1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 *   Copyright (C) 2001-2014, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 *******************************************************************************
10 *   file name:  unormcmp.cpp
11 *   encoding:   UTF-8
12 *   tab size:   8 (not used)
13 *   indentation:4
14 *
15 *   created on: 2004sep13
16 *   created by: Markus W. Scherer
17 *
18 *   unorm_compare() function moved here from unorm.cpp for better modularization.
19 *   Depends on both normalization and case folding.
20 *   Allows unorm.cpp to not depend on any character properties code.
21 */
22 
23 #include "unicode/utypes.h"
24 
25 #if !UCONFIG_NO_NORMALIZATION
26 
27 #include "unicode/unorm.h"
28 #include "unicode/ustring.h"
29 #include "cmemory.h"
30 #include "normalizer2impl.h"
31 #include "ucase.h"
32 #include "uprops.h"
33 #include "ustr_imp.h"
34 
35 U_NAMESPACE_USE
36 
37 /* compare canonically equivalent ------------------------------------------- */
38 
39 /*
40  * Compare two strings for canonical equivalence.
41  * Further options include case-insensitive comparison and
42  * code point order (as opposed to code unit order).
43  *
44  * In this function, canonical equivalence is optional as well.
45  * If canonical equivalence is tested, then both strings must fulfill
46  * the FCD check.
47  *
48  * Semantically, this is equivalent to
49  *   strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2)))
50  * where code point order, NFD and foldCase are all optional.
51  *
52  * String comparisons almost always yield results before processing both strings
53  * completely.
54  * They are generally more efficient working incrementally instead of
55  * performing the sub-processing (strlen, normalization, case-folding)
56  * on the entire strings first.
57  *
58  * It is also unnecessary to not normalize identical characters.
59  *
60  * This function works in principle as follows:
61  *
62  * loop {
63  *   get one code unit c1 from s1 (-1 if end of source)
64  *   get one code unit c2 from s2 (-1 if end of source)
65  *
66  *   if(either string finished) {
67  *     return result;
68  *   }
69  *   if(c1==c2) {
70  *     continue;
71  *   }
72  *
73  *   // c1!=c2
74  *   try to decompose/case-fold c1/c2, and continue if one does;
75  *
76  *   // still c1!=c2 and neither decomposes/case-folds, return result
77  *   return c1-c2;
78  * }
79  *
80  * When a character decomposes, then the pointer for that source changes to
81  * the decomposition, pushing the previous pointer onto a stack.
82  * When the end of the decomposition is reached, then the code unit reader
83  * pops the previous source from the stack.
84  * (Same for case-folding.)
85  *
86  * This is complicated further by operating on variable-width UTF-16.
87  * The top part of the loop works on code units, while lookups for decomposition
88  * and case-folding need code points.
89  * Code points are assembled after the equality/end-of-source part.
90  * The source pointer is only advanced beyond all code units when the code point
91  * actually decomposes/case-folds.
92  *
93  * If we were on a trail surrogate unit when assembling a code point,
94  * and the code point decomposes/case-folds, then the decomposition/folding
95  * result must be compared with the part of the other string that corresponds to
96  * this string's lead surrogate.
97  * Since we only assemble a code point when hitting a trail unit when the
98  * preceding lead units were identical, we back up the other string by one unit
99  * in such a case.
100  *
101  * The optional code point order comparison at the end works with
102  * the same fix-up as the other code point order comparison functions.
103  * See ustring.c and the comment near the end of this function.
104  *
105  * Assumption: A decomposition or case-folding result string never contains
106  * a single surrogate. This is a safe assumption in the Unicode Standard.
107  * Therefore, we do not need to check for surrogate pairs across
108  * decomposition/case-folding boundaries.
109  *
110  * Further assumptions (see verifications tstnorm.cpp):
111  * The API function checks for FCD first, while the core function
112  * first case-folds and then decomposes. This requires that case-folding does not
113  * un-FCD any strings.
114  *
115  * The API function may also NFD the input and turn off decomposition.
116  * This requires that case-folding does not un-NFD strings either.
117  *
118  * TODO If any of the above two assumptions is violated,
119  * then this entire code must be re-thought.
120  * If this happens, then a simple solution is to case-fold both strings up front
121  * and to turn off UNORM_INPUT_IS_FCD.
122  * We already do this when not both strings are in FCD because makeFCD
123  * would be a partial NFD before the case folding, which does not work.
124  * Note that all of this is only a problem when case-folding _and_
125  * canonical equivalence come together.
126  * (Comments in unorm_compare() are more up to date than this TODO.)
127  */
128 
129 /* stack element for previous-level source/decomposition pointers */
130 struct CmpEquivLevel {
131     const UChar *start, *s, *limit;
132 };
133 typedef struct CmpEquivLevel CmpEquivLevel;
134 
135 /**
136  * Internal option for unorm_cmpEquivFold() for decomposing.
137  * If not set, just do strcasecmp().
138  */
139 #define _COMPARE_EQUIV 0x80000
140 
141 /* internal function */
142 static int32_t
unorm_cmpEquivFold(const UChar * s1,int32_t length1,const UChar * s2,int32_t length2,uint32_t options,UErrorCode * pErrorCode)143 unorm_cmpEquivFold(const UChar *s1, int32_t length1,
144                    const UChar *s2, int32_t length2,
145                    uint32_t options,
146                    UErrorCode *pErrorCode) {
147     const Normalizer2Impl *nfcImpl;
148 
149     /* current-level start/limit - s1/s2 as current */
150     const UChar *start1, *start2, *limit1, *limit2;
151 
152     /* decomposition and case folding variables */
153     const UChar *p;
154     int32_t length;
155 
156     /* stacks of previous-level start/current/limit */
157     CmpEquivLevel stack1[2], stack2[2];
158 
159     /* buffers for algorithmic decompositions */
160     UChar decomp1[4], decomp2[4];
161 
162     /* case folding buffers, only use current-level start/limit */
163     UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1];
164 
165     /* track which is the current level per string */
166     int32_t level1, level2;
167 
168     /* current code units, and code points for lookups */
169     UChar32 c1, c2, cp1, cp2;
170 
171     /* no argument error checking because this itself is not an API */
172 
173     /*
174      * assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set
175      * otherwise this function must behave exactly as uprv_strCompare()
176      * not checking for that here makes testing this function easier
177      */
178 
179     /* normalization/properties data loaded? */
180     if((options&_COMPARE_EQUIV)!=0) {
181         nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode);
182     } else {
183         nfcImpl=NULL;
184     }
185     if(U_FAILURE(*pErrorCode)) {
186         return 0;
187     }
188 
189     /* initialize */
190     start1=s1;
191     if(length1==-1) {
192         limit1=NULL;
193     } else {
194         limit1=s1+length1;
195     }
196 
197     start2=s2;
198     if(length2==-1) {
199         limit2=NULL;
200     } else {
201         limit2=s2+length2;
202     }
203 
204     level1=level2=0;
205     c1=c2=-1;
206 
207     /* comparison loop */
208     for(;;) {
209         /*
210          * here a code unit value of -1 means "get another code unit"
211          * below it will mean "this source is finished"
212          */
213 
214         if(c1<0) {
215             /* get next code unit from string 1, post-increment */
216             for(;;) {
217                 if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) {
218                     if(level1==0) {
219                         c1=-1;
220                         break;
221                     }
222                 } else {
223                     ++s1;
224                     break;
225                 }
226 
227                 /* reached end of level buffer, pop one level */
228                 do {
229                     --level1;
230                     start1=stack1[level1].start;    /*Not uninitialized*/
231                 } while(start1==NULL);
232                 s1=stack1[level1].s;                /*Not uninitialized*/
233                 limit1=stack1[level1].limit;        /*Not uninitialized*/
234             }
235         }
236 
237         if(c2<0) {
238             /* get next code unit from string 2, post-increment */
239             for(;;) {
240                 if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) {
241                     if(level2==0) {
242                         c2=-1;
243                         break;
244                     }
245                 } else {
246                     ++s2;
247                     break;
248                 }
249 
250                 /* reached end of level buffer, pop one level */
251                 do {
252                     --level2;
253                     start2=stack2[level2].start;    /*Not uninitialized*/
254                 } while(start2==NULL);
255                 s2=stack2[level2].s;                /*Not uninitialized*/
256                 limit2=stack2[level2].limit;        /*Not uninitialized*/
257             }
258         }
259 
260         /*
261          * compare c1 and c2
262          * either variable c1, c2 is -1 only if the corresponding string is finished
263          */
264         if(c1==c2) {
265             if(c1<0) {
266                 return 0;   /* c1==c2==-1 indicating end of strings */
267             }
268             c1=c2=-1;       /* make us fetch new code units */
269             continue;
270         } else if(c1<0) {
271             return -1;      /* string 1 ends before string 2 */
272         } else if(c2<0) {
273             return 1;       /* string 2 ends before string 1 */
274         }
275         /* c1!=c2 && c1>=0 && c2>=0 */
276 
277         /* get complete code points for c1, c2 for lookups if either is a surrogate */
278         cp1=c1;
279         if(U_IS_SURROGATE(c1)) {
280             UChar c;
281 
282             if(U_IS_SURROGATE_LEAD(c1)) {
283                 if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) {
284                     /* advance ++s1; only below if cp1 decomposes/case-folds */
285                     cp1=U16_GET_SUPPLEMENTARY(c1, c);
286                 }
287             } else /* isTrail(c1) */ {
288                 if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) {
289                     cp1=U16_GET_SUPPLEMENTARY(c, c1);
290                 }
291             }
292         }
293 
294         cp2=c2;
295         if(U_IS_SURROGATE(c2)) {
296             UChar c;
297 
298             if(U_IS_SURROGATE_LEAD(c2)) {
299                 if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) {
300                     /* advance ++s2; only below if cp2 decomposes/case-folds */
301                     cp2=U16_GET_SUPPLEMENTARY(c2, c);
302                 }
303             } else /* isTrail(c2) */ {
304                 if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) {
305                     cp2=U16_GET_SUPPLEMENTARY(c, c2);
306                 }
307             }
308         }
309 
310         /*
311          * go down one level for each string
312          * continue with the main loop as soon as there is a real change
313          */
314 
315         if( level1==0 && (options&U_COMPARE_IGNORE_CASE) &&
316             (length=ucase_toFullFolding((UChar32)cp1, &p, options))>=0
317         ) {
318             /* cp1 case-folds to the code point "length" or to p[length] */
319             if(U_IS_SURROGATE(c1)) {
320                 if(U_IS_SURROGATE_LEAD(c1)) {
321                     /* advance beyond source surrogate pair if it case-folds */
322                     ++s1;
323                 } else /* isTrail(c1) */ {
324                     /*
325                      * we got a supplementary code point when hitting its trail surrogate,
326                      * therefore the lead surrogate must have been the same as in the other string;
327                      * compare this decomposition with the lead surrogate in the other string
328                      * remember that this simulates bulk text replacement:
329                      * the decomposition would replace the entire code point
330                      */
331                     --s2;
332                     c2=*(s2-1);
333                 }
334             }
335 
336             /* push current level pointers */
337             stack1[0].start=start1;
338             stack1[0].s=s1;
339             stack1[0].limit=limit1;
340             ++level1;
341 
342             /* copy the folding result to fold1[] */
343             if(length<=UCASE_MAX_STRING_LENGTH) {
344                 u_memcpy(fold1, p, length);
345             } else {
346                 int32_t i=0;
347                 U16_APPEND_UNSAFE(fold1, i, length);
348                 length=i;
349             }
350 
351             /* set next level pointers to case folding */
352             start1=s1=fold1;
353             limit1=fold1+length;
354 
355             /* get ready to read from decomposition, continue with loop */
356             c1=-1;
357             continue;
358         }
359 
360         if( level2==0 && (options&U_COMPARE_IGNORE_CASE) &&
361             (length=ucase_toFullFolding((UChar32)cp2, &p, options))>=0
362         ) {
363             /* cp2 case-folds to the code point "length" or to p[length] */
364             if(U_IS_SURROGATE(c2)) {
365                 if(U_IS_SURROGATE_LEAD(c2)) {
366                     /* advance beyond source surrogate pair if it case-folds */
367                     ++s2;
368                 } else /* isTrail(c2) */ {
369                     /*
370                      * we got a supplementary code point when hitting its trail surrogate,
371                      * therefore the lead surrogate must have been the same as in the other string;
372                      * compare this decomposition with the lead surrogate in the other string
373                      * remember that this simulates bulk text replacement:
374                      * the decomposition would replace the entire code point
375                      */
376                     --s1;
377                     c1=*(s1-1);
378                 }
379             }
380 
381             /* push current level pointers */
382             stack2[0].start=start2;
383             stack2[0].s=s2;
384             stack2[0].limit=limit2;
385             ++level2;
386 
387             /* copy the folding result to fold2[] */
388             if(length<=UCASE_MAX_STRING_LENGTH) {
389                 u_memcpy(fold2, p, length);
390             } else {
391                 int32_t i=0;
392                 U16_APPEND_UNSAFE(fold2, i, length);
393                 length=i;
394             }
395 
396             /* set next level pointers to case folding */
397             start2=s2=fold2;
398             limit2=fold2+length;
399 
400             /* get ready to read from decomposition, continue with loop */
401             c2=-1;
402             continue;
403         }
404 
405         if( level1<2 && (options&_COMPARE_EQUIV) &&
406             0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length))
407         ) {
408             /* cp1 decomposes into p[length] */
409             if(U_IS_SURROGATE(c1)) {
410                 if(U_IS_SURROGATE_LEAD(c1)) {
411                     /* advance beyond source surrogate pair if it decomposes */
412                     ++s1;
413                 } else /* isTrail(c1) */ {
414                     /*
415                      * we got a supplementary code point when hitting its trail surrogate,
416                      * therefore the lead surrogate must have been the same as in the other string;
417                      * compare this decomposition with the lead surrogate in the other string
418                      * remember that this simulates bulk text replacement:
419                      * the decomposition would replace the entire code point
420                      */
421                     --s2;
422                     c2=*(s2-1);
423                 }
424             }
425 
426             /* push current level pointers */
427             stack1[level1].start=start1;
428             stack1[level1].s=s1;
429             stack1[level1].limit=limit1;
430             ++level1;
431 
432             /* set empty intermediate level if skipped */
433             if(level1<2) {
434                 stack1[level1++].start=NULL;
435             }
436 
437             /* set next level pointers to decomposition */
438             start1=s1=p;
439             limit1=p+length;
440 
441             /* get ready to read from decomposition, continue with loop */
442             c1=-1;
443             continue;
444         }
445 
446         if( level2<2 && (options&_COMPARE_EQUIV) &&
447             0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length))
448         ) {
449             /* cp2 decomposes into p[length] */
450             if(U_IS_SURROGATE(c2)) {
451                 if(U_IS_SURROGATE_LEAD(c2)) {
452                     /* advance beyond source surrogate pair if it decomposes */
453                     ++s2;
454                 } else /* isTrail(c2) */ {
455                     /*
456                      * we got a supplementary code point when hitting its trail surrogate,
457                      * therefore the lead surrogate must have been the same as in the other string;
458                      * compare this decomposition with the lead surrogate in the other string
459                      * remember that this simulates bulk text replacement:
460                      * the decomposition would replace the entire code point
461                      */
462                     --s1;
463                     c1=*(s1-1);
464                 }
465             }
466 
467             /* push current level pointers */
468             stack2[level2].start=start2;
469             stack2[level2].s=s2;
470             stack2[level2].limit=limit2;
471             ++level2;
472 
473             /* set empty intermediate level if skipped */
474             if(level2<2) {
475                 stack2[level2++].start=NULL;
476             }
477 
478             /* set next level pointers to decomposition */
479             start2=s2=p;
480             limit2=p+length;
481 
482             /* get ready to read from decomposition, continue with loop */
483             c2=-1;
484             continue;
485         }
486 
487         /*
488          * no decomposition/case folding, max level for both sides:
489          * return difference result
490          *
491          * code point order comparison must not just return cp1-cp2
492          * because when single surrogates are present then the surrogate pairs
493          * that formed cp1 and cp2 may be from different string indexes
494          *
495          * example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units
496          * c1=d800 cp1=10001 c2=dc00 cp2=10000
497          * cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 }
498          *
499          * therefore, use same fix-up as in ustring.c/uprv_strCompare()
500          * except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++
501          * so we have slightly different pointer/start/limit comparisons here
502          */
503 
504         if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) {
505             /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */
506             if(
507                 (c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) ||
508                 (U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2)))
509             ) {
510                 /* part of a surrogate pair, leave >=d800 */
511             } else {
512                 /* BMP code point - may be surrogate code point - make <d800 */
513                 c1-=0x2800;
514             }
515 
516             if(
517                 (c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) ||
518                 (U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2)))
519             ) {
520                 /* part of a surrogate pair, leave >=d800 */
521             } else {
522                 /* BMP code point - may be surrogate code point - make <d800 */
523                 c2-=0x2800;
524             }
525         }
526 
527         return c1-c2;
528     }
529 }
530 
531 static
_normalize(const Normalizer2 * n2,const UChar * s,int32_t length,UnicodeString & normalized,UErrorCode * pErrorCode)532 UBool _normalize(const Normalizer2 *n2, const UChar *s, int32_t length,
533                 UnicodeString &normalized, UErrorCode *pErrorCode) {
534     UnicodeString str(length<0, s, length);
535 
536     // check if s fulfill the conditions
537     int32_t spanQCYes=n2->spanQuickCheckYes(str, *pErrorCode);
538     if (U_FAILURE(*pErrorCode)) {
539         return FALSE;
540     }
541     /*
542      * ICU 2.4 had a further optimization:
543      * If both strings were not in FCD, then they were both NFD'ed,
544      * and the _COMPARE_EQUIV option was turned off.
545      * It is not entirely clear that this is valid with the current
546      * definition of the canonical caseless match.
547      * Therefore, ICU 2.6 removes that optimization.
548      */
549     if(spanQCYes<str.length()) {
550         UnicodeString unnormalized=str.tempSubString(spanQCYes);
551         normalized.setTo(FALSE, str.getBuffer(), spanQCYes);
552         n2->normalizeSecondAndAppend(normalized, unnormalized, *pErrorCode);
553         if (U_SUCCESS(*pErrorCode)) {
554             return TRUE;
555         }
556     }
557     return FALSE;
558 }
559 
560 U_CAPI int32_t U_EXPORT2
unorm_compare(const UChar * s1,int32_t length1,const UChar * s2,int32_t length2,uint32_t options,UErrorCode * pErrorCode)561 unorm_compare(const UChar *s1, int32_t length1,
562               const UChar *s2, int32_t length2,
563               uint32_t options,
564               UErrorCode *pErrorCode) {
565     /* argument checking */
566     if(U_FAILURE(*pErrorCode)) {
567         return 0;
568     }
569     if(s1==0 || length1<-1 || s2==0 || length2<-1) {
570         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
571         return 0;
572     }
573 
574     UnicodeString fcd1, fcd2;
575     int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
576     options|=_COMPARE_EQUIV;
577 
578     /*
579      * UAX #21 Case Mappings, as fixed for Unicode version 4
580      * (see Jitterbug 2021), defines a canonical caseless match as
581      *
582      * A string X is a canonical caseless match
583      * for a string Y if and only if
584      * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))
585      *
586      * For better performance, we check for FCD (or let the caller tell us that
587      * both strings are in FCD) for the inner normalization.
588      * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that
589      * case-folding preserves the FCD-ness of a string.
590      * The outer normalization is then only performed by unorm_cmpEquivFold()
591      * when there is a difference.
592      *
593      * Exception: When using the Turkic case-folding option, we do perform
594      * full NFD first. This is because in the Turkic case precomposed characters
595      * with 0049 capital I or 0069 small i fold differently whether they
596      * are first decomposed or not, so an FCD check - a check only for
597      * canonical order - is not sufficient.
598      */
599     if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) {
600         const Normalizer2 *n2;
601         if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) {
602             n2=Normalizer2::getNFDInstance(*pErrorCode);
603         } else {
604             n2=Normalizer2Factory::getFCDInstance(*pErrorCode);
605         }
606         if (U_FAILURE(*pErrorCode)) {
607             return 0;
608         }
609 
610         if(normOptions&UNORM_UNICODE_3_2) {
611             const UnicodeSet *uni32=uniset_getUnicode32Instance(*pErrorCode);
612             FilteredNormalizer2 fn2(*n2, *uni32);
613             if(_normalize(&fn2, s1, length1, fcd1, pErrorCode)) {
614                 s1=fcd1.getBuffer();
615                 length1=fcd1.length();
616             }
617             if(_normalize(&fn2, s2, length2, fcd2, pErrorCode)) {
618                 s2=fcd2.getBuffer();
619                 length2=fcd2.length();
620             }
621         } else {
622             if(_normalize(n2, s1, length1, fcd1, pErrorCode)) {
623                 s1=fcd1.getBuffer();
624                 length1=fcd1.length();
625             }
626             if(_normalize(n2, s2, length2, fcd2, pErrorCode)) {
627                 s2=fcd2.getBuffer();
628                 length2=fcd2.length();
629             }
630         }
631     }
632 
633     if(U_SUCCESS(*pErrorCode)) {
634         return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode);
635     } else {
636         return 0;
637     }
638 }
639 
640 #endif /* #if !UCONFIG_NO_NORMALIZATION */
641