     udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
388                      pInfo->dataFormat[0], pInfo->dataFormat[1],
389                      pInfo->dataFormat[2], pInfo->dataFormat[3]);
390     *status = U_INVALID_FORMAT_ERROR;
391     return 0;
392   }
393   if(pInfo->formatVersion[0] != 1) {
394     udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
395                      pInfo->formatVersion[0]);
396     *status = U_UNSUPPORTED_ERROR;
397     return 0;
398   }
399 
400   if(length >= 0) {
401     length -= headerSize;
402     if(length < 16*4) {
403       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
404                        length);
405       *status = U_INDEX_OUTOFBOUNDS_ERROR;
406       return 0;
407     }
408   }
409 
410   const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
411   uint8_t *outBytes = (uint8_t *)outData + headerSize;
412 
413   /* read the indexes */
414   const int32_t *inIndexes = (const int32_t *)inBytes;
415   int32_t indexes[16];
416   int32_t i;
417   for(i = 0; i < 16; ++i) {
418     indexes[i] = udata_readInt32(ds, inIndexes[i]);
419   }
420 
421   /* get the total length of the data */
422   int32_t size = indexes[UCNVSEL_INDEX_SIZE];
423   if(length >= 0) {
424     if(length < size) {
425       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
426                        length);
427       *status = U_INDEX_OUTOFBOUNDS_ERROR;
428       return 0;
429     }
430 
431     /* copy the data for inaccessible bytes */
432     if(inBytes != outBytes) {
433       uprv_memcpy(outBytes, inBytes, size);
434     }
435 
436     int32_t offset = 0, count;
437 
438     /* swap the int32_t indexes[] */
439     count = UCNVSEL_INDEX_COUNT*4;
440     ds->swapArray32(ds, inBytes, count, outBytes, status);
441     offset += count;
442 
443     /* swap the UTrie2 */
444     count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
445     utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
446     offset += count;
447 
448     /* swap the uint32_t pv[] */
449     count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
450     ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
451     offset += count;
452 
453     /* swap the encoding names */
454     count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
455     ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
456     offset += count;
457 
458     U_ASSERT(offset == size);
459   }
460 
461   return headerSize + size;
462 }
463 
464 /* unserialize a selector */
465 U_CAPI UConverterSelector* U_EXPORT2
ucnvsel_openFromSerialized(const void * buffer,int32_t length,UErrorCode * status)466 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
467   // check if already failed
468   if (U_FAILURE(*status)) {
469     return NULL;
470   }
471   // ensure args make sense!
472   const uint8_t *p = (const uint8_t *)buffer;
473   if (length <= 0 ||
474       (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
475   ) {
476     *status = U_ILLEGAL_ARGUMENT_ERROR;
477     return NULL;
478   }
479   // header
480   if (length < 32) {
481     // not even enough space for a minimal header
482     *status = U_INDEX_OUTOFBOUNDS_ERROR;
483     return NULL;
484   }
485   const DataHeader *pHeader = (const DataHeader *)p;
486   if (!(
487     pHeader->dataHeader.magic1==0xda &&
488     pHeader->dataHeader.magic2==0x27 &&
489     pHeader->info.dataFormat[0] == 0x43 &&
490     pHeader->info.dataFormat[1] == 0x53 &&
491     pHeader->info.dataFormat[2] == 0x65 &&
492     pHeader->info.dataFormat[3] == 0x6c
493   )) {
494     /* header not valid or dataFormat not recognized */
495     *status = U_INVALID_FORMAT_ERROR;
496     return NULL;
497   }
498   if (pHeader->info.formatVersion[0] != 1) {
499     *status = U_UNSUPPORTED_ERROR;
500     return NULL;
501   }
502   uint8_t* swapped = NULL;
503   if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
504       pHeader->info.charsetFamily != U_CHARSET_FAMILY
505   ) {
506     // swap the data
507     UDataSwapper *ds =
508       udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
509     int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
510     if (U_FAILURE(*status)) {
511       udata_closeSwapper(ds);
512       return NULL;
513     }
514     if (length < totalSize) {
515       udata_closeSwapper(ds);
516       *status = U_INDEX_OUTOFBOUNDS_ERROR;
517       return NULL;
518     }
519     swapped = (uint8_t*)uprv_malloc(totalSize);
520     if (swapped == NULL) {
521       udata_closeSwapper(ds);
522       *status = U_MEMORY_ALLOCATION_ERROR;
523       return NULL;
524     }
525     ucnvsel_swap(ds, p, length, swapped, status);
526     udata_closeSwapper(ds);
527     if (U_FAILURE(*status)) {
528       uprv_free(swapped);
529       return NULL;
530     }
531     p = swapped;
532     pHeader = (const DataHeader *)p;
533   }
534   if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
535     // not even enough space for the header and the indexes
536     uprv_free(swapped);
537     *status = U_INDEX_OUTOFBOUNDS_ERROR;
538     return NULL;
539   }
540   p += pHeader->dataHeader.headerSize;
541   length -= pHeader->dataHeader.headerSize;
542   // indexes
543   const int32_t *indexes = (const int32_t *)p;
544   if (length < indexes[UCNVSEL_INDEX_SIZE]) {
545     uprv_free(swapped);
546     *status = U_INDEX_OUTOFBOUNDS_ERROR;
547     return NULL;
548   }
549   p += UCNVSEL_INDEX_COUNT * 4;
550   // create and populate the selector object
551   UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
552   char **encodings =
553     (char **)uprv_malloc(
554       indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
555   if (sel == NULL || encodings == NULL) {
556     uprv_free(swapped);
557     uprv_free(sel);
558     uprv_free(encodings);
559     *status = U_MEMORY_ALLOCATION_ERROR;
560     return NULL;
561   }
562   uprv_memset(sel, 0, sizeof(UConverterSelector));
563   sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
564   sel->encodings = encodings;
565   sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
566   sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
567   sel->swapped = swapped;
568   // trie
569   sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
570                                         p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
571                                         status);
572   p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
573   if (U_FAILURE(*status)) {
574     ucnvsel_close(sel);
575     return NULL;
576   }
577   // bit vectors
578   sel->pv = (uint32_t *)p;
579   p += sel->pvCount * 4;
580   // encoding names
581   char* s = (char*)p;
582   for (int32_t i = 0; i < sel->encodingsCount; ++i) {
583     sel->encodings[i] = s;
584     s += uprv_strlen(s) + 1;
585   }
586   p += sel->encodingStrLength;
587 
588   return sel;
589 }
590 
591 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just
592 // iterate over the selected encodings
593 struct Enumerator {
594   int16_t* index;
595   int16_t length;
596   int16_t cur;
597   const UConverterSelector* sel;
598 };
599 
600 U_CDECL_BEGIN
601 
602 static void U_CALLCONV
ucnvsel_close_selector_iterator(UEnumeration * enumerator)603 ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
604   uprv_free(((Enumerator*)(enumerator->context))->index);
605   uprv_free(enumerator->context);
606   uprv_free(enumerator);
607 }
608 
609 
610 static int32_t U_CALLCONV
ucnvsel_count_encodings(UEnumeration * enumerator,UErrorCode * status)611 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
612   // check if already failed
613   if (U_FAILURE(*status)) {
614     return 0;
615   }
616   return ((Enumerator*)(enumerator->context))->length;
617 }
618 
619 
ucnvsel_next_encoding(UEnumeration * enumerator,int32_t * resultLength,UErrorCode * status)620 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
621                                                  int32_t* resultLength,
622                                                  UErrorCode* status) {
623   // check if already failed
624   if (U_FAILURE(*status)) {
625     return NULL;
626   }
627 
628   int16_t cur = ((Enumerator*)(enumerator->context))->cur;
629   const UConverterSelector* sel;
630   const char* result;
631   if (cur >= ((Enumerator*)(enumerator->context))->length) {
632     return NULL;
633   }
634   sel = ((Enumerator*)(enumerator->context))->sel;
635   result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
636   ((Enumerator*)(enumerator->context))->cur++;
637   if (resultLength) {
638     *resultLength = (int32_t)uprv_strlen(result);
639   }
640   return result;
641 }
642 
ucnvsel_reset_iterator(UEnumeration * enumerator,UErrorCode * status)643 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
644                                            UErrorCode* status) {
645   // check if already failed
646   if (U_FAILURE(*status)) {
647     return ;
648   }
649   ((Enumerator*)(enumerator->context))->cur = 0;
650 }
651 
652 U_CDECL_END
653 
654 
655 static const UEnumeration defaultEncodings = {
656   NULL,
657     NULL,
658     ucnvsel_close_selector_iterator,
659     ucnvsel_count_encodings,
660     uenum_unextDefault,
661     ucnvsel_next_encoding,
662     ucnvsel_reset_iterator
663 };
664 
665 
666 // internal fn to intersect two sets of masks
667 // returns whether the mask has reduced to all zeros
intersectMasks(uint32_t * dest,const uint32_t * source1,int32_t len)668 static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
669   int32_t i;
670   uint32_t oredDest = 0;
671   for (i = 0 ; i < len ; ++i) {
672     oredDest |= (dest[i] &= source1[i]);
673   }
674   return oredDest == 0;
675 }
676 
677 // internal fn to count how many 1's are there in a mask
678 // algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
countOnes(uint32_t * mask,int32_t len)679 static int16_t countOnes(uint32_t* mask, int32_t len) {
680   int32_t i, totalOnes = 0;
681   for (i = 0 ; i < len ; ++i) {
682     uint32_t ent = mask[i];
683     for (; ent; totalOnes++)
684     {
685       ent &= ent - 1; // clear the least significant bit set
686     }
687   }
688   return static_cast<int16_t>(totalOnes);
689 }
690 
691 
692 /* internal function! */
selectForMask(const UConverterSelector * sel,uint32_t * theMask,UErrorCode * status)693 static UEnumeration *selectForMask(const UConverterSelector* sel,
694                                    uint32_t *theMask, UErrorCode *status) {
695   LocalMemory<uint32_t> mask(theMask);
696   // this is the context we will use. Store a table of indices to which
697   // encodings are legit.
698   LocalMemory<Enumerator> result(static_cast<Enumerator *>(uprv_malloc(sizeof(Enumerator))));
699   if (result.isNull()) {
700     *status = U_MEMORY_ALLOCATION_ERROR;
701     return nullptr;
702   }
703   result->index = nullptr;  // this will be allocated later!
704   result->length = result->cur = 0;
705   result->sel = sel;
706 
707   LocalMemory<UEnumeration> en(static_cast<UEnumeration *>(uprv_malloc(sizeof(UEnumeration))));
708   if (en.isNull()) {
709     // TODO(markus): Combine Enumerator and UEnumeration into one struct.
710     *status = U_MEMORY_ALLOCATION_ERROR;
711     return nullptr;
712   }
713   memcpy(en.getAlias(), &defaultEncodings, sizeof(UEnumeration));
714 
715   int32_t columns = (sel->encodingsCount+31)/32;
716   int16_t numOnes = countOnes(mask.getAlias(), columns);
717   // now, we know the exact space we need for index
718   if (numOnes > 0) {
719     result->index = static_cast<int16_t*>(uprv_malloc(numOnes * sizeof(int16_t)));
720     if (result->index == nullptr) {
721       *status = U_MEMORY_ALLOCATION_ERROR;
722       return nullptr;
723     }
724     int32_t i, j;
725     int16_t k = 0;
726     for (j = 0 ; j < columns; j++) {
727       uint32_t v = mask[j];
728       for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
729         if ((v & 1) != 0) {
730           result->index[result->length++] = k;
731         }
732         v >>= 1;
733       }
734     }
735   } //otherwise, index will remain NULL (and will never be touched by
736     //the enumerator code anyway)
737   en->context = result.orphan();
738   return en.orphan();
739 }
740 
741 /* check a string against the selector - UTF16 version */
742 U_CAPI UEnumeration * U_EXPORT2
ucnvsel_selectForString(const UConverterSelector * sel,const UChar * s,int32_t length,UErrorCode * status)743 ucnvsel_selectForString(const UConverterSelector* sel,
744                         const UChar *s, int32_t length, UErrorCode *status) {
745   // check if already failed
746   if (U_FAILURE(*status)) {
747     return NULL;
748   }
749   // ensure args make sense!
750   if (sel == NULL || (s == NULL && length != 0)) {
751     *status = U_ILLEGAL_ARGUMENT_ERROR;
752     return NULL;
753   }
754 
755   int32_t columns = (sel->encodingsCount+31)/32;
756   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
757   if (mask == NULL) {
758     *status = U_MEMORY_ALLOCATION_ERROR;
759     return NULL;
760   }
761   uprv_memset(mask, ~0, columns *4);
762 
763   if(s!=NULL) {
764     const UChar *limit;
765     if (length >= 0) {
766       limit = s + length;
767     } else {
768       limit = NULL;
769     }
770 
771     while (limit == NULL ? *s != 0 : s != limit) {
772       UChar32 c;
773       uint16_t pvIndex;
774       UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
775       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
776         break;
777       }
778     }
779   }
780   return selectForMask(sel, mask, status);
781 }
782 
783 /* check a string against the selector - UTF8 version */
784 U_CAPI UEnumeration * U_EXPORT2
ucnvsel_selectForUTF8(const UConverterSelector * sel,const char * s,int32_t length,UErrorCode * status)785 ucnvsel_selectForUTF8(const UConverterSelector* sel,
786                       const char *s, int32_t length, UErrorCode *status) {
787   // check if already failed
788   if (U_FAILURE(*status)) {
789     return NULL;
790   }
791   // ensure args make sense!
792   if (sel == NULL || (s == NULL && length != 0)) {
793     *status = U_ILLEGAL_ARGUMENT_ERROR;
794     return NULL;
795   }
796 
797   int32_t columns = (sel->encodingsCount+31)/32;
798   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
799   if (mask == NULL) {
800     *status = U_MEMORY_ALLOCATION_ERROR;
801     return NULL;
802   }
803   uprv_memset(mask, ~0, columns *4);
804 
805   if (length < 0) {
806     length = (int32_t)uprv_strlen(s);
807   }
808 
809   if(s!=NULL) {
810     const char *limit = s + length;
811 
812     while (s != limit) {
813       uint16_t pvIndex;
814       UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
815       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
816         break;
817       }
818     }
819   }
820   return selectForMask(sel, mask, status);
821 }
822 
823 #endif  // !UCONFIG_NO_CONVERSION
824