1 /*
2  * MPEG Audio decoder
3  * Copyright (c) 2001, 2002 Fabrice Bellard
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG Audio decoder
25  */
26 
27 #include "libavutil/attributes.h"
28 #include "libavutil/avassert.h"
29 #include "libavutil/channel_layout.h"
30 #include "libavutil/float_dsp.h"
31 #include "libavutil/libm.h"
32 #include "avcodec.h"
33 #include "get_bits.h"
34 #include "internal.h"
35 #include "mathops.h"
36 #include "mpegaudiodsp.h"
37 
38 /*
39  * TODO:
40  *  - test lsf / mpeg25 extensively.
41  */
42 
43 #include "mpegaudio.h"
44 #include "mpegaudiodecheader.h"
45 
46 #define BACKSTEP_SIZE 512
47 #define EXTRABYTES 24
48 #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
49 
50 /* layer 3 "granule" */
51 typedef struct GranuleDef {
52     uint8_t scfsi;
53     int part2_3_length;
54     int big_values;
55     int global_gain;
56     int scalefac_compress;
57     uint8_t block_type;
58     uint8_t switch_point;
59     int table_select[3];
60     int subblock_gain[3];
61     uint8_t scalefac_scale;
62     uint8_t count1table_select;
63     int region_size[3]; /* number of huffman codes in each region */
64     int preflag;
65     int short_start, long_end; /* long/short band indexes */
66     uint8_t scale_factors[40];
67     DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
68 } GranuleDef;
69 
70 typedef struct MPADecodeContext {
71     MPA_DECODE_HEADER
72     uint8_t last_buf[LAST_BUF_SIZE];
73     int last_buf_size;
74     int extrasize;
75     /* next header (used in free format parsing) */
76     uint32_t free_format_next_header;
77     GetBitContext gb;
78     GetBitContext in_gb;
79     DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
80     int synth_buf_offset[MPA_MAX_CHANNELS];
81     DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
82     INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
83     GranuleDef granules[2][2]; /* Used in Layer 3 */
84     int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
85     int dither_state;
86     int err_recognition;
87     AVCodecContext* avctx;
88     MPADSPContext mpadsp;
89     AVFloatDSPContext *fdsp;
90     AVFrame *frame;
91 } MPADecodeContext;
92 
93 #define HEADER_SIZE 4
94 
95 #include "mpegaudiodata.h"
96 #include "mpegaudiodectab.h"
97 
98 /* vlc structure for decoding layer 3 huffman tables */
99 static VLC huff_vlc[16];
100 static VLC_TYPE huff_vlc_tables[
101     0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
102   142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
103   ][2];
104 static const int huff_vlc_tables_sizes[16] = {
105     0,  128,  128,  128,  130,  128,  154,  166,
106   142,  204,  190,  170,  542,  460,  662,  414
107 };
108 static VLC huff_quad_vlc[2];
109 static VLC_TYPE  huff_quad_vlc_tables[128+16][2];
110 static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
111 /* computed from band_size_long */
112 static uint16_t band_index_long[9][23];
113 #include "mpegaudio_tablegen.h"
114 /* intensity stereo coef table */
115 static INTFLOAT is_table[2][16];
116 static INTFLOAT is_table_lsf[2][2][16];
117 static INTFLOAT csa_table[8][4];
118 
119 static int16_t division_tab3[1<<6 ];
120 static int16_t division_tab5[1<<8 ];
121 static int16_t division_tab9[1<<11];
122 
123 static int16_t * const division_tabs[4] = {
124     division_tab3, division_tab5, NULL, division_tab9
125 };
126 
127 /* lower 2 bits: modulo 3, higher bits: shift */
128 static uint16_t scale_factor_modshift[64];
129 /* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
130 static int32_t scale_factor_mult[15][3];
131 /* mult table for layer 2 group quantization */
132 
133 #define SCALE_GEN(v) \
134 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
135 
136 static const int32_t scale_factor_mult2[3][3] = {
137     SCALE_GEN(4.0 / 3.0), /* 3 steps */
138     SCALE_GEN(4.0 / 5.0), /* 5 steps */
139     SCALE_GEN(4.0 / 9.0), /* 9 steps */
140 };
141 
142 /**
143  * Convert region offsets to region sizes and truncate
144  * size to big_values.
145  */
region_offset2size(GranuleDef * g)146 static void region_offset2size(GranuleDef *g)
147 {
148     int i, k, j = 0;
149     g->region_size[2] = 576 / 2;
150     for (i = 0; i < 3; i++) {
151         k = FFMIN(g->region_size[i], g->big_values);
152         g->region_size[i] = k - j;
153         j = k;
154     }
155 }
156 
init_short_region(MPADecodeContext * s,GranuleDef * g)157 static void init_short_region(MPADecodeContext *s, GranuleDef *g)
158 {
159     if (g->block_type == 2) {
160         if (s->sample_rate_index != 8)
161             g->region_size[0] = (36 / 2);
162         else
163             g->region_size[0] = (72 / 2);
164     } else {
165         if (s->sample_rate_index <= 2)
166             g->region_size[0] = (36 / 2);
167         else if (s->sample_rate_index != 8)
168             g->region_size[0] = (54 / 2);
169         else
170             g->region_size[0] = (108 / 2);
171     }
172     g->region_size[1] = (576 / 2);
173 }
174 
init_long_region(MPADecodeContext * s,GranuleDef * g,int ra1,int ra2)175 static void init_long_region(MPADecodeContext *s, GranuleDef *g,
176                              int ra1, int ra2)
177 {
178     int l;
179     g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
180     /* should not overflow */
181     l = FFMIN(ra1 + ra2 + 2, 22);
182     g->region_size[1] = band_index_long[s->sample_rate_index][      l] >> 1;
183 }
184 
compute_band_indexes(MPADecodeContext * s,GranuleDef * g)185 static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
186 {
187     if (g->block_type == 2) {
188         if (g->switch_point) {
189             if(s->sample_rate_index == 8)
190                 avpriv_request_sample(s->avctx, "switch point in 8khz");
191             /* if switched mode, we handle the 36 first samples as
192                 long blocks.  For 8000Hz, we handle the 72 first
193                 exponents as long blocks */
194             if (s->sample_rate_index <= 2)
195                 g->long_end = 8;
196             else
197                 g->long_end = 6;
198 
199             g->short_start = 3;
200         } else {
201             g->long_end    = 0;
202             g->short_start = 0;
203         }
204     } else {
205         g->short_start = 13;
206         g->long_end    = 22;
207     }
208 }
209 
210 /* layer 1 unscaling */
211 /* n = number of bits of the mantissa minus 1 */
l1_unscale(int n,int mant,int scale_factor)212 static inline int l1_unscale(int n, int mant, int scale_factor)
213 {
214     int shift, mod;
215     int64_t val;
216 
217     shift   = scale_factor_modshift[scale_factor];
218     mod     = shift & 3;
219     shift >>= 2;
220     val     = MUL64((int)(mant + (-1U << n) + 1), scale_factor_mult[n-1][mod]);
221     shift  += n;
222     /* NOTE: at this point, 1 <= shift >= 21 + 15 */
223     return (int)((val + (1LL << (shift - 1))) >> shift);
224 }
225 
l2_unscale_group(int steps,int mant,int scale_factor)226 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
227 {
228     int shift, mod, val;
229 
230     shift   = scale_factor_modshift[scale_factor];
231     mod     = shift & 3;
232     shift >>= 2;
233 
234     val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
235     /* NOTE: at this point, 0 <= shift <= 21 */
236     if (shift > 0)
237         val = (val + (1 << (shift - 1))) >> shift;
238     return val;
239 }
240 
241 /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
l3_unscale(int value,int exponent)242 static inline int l3_unscale(int value, int exponent)
243 {
244     unsigned int m;
245     int e;
246 
247     e  = table_4_3_exp  [4 * value + (exponent & 3)];
248     m  = table_4_3_value[4 * value + (exponent & 3)];
249     e -= exponent >> 2;
250 #ifdef DEBUG
251     if(e < 1)
252         av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
253 #endif
254     if (e > (SUINT)31)
255         return 0;
256     m = (m + ((1U << e)>>1)) >> e;
257 
258     return m;
259 }
260 
decode_init_static(void)261 static av_cold void decode_init_static(void)
262 {
263     int i, j, k;
264     int offset;
265 
266     /* scale factors table for layer 1/2 */
267     for (i = 0; i < 64; i++) {
268         int shift, mod;
269         /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
270         shift = i / 3;
271         mod   = i % 3;
272         scale_factor_modshift[i] = mod | (shift << 2);
273     }
274 
275     /* scale factor multiply for layer 1 */
276     for (i = 0; i < 15; i++) {
277         int n, norm;
278         n = i + 2;
279         norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
280         scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0          * 2.0), FRAC_BITS);
281         scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
282         scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
283         ff_dlog(NULL, "%d: norm=%x s=%"PRIx32" %"PRIx32" %"PRIx32"\n", i,
284                 (unsigned)norm,
285                 scale_factor_mult[i][0],
286                 scale_factor_mult[i][1],
287                 scale_factor_mult[i][2]);
288     }
289 
290     RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
291 
292     /* huffman decode tables */
293     offset = 0;
294     for (i = 1; i < 16; i++) {
295         const HuffTable *h = &mpa_huff_tables[i];
296         int xsize, x, y;
297         uint8_t  tmp_bits [512] = { 0 };
298         uint16_t tmp_codes[512] = { 0 };
299 
300         xsize = h->xsize;
301 
302         j = 0;
303         for (x = 0; x < xsize; x++) {
304             for (y = 0; y < xsize; y++) {
305                 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
306                 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
307             }
308         }
309 
310         /* XXX: fail test */
311         huff_vlc[i].table = huff_vlc_tables+offset;
312         huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
313         init_vlc(&huff_vlc[i], 7, 512,
314                  tmp_bits, 1, 1, tmp_codes, 2, 2,
315                  INIT_VLC_USE_NEW_STATIC);
316         offset += huff_vlc_tables_sizes[i];
317     }
318     av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
319 
320     offset = 0;
321     for (i = 0; i < 2; i++) {
322         huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
323         huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
324         init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
325                  mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
326                  INIT_VLC_USE_NEW_STATIC);
327         offset += huff_quad_vlc_tables_sizes[i];
328     }
329     av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
330 
331     for (i = 0; i < 9; i++) {
332         k = 0;
333         for (j = 0; j < 22; j++) {
334             band_index_long[i][j] = k;
335             k += band_size_long[i][j];
336         }
337         band_index_long[i][22] = k;
338     }
339 
340     /* compute n ^ (4/3) and store it in mantissa/exp format */
341 
342     mpegaudio_tableinit();
343 
344     for (i = 0; i < 4; i++) {
345         if (ff_mpa_quant_bits[i] < 0) {
346             for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
347                 int val1, val2, val3, steps;
348                 int val = j;
349                 steps   = ff_mpa_quant_steps[i];
350                 val1    = val % steps;
351                 val    /= steps;
352                 val2    = val % steps;
353                 val3    = val / steps;
354                 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
355             }
356         }
357     }
358 
359 
360     for (i = 0; i < 7; i++) {
361         float f;
362         INTFLOAT v;
363         if (i != 6) {
364             f = tan((double)i * M_PI / 12.0);
365             v = FIXR(f / (1.0 + f));
366         } else {
367             v = FIXR(1.0);
368         }
369         is_table[0][    i] = v;
370         is_table[1][6 - i] = v;
371     }
372     /* invalid values */
373     for (i = 7; i < 16; i++)
374         is_table[0][i] = is_table[1][i] = 0.0;
375 
376     for (i = 0; i < 16; i++) {
377         double f;
378         int e, k;
379 
380         for (j = 0; j < 2; j++) {
381             e = -(j + 1) * ((i + 1) >> 1);
382             f = exp2(e / 4.0);
383             k = i & 1;
384             is_table_lsf[j][k ^ 1][i] = FIXR(f);
385             is_table_lsf[j][k    ][i] = FIXR(1.0);
386             ff_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
387                     i, j, (float) is_table_lsf[j][0][i],
388                     (float) is_table_lsf[j][1][i]);
389         }
390     }
391 
392     for (i = 0; i < 8; i++) {
393         double ci, cs, ca;
394         ci = ci_table[i];
395         cs = 1.0 / sqrt(1.0 + ci * ci);
396         ca = cs * ci;
397 #if !USE_FLOATS
398         csa_table[i][0] = FIXHR(cs/4);
399         csa_table[i][1] = FIXHR(ca/4);
400         csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
401         csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
402 #else
403         csa_table[i][0] = cs;
404         csa_table[i][1] = ca;
405         csa_table[i][2] = ca + cs;
406         csa_table[i][3] = ca - cs;
407 #endif
408     }
409 }
410 
411 #if USE_FLOATS
decode_close(AVCodecContext * avctx)412 static av_cold int decode_close(AVCodecContext * avctx)
413 {
414     MPADecodeContext *s = avctx->priv_data;
415     av_freep(&s->fdsp);
416 
417     return 0;
418 }
419 #endif
420 
decode_init(AVCodecContext * avctx)421 static av_cold int decode_init(AVCodecContext * avctx)
422 {
423     static int initialized_tables = 0;
424     MPADecodeContext *s = avctx->priv_data;
425 
426     if (!initialized_tables) {
427         decode_init_static();
428         initialized_tables = 1;
429     }
430 
431     s->avctx = avctx;
432 
433 #if USE_FLOATS
434     s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
435     if (!s->fdsp)
436         return AVERROR(ENOMEM);
437 #endif
438 
439     ff_mpadsp_init(&s->mpadsp);
440 
441     if (avctx->request_sample_fmt == OUT_FMT &&
442         avctx->codec_id != AV_CODEC_ID_MP3ON4)
443         avctx->sample_fmt = OUT_FMT;
444     else
445         avctx->sample_fmt = OUT_FMT_P;
446     s->err_recognition = avctx->err_recognition;
447 
448     if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
449         s->adu_mode = 1;
450 
451     return 0;
452 }
453 
454 #define C3 FIXHR(0.86602540378443864676/2)
455 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
456 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
457 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
458 
459 /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
460    cases. */
imdct12(INTFLOAT * out,SUINTFLOAT * in)461 static void imdct12(INTFLOAT *out, SUINTFLOAT *in)
462 {
463     SUINTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
464 
465     in0  = in[0*3];
466     in1  = in[1*3] + in[0*3];
467     in2  = in[2*3] + in[1*3];
468     in3  = in[3*3] + in[2*3];
469     in4  = in[4*3] + in[3*3];
470     in5  = in[5*3] + in[4*3];
471     in5 += in3;
472     in3 += in1;
473 
474     in2  = MULH3(in2, C3, 2);
475     in3  = MULH3(in3, C3, 4);
476 
477     t1   = in0 - in4;
478     t2   = MULH3(in1 - in5, C4, 2);
479 
480     out[ 7] =
481     out[10] = t1 + t2;
482     out[ 1] =
483     out[ 4] = t1 - t2;
484 
485     in0    += SHR(in4, 1);
486     in4     = in0 + in2;
487     in5    += 2*in1;
488     in1     = MULH3(in5 + in3, C5, 1);
489     out[ 8] =
490     out[ 9] = in4 + in1;
491     out[ 2] =
492     out[ 3] = in4 - in1;
493 
494     in0    -= in2;
495     in5     = MULH3(in5 - in3, C6, 2);
496     out[ 0] =
497     out[ 5] = in0 - in5;
498     out[ 6] =
499     out[11] = in0 + in5;
500 }
501 
502 /* return the number of decoded frames */
mp_decode_layer1(MPADecodeContext * s)503 static int mp_decode_layer1(MPADecodeContext *s)
504 {
505     int bound, i, v, n, ch, j, mant;
506     uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
507     uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
508 
509     if (s->mode == MPA_JSTEREO)
510         bound = (s->mode_ext + 1) * 4;
511     else
512         bound = SBLIMIT;
513 
514     /* allocation bits */
515     for (i = 0; i < bound; i++) {
516         for (ch = 0; ch < s->nb_channels; ch++) {
517             allocation[ch][i] = get_bits(&s->gb, 4);
518         }
519     }
520     for (i = bound; i < SBLIMIT; i++)
521         allocation[0][i] = get_bits(&s->gb, 4);
522 
523     /* scale factors */
524     for (i = 0; i < bound; i++) {
525         for (ch = 0; ch < s->nb_channels; ch++) {
526             if (allocation[ch][i])
527                 scale_factors[ch][i] = get_bits(&s->gb, 6);
528         }
529     }
530     for (i = bound; i < SBLIMIT; i++) {
531         if (allocation[0][i]) {
532             scale_factors[0][i] = get_bits(&s->gb, 6);
533             scale_factors[1][i] = get_bits(&s->gb, 6);
534         }
535     }
536 
537     /* compute samples */
538     for (j = 0; j < 12; j++) {
539         for (i = 0; i < bound; i++) {
540             for (ch = 0; ch < s->nb_channels; ch++) {
541                 n = allocation[ch][i];
542                 if (n) {
543                     mant = get_bits(&s->gb, n + 1);
544                     v = l1_unscale(n, mant, scale_factors[ch][i]);
545                 } else {
546                     v = 0;
547                 }
548                 s->sb_samples[ch][j][i] = v;
549             }
550         }
551         for (i = bound; i < SBLIMIT; i++) {
552             n = allocation[0][i];
553             if (n) {
554                 mant = get_bits(&s->gb, n + 1);
555                 v = l1_unscale(n, mant, scale_factors[0][i]);
556                 s->sb_samples[0][j][i] = v;
557                 v = l1_unscale(n, mant, scale_factors[1][i]);
558                 s->sb_samples[1][j][i] = v;
559             } else {
560                 s->sb_samples[0][j][i] = 0;
561                 s->sb_samples[1][j][i] = 0;
562             }
563         }
564     }
565     return 12;
566 }
567 
mp_decode_layer2(MPADecodeContext * s)568 static int mp_decode_layer2(MPADecodeContext *s)
569 {
570     int sblimit; /* number of used subbands */
571     const unsigned char *alloc_table;
572     int table, bit_alloc_bits, i, j, ch, bound, v;
573     unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
574     unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
575     unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
576     int scale, qindex, bits, steps, k, l, m, b;
577 
578     /* select decoding table */
579     table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
580                                    s->sample_rate, s->lsf);
581     sblimit     = ff_mpa_sblimit_table[table];
582     alloc_table = ff_mpa_alloc_tables[table];
583 
584     if (s->mode == MPA_JSTEREO)
585         bound = (s->mode_ext + 1) * 4;
586     else
587         bound = sblimit;
588 
589     ff_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
590 
591     /* sanity check */
592     if (bound > sblimit)
593         bound = sblimit;
594 
595     /* parse bit allocation */
596     j = 0;
597     for (i = 0; i < bound; i++) {
598         bit_alloc_bits = alloc_table[j];
599         for (ch = 0; ch < s->nb_channels; ch++)
600             bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
601         j += 1 << bit_alloc_bits;
602     }
603     for (i = bound; i < sblimit; i++) {
604         bit_alloc_bits = alloc_table[j];
605         v = get_bits(&s->gb, bit_alloc_bits);
606         bit_alloc[0][i] = v;
607         bit_alloc[1][i] = v;
608         j += 1 << bit_alloc_bits;
609     }
610 
611     /* scale codes */
612     for (i = 0; i < sblimit; i++) {
613         for (ch = 0; ch < s->nb_channels; ch++) {
614             if (bit_alloc[ch][i])
615                 scale_code[ch][i] = get_bits(&s->gb, 2);
616         }
617     }
618 
619     /* scale factors */
620     for (i = 0; i < sblimit; i++) {
621         for (ch = 0; ch < s->nb_channels; ch++) {
622             if (bit_alloc[ch][i]) {
623                 sf = scale_factors[ch][i];
624                 switch (scale_code[ch][i]) {
625                 default:
626                 case 0:
627                     sf[0] = get_bits(&s->gb, 6);
628                     sf[1] = get_bits(&s->gb, 6);
629                     sf[2] = get_bits(&s->gb, 6);
630                     break;
631                 case 2:
632                     sf[0] = get_bits(&s->gb, 6);
633                     sf[1] = sf[0];
634                     sf[2] = sf[0];
635                     break;
636                 case 1:
637                     sf[0] = get_bits(&s->gb, 6);
638                     sf[2] = get_bits(&s->gb, 6);
639                     sf[1] = sf[0];
640                     break;
641                 case 3:
642                     sf[0] = get_bits(&s->gb, 6);
643                     sf[2] = get_bits(&s->gb, 6);
644                     sf[1] = sf[2];
645                     break;
646                 }
647             }
648         }
649     }
650 
651     /* samples */
652     for (k = 0; k < 3; k++) {
653         for (l = 0; l < 12; l += 3) {
654             j = 0;
655             for (i = 0; i < bound; i++) {
656                 bit_alloc_bits = alloc_table[j];
657                 for (ch = 0; ch < s->nb_channels; ch++) {
658                     b = bit_alloc[ch][i];
659                     if (b) {
660                         scale = scale_factors[ch][i][k];
661                         qindex = alloc_table[j+b];
662                         bits = ff_mpa_quant_bits[qindex];
663                         if (bits < 0) {
664                             int v2;
665                             /* 3 values at the same time */
666                             v = get_bits(&s->gb, -bits);
667                             v2 = division_tabs[qindex][v];
668                             steps  = ff_mpa_quant_steps[qindex];
669 
670                             s->sb_samples[ch][k * 12 + l + 0][i] =
671                                 l2_unscale_group(steps,  v2       & 15, scale);
672                             s->sb_samples[ch][k * 12 + l + 1][i] =
673                                 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
674                             s->sb_samples[ch][k * 12 + l + 2][i] =
675                                 l2_unscale_group(steps,  v2 >> 8      , scale);
676                         } else {
677                             for (m = 0; m < 3; m++) {
678                                 v = get_bits(&s->gb, bits);
679                                 v = l1_unscale(bits - 1, v, scale);
680                                 s->sb_samples[ch][k * 12 + l + m][i] = v;
681                             }
682                         }
683                     } else {
684                         s->sb_samples[ch][k * 12 + l + 0][i] = 0;
685                         s->sb_samples[ch][k * 12 + l + 1][i] = 0;
686                         s->sb_samples[ch][k * 12 + l + 2][i] = 0;
687                     }
688                 }
689                 /* next subband in alloc table */
690                 j += 1 << bit_alloc_bits;
691             }
692             /* XXX: find a way to avoid this duplication of code */
693             for (i = bound; i < sblimit; i++) {
694                 bit_alloc_bits = alloc_table[j];
695                 b = bit_alloc[0][i];
696                 if (b) {
697                     int mant, scale0, scale1;
698                     scale0 = scale_factors[0][i][k];
699                     scale1 = scale_factors[1][i][k];
700                     qindex = alloc_table[j+b];
701                     bits = ff_mpa_quant_bits[qindex];
702                     if (bits < 0) {
703                         /* 3 values at the same time */
704                         v = get_bits(&s->gb, -bits);
705                         steps = ff_mpa_quant_steps[qindex];
706                         mant = v % steps;
707                         v = v / steps;
708                         s->sb_samples[0][k * 12 + l + 0][i] =
709                             l2_unscale_group(steps, mant, scale0);
710                         s->sb_samples[1][k * 12 + l + 0][i] =
711                             l2_unscale_group(steps, mant, scale1);
712                         mant = v % steps;
713                         v = v / steps;
714                         s->sb_samples[0][k * 12 + l + 1][i] =
715                             l2_unscale_group(steps, mant, scale0);
716                         s->sb_samples[1][k * 12 + l + 1][i] =
717                             l2_unscale_group(steps, mant, scale1);
718                         s->sb_samples[0][k * 12 + l + 2][i] =
719                             l2_unscale_group(steps, v, scale0);
720                         s->sb_samples[1][k * 12 + l + 2][i] =
721                             l2_unscale_group(steps, v, scale1);
722                     } else {
723                         for (m = 0; m < 3; m++) {
724                             mant = get_bits(&s->gb, bits);
725                             s->sb_samples[0][k * 12 + l + m][i] =
726                                 l1_unscale(bits - 1, mant, scale0);
727                             s->sb_samples[1][k * 12 + l + m][i] =
728                                 l1_unscale(bits - 1, mant, scale1);
729                         }
730                     }
731                 } else {
732                     s->sb_samples[0][k * 12 + l + 0][i] = 0;
733                     s->sb_samples[0][k * 12 + l + 1][i] = 0;
734                     s->sb_samples[0][k * 12 + l + 2][i] = 0;
735                     s->sb_samples[1][k * 12 + l + 0][i] = 0;
736                     s->sb_samples[1][k * 12 + l + 1][i] = 0;
737                     s->sb_samples[1][k * 12 + l + 2][i] = 0;
738                 }
739                 /* next subband in alloc table */
740                 j += 1 << bit_alloc_bits;
741             }
742             /* fill remaining samples to zero */
743             for (i = sblimit; i < SBLIMIT; i++) {
744                 for (ch = 0; ch < s->nb_channels; ch++) {
745                     s->sb_samples[ch][k * 12 + l + 0][i] = 0;
746                     s->sb_samples[ch][k * 12 + l + 1][i] = 0;
747                     s->sb_samples[ch][k * 12 + l + 2][i] = 0;
748                 }
749             }
750         }
751     }
752     return 3 * 12;
753 }
754 
755 #define SPLIT(dst,sf,n)             \
756     if (n == 3) {                   \
757         int m = (sf * 171) >> 9;    \
758         dst   = sf - 3 * m;         \
759         sf    = m;                  \
760     } else if (n == 4) {            \
761         dst  = sf & 3;              \
762         sf >>= 2;                   \
763     } else if (n == 5) {            \
764         int m = (sf * 205) >> 10;   \
765         dst   = sf - 5 * m;         \
766         sf    = m;                  \
767     } else if (n == 6) {            \
768         int m = (sf * 171) >> 10;   \
769         dst   = sf - 6 * m;         \
770         sf    = m;                  \
771     } else {                        \
772         dst = 0;                    \
773     }
774 
lsf_sf_expand(int * slen,int sf,int n1,int n2,int n3)775 static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
776                                            int n3)
777 {
778     SPLIT(slen[3], sf, n3)
779     SPLIT(slen[2], sf, n2)
780     SPLIT(slen[1], sf, n1)
781     slen[0] = sf;
782 }
783 
exponents_from_scale_factors(MPADecodeContext * s,GranuleDef * g,int16_t * exponents)784 static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
785                                          int16_t *exponents)
786 {
787     const uint8_t *bstab, *pretab;
788     int len, i, j, k, l, v0, shift, gain, gains[3];
789     int16_t *exp_ptr;
790 
791     exp_ptr = exponents;
792     gain    = g->global_gain - 210;
793     shift   = g->scalefac_scale + 1;
794 
795     bstab  = band_size_long[s->sample_rate_index];
796     pretab = mpa_pretab[g->preflag];
797     for (i = 0; i < g->long_end; i++) {
798         v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
799         len = bstab[i];
800         for (j = len; j > 0; j--)
801             *exp_ptr++ = v0;
802     }
803 
804     if (g->short_start < 13) {
805         bstab    = band_size_short[s->sample_rate_index];
806         gains[0] = gain - (g->subblock_gain[0] << 3);
807         gains[1] = gain - (g->subblock_gain[1] << 3);
808         gains[2] = gain - (g->subblock_gain[2] << 3);
809         k        = g->long_end;
810         for (i = g->short_start; i < 13; i++) {
811             len = bstab[i];
812             for (l = 0; l < 3; l++) {
813                 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
814                 for (j = len; j > 0; j--)
815                     *exp_ptr++ = v0;
816             }
817         }
818     }
819 }
820 
switch_buffer(MPADecodeContext * s,int * pos,int * end_pos,int * end_pos2)821 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
822                           int *end_pos2)
823 {
824     if (s->in_gb.buffer && *pos >= s->gb.size_in_bits - s->extrasize * 8) {
825         s->gb           = s->in_gb;
826         s->in_gb.buffer = NULL;
827         s->extrasize    = 0;
828         av_assert2((get_bits_count(&s->gb) & 7) == 0);
829         skip_bits_long(&s->gb, *pos - *end_pos);
830         *end_pos2 =
831         *end_pos  = *end_pos2 + get_bits_count(&s->gb) - *pos;
832         *pos      = get_bits_count(&s->gb);
833     }
834 }
835 
836 /* Following is an optimized code for
837             INTFLOAT v = *src
838             if(get_bits1(&s->gb))
839                 v = -v;
840             *dst = v;
841 */
842 #if USE_FLOATS
843 #define READ_FLIP_SIGN(dst,src)                     \
844     v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31);  \
845     AV_WN32A(dst, v);
846 #else
847 #define READ_FLIP_SIGN(dst,src)     \
848     v      = -get_bits1(&s->gb);    \
849     *(dst) = (*(src) ^ v) - v;
850 #endif
851 
huffman_decode(MPADecodeContext * s,GranuleDef * g,int16_t * exponents,int end_pos2)852 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
853                           int16_t *exponents, int end_pos2)
854 {
855     int s_index;
856     int i;
857     int last_pos, bits_left;
858     VLC *vlc;
859     int end_pos = FFMIN(end_pos2, s->gb.size_in_bits - s->extrasize * 8);
860 
861     /* low frequencies (called big values) */
862     s_index = 0;
863     for (i = 0; i < 3; i++) {
864         int j, k, l, linbits;
865         j = g->region_size[i];
866         if (j == 0)
867             continue;
868         /* select vlc table */
869         k       = g->table_select[i];
870         l       = mpa_huff_data[k][0];
871         linbits = mpa_huff_data[k][1];
872         vlc     = &huff_vlc[l];
873 
874         if (!l) {
875             memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
876             s_index += 2 * j;
877             continue;
878         }
879 
880         /* read huffcode and compute each couple */
881         for (; j > 0; j--) {
882             int exponent, x, y;
883             int v;
884             int pos = get_bits_count(&s->gb);
885 
886             if (pos >= end_pos){
887                 switch_buffer(s, &pos, &end_pos, &end_pos2);
888                 if (pos >= end_pos)
889                     break;
890             }
891             y = get_vlc2(&s->gb, vlc->table, 7, 3);
892 
893             if (!y) {
894                 g->sb_hybrid[s_index  ] =
895                 g->sb_hybrid[s_index+1] = 0;
896                 s_index += 2;
897                 continue;
898             }
899 
900             exponent= exponents[s_index];
901 
902             ff_dlog(s->avctx, "region=%d n=%d y=%d exp=%d\n",
903                     i, g->region_size[i] - j, y, exponent);
904             if (y & 16) {
905                 x = y >> 5;
906                 y = y & 0x0f;
907                 if (x < 15) {
908                     READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
909                 } else {
910                     x += get_bitsz(&s->gb, linbits);
911                     v  = l3_unscale(x, exponent);
912                     if (get_bits1(&s->gb))
913                         v = -v;
914                     g->sb_hybrid[s_index] = v;
915                 }
916                 if (y < 15) {
917                     READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
918                 } else {
919                     y += get_bitsz(&s->gb, linbits);
920                     v  = l3_unscale(y, exponent);
921                     if (get_bits1(&s->gb))
922                         v = -v;
923                     g->sb_hybrid[s_index+1] = v;
924                 }
925             } else {
926                 x = y >> 5;
927                 y = y & 0x0f;
928                 x += y;
929                 if (x < 15) {
930                     READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
931                 } else {
932                     x += get_bitsz(&s->gb, linbits);
933                     v  = l3_unscale(x, exponent);
934                     if (get_bits1(&s->gb))
935                         v = -v;
936                     g->sb_hybrid[s_index+!!y] = v;
937                 }
938                 g->sb_hybrid[s_index + !y] = 0;
939             }
940             s_index += 2;
941         }
942     }
943 
944     /* high frequencies */
945     vlc = &huff_quad_vlc[g->count1table_select];
946     last_pos = 0;
947     while (s_index <= 572) {
948         int pos, code;
949         pos = get_bits_count(&s->gb);
950         if (pos >= end_pos) {
951             if (pos > end_pos2 && last_pos) {
952                 /* some encoders generate an incorrect size for this
953                    part. We must go back into the data */
954                 s_index -= 4;
955                 skip_bits_long(&s->gb, last_pos - pos);
956                 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
957                 if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
958                     s_index=0;
959                 break;
960             }
961             switch_buffer(s, &pos, &end_pos, &end_pos2);
962             if (pos >= end_pos)
963                 break;
964         }
965         last_pos = pos;
966 
967         code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
968         ff_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
969         g->sb_hybrid[s_index+0] =
970         g->sb_hybrid[s_index+1] =
971         g->sb_hybrid[s_index+2] =
972         g->sb_hybrid[s_index+3] = 0;
973         while (code) {
974             static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
975             int v;
976             int pos = s_index + idxtab[code];
977             code   ^= 8 >> idxtab[code];
978             READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
979         }
980         s_index += 4;
981     }
982     /* skip extension bits */
983     bits_left = end_pos2 - get_bits_count(&s->gb);
984     if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
985         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
986         s_index=0;
987     } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
988         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
989         s_index = 0;
990     }
991     memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
992     skip_bits_long(&s->gb, bits_left);
993 
994     i = get_bits_count(&s->gb);
995     switch_buffer(s, &i, &end_pos, &end_pos2);
996 
997     return 0;
998 }
999 
1000 /* Reorder short blocks from bitstream order to interleaved order. It
1001    would be faster to do it in parsing, but the code would be far more
1002    complicated */
reorder_block(MPADecodeContext * s,GranuleDef * g)1003 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1004 {
1005     int i, j, len;
1006     INTFLOAT *ptr, *dst, *ptr1;
1007     INTFLOAT tmp[576];
1008 
1009     if (g->block_type != 2)
1010         return;
1011 
1012     if (g->switch_point) {
1013         if (s->sample_rate_index != 8)
1014             ptr = g->sb_hybrid + 36;
1015         else
1016             ptr = g->sb_hybrid + 72;
1017     } else {
1018         ptr = g->sb_hybrid;
1019     }
1020 
1021     for (i = g->short_start; i < 13; i++) {
1022         len  = band_size_short[s->sample_rate_index][i];
1023         ptr1 = ptr;
1024         dst  = tmp;
1025         for (j = len; j > 0; j--) {
1026             *dst++ = ptr[0*len];
1027             *dst++ = ptr[1*len];
1028             *dst++ = ptr[2*len];
1029             ptr++;
1030         }
1031         ptr += 2 * len;
1032         memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1033     }
1034 }
1035 
1036 #define ISQRT2 FIXR(0.70710678118654752440)
1037 
compute_stereo(MPADecodeContext * s,GranuleDef * g0,GranuleDef * g1)1038 static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
1039 {
1040     int i, j, k, l;
1041     int sf_max, sf, len, non_zero_found;
1042     INTFLOAT (*is_tab)[16], *tab0, *tab1, v1, v2;
1043     SUINTFLOAT tmp0, tmp1;
1044     int non_zero_found_short[3];
1045 
1046     /* intensity stereo */
1047     if (s->mode_ext & MODE_EXT_I_STEREO) {
1048         if (!s->lsf) {
1049             is_tab = is_table;
1050             sf_max = 7;
1051         } else {
1052             is_tab = is_table_lsf[g1->scalefac_compress & 1];
1053             sf_max = 16;
1054         }
1055 
1056         tab0 = g0->sb_hybrid + 576;
1057         tab1 = g1->sb_hybrid + 576;
1058 
1059         non_zero_found_short[0] = 0;
1060         non_zero_found_short[1] = 0;
1061         non_zero_found_short[2] = 0;
1062         k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1063         for (i = 12; i >= g1->short_start; i--) {
1064             /* for last band, use previous scale factor */
1065             if (i != 11)
1066                 k -= 3;
1067             len = band_size_short[s->sample_rate_index][i];
1068             for (l = 2; l >= 0; l--) {
1069                 tab0 -= len;
1070                 tab1 -= len;
1071                 if (!non_zero_found_short[l]) {
1072                     /* test if non zero band. if so, stop doing i-stereo */
1073                     for (j = 0; j < len; j++) {
1074                         if (tab1[j] != 0) {
1075                             non_zero_found_short[l] = 1;
1076                             goto found1;
1077                         }
1078                     }
1079                     sf = g1->scale_factors[k + l];
1080                     if (sf >= sf_max)
1081                         goto found1;
1082 
1083                     v1 = is_tab[0][sf];
1084                     v2 = is_tab[1][sf];
1085                     for (j = 0; j < len; j++) {
1086                         tmp0    = tab0[j];
1087                         tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1088                         tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1089                     }
1090                 } else {
1091 found1:
1092                     if (s->mode_ext & MODE_EXT_MS_STEREO) {
1093                         /* lower part of the spectrum : do ms stereo
1094                            if enabled */
1095                         for (j = 0; j < len; j++) {
1096                             tmp0    = tab0[j];
1097                             tmp1    = tab1[j];
1098                             tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1099                             tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1100                         }
1101                     }
1102                 }
1103             }
1104         }
1105 
1106         non_zero_found = non_zero_found_short[0] |
1107                          non_zero_found_short[1] |
1108                          non_zero_found_short[2];
1109 
1110         for (i = g1->long_end - 1;i >= 0;i--) {
1111             len   = band_size_long[s->sample_rate_index][i];
1112             tab0 -= len;
1113             tab1 -= len;
1114             /* test if non zero band. if so, stop doing i-stereo */
1115             if (!non_zero_found) {
1116                 for (j = 0; j < len; j++) {
1117                     if (tab1[j] != 0) {
1118                         non_zero_found = 1;
1119                         goto found2;
1120                     }
1121                 }
1122                 /* for last band, use previous scale factor */
1123                 k  = (i == 21) ? 20 : i;
1124                 sf = g1->scale_factors[k];
1125                 if (sf >= sf_max)
1126                     goto found2;
1127                 v1 = is_tab[0][sf];
1128                 v2 = is_tab[1][sf];
1129                 for (j = 0; j < len; j++) {
1130                     tmp0    = tab0[j];
1131                     tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1132                     tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1133                 }
1134             } else {
1135 found2:
1136                 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1137                     /* lower part of the spectrum : do ms stereo
1138                        if enabled */
1139                     for (j = 0; j < len; j++) {
1140                         tmp0    = tab0[j];
1141                         tmp1    = tab1[j];
1142                         tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1143                         tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1144                     }
1145                 }
1146             }
1147         }
1148     } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1149         /* ms stereo ONLY */
1150         /* NOTE: the 1/sqrt(2) normalization factor is included in the
1151            global gain */
1152 #if USE_FLOATS
1153        s->fdsp->butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
1154 #else
1155         tab0 = g0->sb_hybrid;
1156         tab1 = g1->sb_hybrid;
1157         for (i = 0; i < 576; i++) {
1158             tmp0    = tab0[i];
1159             tmp1    = tab1[i];
1160             tab0[i] = tmp0 + tmp1;
1161             tab1[i] = tmp0 - tmp1;
1162         }
1163 #endif
1164     }
1165 }
1166 
1167 #if USE_FLOATS
1168 #if HAVE_MIPSFPU
1169 #   include "mips/compute_antialias_float.h"
1170 #endif /* HAVE_MIPSFPU */
1171 #else
1172 #if HAVE_MIPSDSP
1173 #   include "mips/compute_antialias_fixed.h"
1174 #endif /* HAVE_MIPSDSP */
1175 #endif /* USE_FLOATS */
1176 
1177 #ifndef compute_antialias
1178 #if USE_FLOATS
1179 #define AA(j) do {                                                      \
1180         float tmp0 = ptr[-1-j];                                         \
1181         float tmp1 = ptr[   j];                                         \
1182         ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1];    \
1183         ptr[   j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0];    \
1184     } while (0)
1185 #else
1186 #define AA(j) do {                                              \
1187         SUINT tmp0 = ptr[-1-j];                                   \
1188         SUINT tmp1 = ptr[   j];                                   \
1189         SUINT tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]);          \
1190         ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2]));   \
1191         ptr[   j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3]));   \
1192     } while (0)
1193 #endif
1194 
compute_antialias(MPADecodeContext * s,GranuleDef * g)1195 static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
1196 {
1197     INTFLOAT *ptr;
1198     int n, i;
1199 
1200     /* we antialias only "long" bands */
1201     if (g->block_type == 2) {
1202         if (!g->switch_point)
1203             return;
1204         /* XXX: check this for 8000Hz case */
1205         n = 1;
1206     } else {
1207         n = SBLIMIT - 1;
1208     }
1209 
1210     ptr = g->sb_hybrid + 18;
1211     for (i = n; i > 0; i--) {
1212         AA(0);
1213         AA(1);
1214         AA(2);
1215         AA(3);
1216         AA(4);
1217         AA(5);
1218         AA(6);
1219         AA(7);
1220 
1221         ptr += 18;
1222     }
1223 }
1224 #endif /* compute_antialias */
1225 
compute_imdct(MPADecodeContext * s,GranuleDef * g,INTFLOAT * sb_samples,INTFLOAT * mdct_buf)1226 static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
1227                           INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
1228 {
1229     INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
1230     INTFLOAT out2[12];
1231     int i, j, mdct_long_end, sblimit;
1232 
1233     /* find last non zero block */
1234     ptr  = g->sb_hybrid + 576;
1235     ptr1 = g->sb_hybrid + 2 * 18;
1236     while (ptr >= ptr1) {
1237         int32_t *p;
1238         ptr -= 6;
1239         p    = (int32_t*)ptr;
1240         if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1241             break;
1242     }
1243     sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1244 
1245     if (g->block_type == 2) {
1246         /* XXX: check for 8000 Hz */
1247         if (g->switch_point)
1248             mdct_long_end = 2;
1249         else
1250             mdct_long_end = 0;
1251     } else {
1252         mdct_long_end = sblimit;
1253     }
1254 
1255     s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
1256                                      mdct_long_end, g->switch_point,
1257                                      g->block_type);
1258 
1259     buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
1260     ptr = g->sb_hybrid + 18 * mdct_long_end;
1261 
1262     for (j = mdct_long_end; j < sblimit; j++) {
1263         /* select frequency inversion */
1264         win     = RENAME(ff_mdct_win)[2 + (4  & -(j & 1))];
1265         out_ptr = sb_samples + j;
1266 
1267         for (i = 0; i < 6; i++) {
1268             *out_ptr = buf[4*i];
1269             out_ptr += SBLIMIT;
1270         }
1271         imdct12(out2, ptr + 0);
1272         for (i = 0; i < 6; i++) {
1273             *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*1)];
1274             buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
1275             out_ptr += SBLIMIT;
1276         }
1277         imdct12(out2, ptr + 1);
1278         for (i = 0; i < 6; i++) {
1279             *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*2)];
1280             buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
1281             out_ptr += SBLIMIT;
1282         }
1283         imdct12(out2, ptr + 2);
1284         for (i = 0; i < 6; i++) {
1285             buf[4*(i + 6*0)] = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*0)];
1286             buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
1287             buf[4*(i + 6*2)] = 0;
1288         }
1289         ptr += 18;
1290         buf += (j&3) != 3 ? 1 : (4*18-3);
1291     }
1292     /* zero bands */
1293     for (j = sblimit; j < SBLIMIT; j++) {
1294         /* overlap */
1295         out_ptr = sb_samples + j;
1296         for (i = 0; i < 18; i++) {
1297             *out_ptr = buf[4*i];
1298             buf[4*i]   = 0;
1299             out_ptr += SBLIMIT;
1300         }
1301         buf += (j&3) != 3 ? 1 : (4*18-3);
1302     }
1303 }
1304 
1305 /* main layer3 decoding function */
mp_decode_layer3(MPADecodeContext * s)1306 static int mp_decode_layer3(MPADecodeContext *s)
1307 {
1308     int nb_granules, main_data_begin;
1309     int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1310     GranuleDef *g;
1311     int16_t exponents[576]; //FIXME try INTFLOAT
1312 
1313     /* read side info */
1314     if (s->lsf) {
1315         main_data_begin = get_bits(&s->gb, 8);
1316         skip_bits(&s->gb, s->nb_channels);
1317         nb_granules = 1;
1318     } else {
1319         main_data_begin = get_bits(&s->gb, 9);
1320         if (s->nb_channels == 2)
1321             skip_bits(&s->gb, 3);
1322         else
1323             skip_bits(&s->gb, 5);
1324         nb_granules = 2;
1325         for (ch = 0; ch < s->nb_channels; ch++) {
1326             s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
1327             s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
1328         }
1329     }
1330 
1331     for (gr = 0; gr < nb_granules; gr++) {
1332         for (ch = 0; ch < s->nb_channels; ch++) {
1333             ff_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1334             g = &s->granules[ch][gr];
1335             g->part2_3_length = get_bits(&s->gb, 12);
1336             g->big_values     = get_bits(&s->gb,  9);
1337             if (g->big_values > 288) {
1338                 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1339                 return AVERROR_INVALIDDATA;
1340             }
1341 
1342             g->global_gain = get_bits(&s->gb, 8);
1343             /* if MS stereo only is selected, we precompute the
1344                1/sqrt(2) renormalization factor */
1345             if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1346                 MODE_EXT_MS_STEREO)
1347                 g->global_gain -= 2;
1348             if (s->lsf)
1349                 g->scalefac_compress = get_bits(&s->gb, 9);
1350             else
1351                 g->scalefac_compress = get_bits(&s->gb, 4);
1352             blocksplit_flag = get_bits1(&s->gb);
1353             if (blocksplit_flag) {
1354                 g->block_type = get_bits(&s->gb, 2);
1355                 if (g->block_type == 0) {
1356                     av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1357                     return AVERROR_INVALIDDATA;
1358                 }
1359                 g->switch_point = get_bits1(&s->gb);
1360                 for (i = 0; i < 2; i++)
1361                     g->table_select[i] = get_bits(&s->gb, 5);
1362                 for (i = 0; i < 3; i++)
1363                     g->subblock_gain[i] = get_bits(&s->gb, 3);
1364                 init_short_region(s, g);
1365             } else {
1366                 int region_address1, region_address2;
1367                 g->block_type = 0;
1368                 g->switch_point = 0;
1369                 for (i = 0; i < 3; i++)
1370                     g->table_select[i] = get_bits(&s->gb, 5);
1371                 /* compute huffman coded region sizes */
1372                 region_address1 = get_bits(&s->gb, 4);
1373                 region_address2 = get_bits(&s->gb, 3);
1374                 ff_dlog(s->avctx, "region1=%d region2=%d\n",
1375                         region_address1, region_address2);
1376                 init_long_region(s, g, region_address1, region_address2);
1377             }
1378             region_offset2size(g);
1379             compute_band_indexes(s, g);
1380 
1381             g->preflag = 0;
1382             if (!s->lsf)
1383                 g->preflag = get_bits1(&s->gb);
1384             g->scalefac_scale     = get_bits1(&s->gb);
1385             g->count1table_select = get_bits1(&s->gb);
1386             ff_dlog(s->avctx, "block_type=%d switch_point=%d\n",
1387                     g->block_type, g->switch_point);
1388         }
1389     }
1390 
1391     if (!s->adu_mode) {
1392         int skip;
1393         const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
1394         s->extrasize = av_clip((get_bits_left(&s->gb) >> 3) - s->extrasize, 0,
1395                                FFMAX(0, LAST_BUF_SIZE - s->last_buf_size));
1396         av_assert1((get_bits_count(&s->gb) & 7) == 0);
1397         /* now we get bits from the main_data_begin offset */
1398         ff_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
1399                 main_data_begin, s->last_buf_size);
1400 
1401         memcpy(s->last_buf + s->last_buf_size, ptr, s->extrasize);
1402         s->in_gb = s->gb;
1403         init_get_bits(&s->gb, s->last_buf, (s->last_buf_size + s->extrasize) * 8);
1404         s->last_buf_size <<= 3;
1405         for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
1406             for (ch = 0; ch < s->nb_channels; ch++) {
1407                 g = &s->granules[ch][gr];
1408                 s->last_buf_size += g->part2_3_length;
1409                 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
1410                 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1411             }
1412         }
1413         skip = s->last_buf_size - 8 * main_data_begin;
1414         if (skip >= s->gb.size_in_bits - s->extrasize * 8 && s->in_gb.buffer) {
1415             skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits + s->extrasize * 8);
1416             s->gb           = s->in_gb;
1417             s->in_gb.buffer = NULL;
1418             s->extrasize    = 0;
1419         } else {
1420             skip_bits_long(&s->gb, skip);
1421         }
1422     } else {
1423         gr = 0;
1424         s->extrasize = 0;
1425     }
1426 
1427     for (; gr < nb_granules; gr++) {
1428         for (ch = 0; ch < s->nb_channels; ch++) {
1429             g = &s->granules[ch][gr];
1430             bits_pos = get_bits_count(&s->gb);
1431 
1432             if (!s->lsf) {
1433                 uint8_t *sc;
1434                 int slen, slen1, slen2;
1435 
1436                 /* MPEG-1 scale factors */
1437                 slen1 = slen_table[0][g->scalefac_compress];
1438                 slen2 = slen_table[1][g->scalefac_compress];
1439                 ff_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
1440                 if (g->block_type == 2) {
1441                     n = g->switch_point ? 17 : 18;
1442                     j = 0;
1443                     if (slen1) {
1444                         for (i = 0; i < n; i++)
1445                             g->scale_factors[j++] = get_bits(&s->gb, slen1);
1446                     } else {
1447                         for (i = 0; i < n; i++)
1448                             g->scale_factors[j++] = 0;
1449                     }
1450                     if (slen2) {
1451                         for (i = 0; i < 18; i++)
1452                             g->scale_factors[j++] = get_bits(&s->gb, slen2);
1453                         for (i = 0; i < 3; i++)
1454                             g->scale_factors[j++] = 0;
1455                     } else {
1456                         for (i = 0; i < 21; i++)
1457                             g->scale_factors[j++] = 0;
1458                     }
1459                 } else {
1460                     sc = s->granules[ch][0].scale_factors;
1461                     j = 0;
1462                     for (k = 0; k < 4; k++) {
1463                         n = k == 0 ? 6 : 5;
1464                         if ((g->scfsi & (0x8 >> k)) == 0) {
1465                             slen = (k < 2) ? slen1 : slen2;
1466                             if (slen) {
1467                                 for (i = 0; i < n; i++)
1468                                     g->scale_factors[j++] = get_bits(&s->gb, slen);
1469                             } else {
1470                                 for (i = 0; i < n; i++)
1471                                     g->scale_factors[j++] = 0;
1472                             }
1473                         } else {
1474                             /* simply copy from last granule */
1475                             for (i = 0; i < n; i++) {
1476                                 g->scale_factors[j] = sc[j];
1477                                 j++;
1478                             }
1479                         }
1480                     }
1481                     g->scale_factors[j++] = 0;
1482                 }
1483             } else {
1484                 int tindex, tindex2, slen[4], sl, sf;
1485 
1486                 /* LSF scale factors */
1487                 if (g->block_type == 2)
1488                     tindex = g->switch_point ? 2 : 1;
1489                 else
1490                     tindex = 0;
1491 
1492                 sf = g->scalefac_compress;
1493                 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
1494                     /* intensity stereo case */
1495                     sf >>= 1;
1496                     if (sf < 180) {
1497                         lsf_sf_expand(slen, sf, 6, 6, 0);
1498                         tindex2 = 3;
1499                     } else if (sf < 244) {
1500                         lsf_sf_expand(slen, sf - 180, 4, 4, 0);
1501                         tindex2 = 4;
1502                     } else {
1503                         lsf_sf_expand(slen, sf - 244, 3, 0, 0);
1504                         tindex2 = 5;
1505                     }
1506                 } else {
1507                     /* normal case */
1508                     if (sf < 400) {
1509                         lsf_sf_expand(slen, sf, 5, 4, 4);
1510                         tindex2 = 0;
1511                     } else if (sf < 500) {
1512                         lsf_sf_expand(slen, sf - 400, 5, 4, 0);
1513                         tindex2 = 1;
1514                     } else {
1515                         lsf_sf_expand(slen, sf - 500, 3, 0, 0);
1516                         tindex2 = 2;
1517                         g->preflag = 1;
1518                     }
1519                 }
1520 
1521                 j = 0;
1522                 for (k = 0; k < 4; k++) {
1523                     n  = lsf_nsf_table[tindex2][tindex][k];
1524                     sl = slen[k];
1525                     if (sl) {
1526                         for (i = 0; i < n; i++)
1527                             g->scale_factors[j++] = get_bits(&s->gb, sl);
1528                     } else {
1529                         for (i = 0; i < n; i++)
1530                             g->scale_factors[j++] = 0;
1531                     }
1532                 }
1533                 /* XXX: should compute exact size */
1534                 for (; j < 40; j++)
1535                     g->scale_factors[j] = 0;
1536             }
1537 
1538             exponents_from_scale_factors(s, g, exponents);
1539 
1540             /* read Huffman coded residue */
1541             huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
1542         } /* ch */
1543 
1544         if (s->mode == MPA_JSTEREO)
1545             compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
1546 
1547         for (ch = 0; ch < s->nb_channels; ch++) {
1548             g = &s->granules[ch][gr];
1549 
1550             reorder_block(s, g);
1551             compute_antialias(s, g);
1552             compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1553         }
1554     } /* gr */
1555     if (get_bits_count(&s->gb) < 0)
1556         skip_bits_long(&s->gb, -get_bits_count(&s->gb));
1557     return nb_granules * 18;
1558 }
1559 
mp_decode_frame(MPADecodeContext * s,OUT_INT ** samples,const uint8_t * buf,int buf_size)1560 static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
1561                            const uint8_t *buf, int buf_size)
1562 {
1563     int i, nb_frames, ch, ret;
1564     OUT_INT *samples_ptr;
1565 
1566     init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
1567 
1568     /* skip error protection field */
1569     if (s->error_protection)
1570         skip_bits(&s->gb, 16);
1571 
1572     switch(s->layer) {
1573     case 1:
1574         s->avctx->frame_size = 384;
1575         nb_frames = mp_decode_layer1(s);
1576         break;
1577     case 2:
1578         s->avctx->frame_size = 1152;
1579         nb_frames = mp_decode_layer2(s);
1580         break;
1581     case 3:
1582         s->avctx->frame_size = s->lsf ? 576 : 1152;
1583     default:
1584         nb_frames = mp_decode_layer3(s);
1585 
1586         s->last_buf_size=0;
1587         if (s->in_gb.buffer) {
1588             align_get_bits(&s->gb);
1589             i = (get_bits_left(&s->gb) >> 3) - s->extrasize;
1590             if (i >= 0 && i <= BACKSTEP_SIZE) {
1591                 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
1592                 s->last_buf_size=i;
1593             } else
1594                 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
1595             s->gb           = s->in_gb;
1596             s->in_gb.buffer = NULL;
1597             s->extrasize    = 0;
1598         }
1599 
1600         align_get_bits(&s->gb);
1601         av_assert1((get_bits_count(&s->gb) & 7) == 0);
1602         i = (get_bits_left(&s->gb) >> 3) - s->extrasize;
1603         if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
1604             if (i < 0)
1605                 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
1606             i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
1607         }
1608         av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
1609         memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
1610         s->last_buf_size += i;
1611     }
1612 
1613     if(nb_frames < 0)
1614         return nb_frames;
1615 
1616     /* get output buffer */
1617     if (!samples) {
1618         av_assert0(s->frame);
1619         s->frame->nb_samples = s->avctx->frame_size;
1620         if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
1621             return ret;
1622         samples = (OUT_INT **)s->frame->extended_data;
1623     }
1624 
1625     /* apply the synthesis filter */
1626     for (ch = 0; ch < s->nb_channels; ch++) {
1627         int sample_stride;
1628         if (s->avctx->sample_fmt == OUT_FMT_P) {
1629             samples_ptr   = samples[ch];
1630             sample_stride = 1;
1631         } else {
1632             samples_ptr   = samples[0] + ch;
1633             sample_stride = s->nb_channels;
1634         }
1635         for (i = 0; i < nb_frames; i++) {
1636             RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
1637                                         &(s->synth_buf_offset[ch]),
1638                                         RENAME(ff_mpa_synth_window),
1639                                         &s->dither_state, samples_ptr,
1640                                         sample_stride, s->sb_samples[ch][i]);
1641             samples_ptr += 32 * sample_stride;
1642         }
1643     }
1644 
1645     return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
1646 }
1647 
decode_frame(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)1648 static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
1649                         AVPacket *avpkt)
1650 {
1651     const uint8_t *buf  = avpkt->data;
1652     int buf_size        = avpkt->size;
1653     MPADecodeContext *s = avctx->priv_data;
1654     uint32_t header;
1655     int ret;
1656 
1657     int skipped = 0;
1658     while(buf_size && !*buf){
1659         buf++;
1660         buf_size--;
1661         skipped++;
1662     }
1663 
1664     if (buf_size < HEADER_SIZE)
1665         return AVERROR_INVALIDDATA;
1666 
1667     header = AV_RB32(buf);
1668     if (header>>8 == AV_RB32("TAG")>>8) {
1669         av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
1670         return buf_size + skipped;
1671     }
1672     ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
1673     if (ret < 0) {
1674         av_log(avctx, AV_LOG_ERROR, "Header missing\n");
1675         return AVERROR_INVALIDDATA;
1676     } else if (ret == 1) {
1677         /* free format: prepare to compute frame size */
1678         s->frame_size = -1;
1679         return AVERROR_INVALIDDATA;
1680     }
1681     /* update codec info */
1682     avctx->channels       = s->nb_channels;
1683     avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1684     if (!avctx->bit_rate)
1685         avctx->bit_rate = s->bit_rate;
1686 
1687     if (s->frame_size <= 0) {
1688         av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1689         return AVERROR_INVALIDDATA;
1690     } else if (s->frame_size < buf_size) {
1691         av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
1692         buf_size= s->frame_size;
1693     }
1694 
1695     s->frame = data;
1696 
1697     ret = mp_decode_frame(s, NULL, buf, buf_size);
1698     if (ret >= 0) {
1699         s->frame->nb_samples = avctx->frame_size;
1700         *got_frame_ptr       = 1;
1701         avctx->sample_rate   = s->sample_rate;
1702         //FIXME maybe move the other codec info stuff from above here too
1703     } else {
1704         av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1705         /* Only return an error if the bad frame makes up the whole packet or
1706          * the error is related to buffer management.
1707          * If there is more data in the packet, just consume the bad frame
1708          * instead of returning an error, which would discard the whole
1709          * packet. */
1710         *got_frame_ptr = 0;
1711         if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
1712             return ret;
1713     }
1714     s->frame_size = 0;
1715     return buf_size + skipped;
1716 }
1717 
mp_flush(MPADecodeContext * ctx)1718 static void mp_flush(MPADecodeContext *ctx)
1719 {
1720     memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
1721     memset(ctx->mdct_buf, 0, sizeof(ctx->mdct_buf));
1722     ctx->last_buf_size = 0;
1723     ctx->dither_state = 0;
1724 }
1725 
flush(AVCodecContext * avctx)1726 static void flush(AVCodecContext *avctx)
1727 {
1728     mp_flush(avctx->priv_data);
1729 }
1730 
1731 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
decode_frame_adu(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)1732 static int decode_frame_adu(AVCodecContext *avctx, void *data,
1733                             int *got_frame_ptr, AVPacket *avpkt)
1734 {
1735     const uint8_t *buf  = avpkt->data;
1736     int buf_size        = avpkt->size;
1737     MPADecodeContext *s = avctx->priv_data;
1738     uint32_t header;
1739     int len, ret;
1740     int av_unused out_size;
1741 
1742     len = buf_size;
1743 
1744     // Discard too short frames
1745     if (buf_size < HEADER_SIZE) {
1746         av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1747         return AVERROR_INVALIDDATA;
1748     }
1749 
1750 
1751     if (len > MPA_MAX_CODED_FRAME_SIZE)
1752         len = MPA_MAX_CODED_FRAME_SIZE;
1753 
1754     // Get header and restore sync word
1755     header = AV_RB32(buf) | 0xffe00000;
1756 
1757     ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
1758     if (ret < 0) {
1759         av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
1760         return ret;
1761     }
1762     /* update codec info */
1763     avctx->sample_rate = s->sample_rate;
1764     avctx->channels    = s->nb_channels;
1765     avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1766     if (!avctx->bit_rate)
1767         avctx->bit_rate = s->bit_rate;
1768 
1769     s->frame_size = len;
1770 
1771     s->frame = data;
1772 
1773     ret = mp_decode_frame(s, NULL, buf, buf_size);
1774     if (ret < 0) {
1775         av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1776         return ret;
1777     }
1778 
1779     *got_frame_ptr = 1;
1780 
1781     return buf_size;
1782 }
1783 #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
1784 
1785 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
1786 
1787 /**
1788  * Context for MP3On4 decoder
1789  */
1790 typedef struct MP3On4DecodeContext {
1791     int frames;                     ///< number of mp3 frames per block (number of mp3 decoder instances)
1792     int syncword;                   ///< syncword patch
1793     const uint8_t *coff;            ///< channel offsets in output buffer
1794     MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
1795 } MP3On4DecodeContext;
1796 
1797 #include "mpeg4audio.h"
1798 
1799 /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
1800 
1801 /* number of mp3 decoder instances */
1802 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
1803 
1804 /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
1805 static const uint8_t chan_offset[8][5] = {
1806     { 0             },
1807     { 0             },  // C
1808     { 0             },  // FLR
1809     { 2, 0          },  // C FLR
1810     { 2, 0, 3       },  // C FLR BS
1811     { 2, 0, 3       },  // C FLR BLRS
1812     { 2, 0, 4, 3    },  // C FLR BLRS LFE
1813     { 2, 0, 6, 4, 3 },  // C FLR BLRS BLR LFE
1814 };
1815 
1816 /* mp3on4 channel layouts */
1817 static const int16_t chan_layout[8] = {
1818     0,
1819     AV_CH_LAYOUT_MONO,
1820     AV_CH_LAYOUT_STEREO,
1821     AV_CH_LAYOUT_SURROUND,
1822     AV_CH_LAYOUT_4POINT0,
1823     AV_CH_LAYOUT_5POINT0,
1824     AV_CH_LAYOUT_5POINT1,
1825     AV_CH_LAYOUT_7POINT1
1826 };
1827 
decode_close_mp3on4(AVCodecContext * avctx)1828 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
1829 {
1830     MP3On4DecodeContext *s = avctx->priv_data;
1831     int i;
1832 
1833     if (s->mp3decctx[0])
1834         av_freep(&s->mp3decctx[0]->fdsp);
1835 
1836     for (i = 0; i < s->frames; i++)
1837         av_freep(&s->mp3decctx[i]);
1838 
1839     return 0;
1840 }
1841 
1842 
decode_init_mp3on4(AVCodecContext * avctx)1843 static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
1844 {
1845     MP3On4DecodeContext *s = avctx->priv_data;
1846     MPEG4AudioConfig cfg;
1847     int i;
1848 
1849     if ((avctx->extradata_size < 2) || !avctx->extradata) {
1850         av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
1851         return AVERROR_INVALIDDATA;
1852     }
1853 
1854     avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
1855                                  avctx->extradata_size * 8, 1);
1856     if (!cfg.chan_config || cfg.chan_config > 7) {
1857         av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
1858         return AVERROR_INVALIDDATA;
1859     }
1860     s->frames             = mp3Frames[cfg.chan_config];
1861     s->coff               = chan_offset[cfg.chan_config];
1862     avctx->channels       = ff_mpeg4audio_channels[cfg.chan_config];
1863     avctx->channel_layout = chan_layout[cfg.chan_config];
1864 
1865     if (cfg.sample_rate < 16000)
1866         s->syncword = 0xffe00000;
1867     else
1868         s->syncword = 0xfff00000;
1869 
1870     /* Init the first mp3 decoder in standard way, so that all tables get builded
1871      * We replace avctx->priv_data with the context of the first decoder so that
1872      * decode_init() does not have to be changed.
1873      * Other decoders will be initialized here copying data from the first context
1874      */
1875     // Allocate zeroed memory for the first decoder context
1876     s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
1877     if (!s->mp3decctx[0])
1878         goto alloc_fail;
1879     // Put decoder context in place to make init_decode() happy
1880     avctx->priv_data = s->mp3decctx[0];
1881     decode_init(avctx);
1882     // Restore mp3on4 context pointer
1883     avctx->priv_data = s;
1884     s->mp3decctx[0]->adu_mode = 1; // Set adu mode
1885 
1886     /* Create a separate codec/context for each frame (first is already ok).
1887      * Each frame is 1 or 2 channels - up to 5 frames allowed
1888      */
1889     for (i = 1; i < s->frames; i++) {
1890         s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
1891         if (!s->mp3decctx[i])
1892             goto alloc_fail;
1893         s->mp3decctx[i]->adu_mode = 1;
1894         s->mp3decctx[i]->avctx = avctx;
1895         s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
1896         s->mp3decctx[i]->fdsp = s->mp3decctx[0]->fdsp;
1897     }
1898 
1899     return 0;
1900 alloc_fail:
1901     decode_close_mp3on4(avctx);
1902     return AVERROR(ENOMEM);
1903 }
1904 
1905 
flush_mp3on4(AVCodecContext * avctx)1906 static void flush_mp3on4(AVCodecContext *avctx)
1907 {
1908     int i;
1909     MP3On4DecodeContext *s = avctx->priv_data;
1910 
1911     for (i = 0; i < s->frames; i++)
1912         mp_flush(s->mp3decctx[i]);
1913 }
1914 
1915 
decode_frame_mp3on4(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)1916 static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
1917                                int *got_frame_ptr, AVPacket *avpkt)
1918 {
1919     AVFrame *frame         = data;
1920     const uint8_t *buf     = avpkt->data;
1921     int buf_size           = avpkt->size;
1922     MP3On4DecodeContext *s = avctx->priv_data;
1923     MPADecodeContext *m;
1924     int fsize, len = buf_size, out_size = 0;
1925     uint32_t header;
1926     OUT_INT **out_samples;
1927     OUT_INT *outptr[2];
1928     int fr, ch, ret;
1929 
1930     /* get output buffer */
1931     frame->nb_samples = MPA_FRAME_SIZE;
1932     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1933         return ret;
1934     out_samples = (OUT_INT **)frame->extended_data;
1935 
1936     // Discard too short frames
1937     if (buf_size < HEADER_SIZE)
1938         return AVERROR_INVALIDDATA;
1939 
1940     avctx->bit_rate = 0;
1941 
1942     ch = 0;
1943     for (fr = 0; fr < s->frames; fr++) {
1944         fsize = AV_RB16(buf) >> 4;
1945         fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
1946         m     = s->mp3decctx[fr];
1947         av_assert1(m);
1948 
1949         if (fsize < HEADER_SIZE) {
1950             av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
1951             return AVERROR_INVALIDDATA;
1952         }
1953         header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
1954 
1955         ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
1956         if (ret < 0) {
1957             av_log(avctx, AV_LOG_ERROR, "Bad header, discard block\n");
1958             return AVERROR_INVALIDDATA;
1959         }
1960 
1961         if (ch + m->nb_channels > avctx->channels ||
1962             s->coff[fr] + m->nb_channels > avctx->channels) {
1963             av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
1964                                         "channel count\n");
1965             return AVERROR_INVALIDDATA;
1966         }
1967         ch += m->nb_channels;
1968 
1969         outptr[0] = out_samples[s->coff[fr]];
1970         if (m->nb_channels > 1)
1971             outptr[1] = out_samples[s->coff[fr] + 1];
1972 
1973         if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0) {
1974             av_log(avctx, AV_LOG_ERROR, "failed to decode channel %d\n", ch);
1975             memset(outptr[0], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
1976             if (m->nb_channels > 1)
1977                 memset(outptr[1], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
1978             ret = m->nb_channels * MPA_FRAME_SIZE*sizeof(OUT_INT);
1979         }
1980 
1981         out_size += ret;
1982         buf      += fsize;
1983         len      -= fsize;
1984 
1985         avctx->bit_rate += m->bit_rate;
1986     }
1987     if (ch != avctx->channels) {
1988         av_log(avctx, AV_LOG_ERROR, "failed to decode all channels\n");
1989         return AVERROR_INVALIDDATA;
1990     }
1991 
1992     /* update codec info */
1993     avctx->sample_rate = s->mp3decctx[0]->sample_rate;
1994 
1995     frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
1996     *got_frame_ptr    = 1;
1997 
1998     return buf_size;
1999 }
2000 #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
2001