1 /*
2  * blapi.h - public prototypes for the freebl library
3  *
4  * This Source Code Form is subject to the terms of the Mozilla Public
5  * License, v. 2.0. If a copy of the MPL was not distributed with this
6  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 
8 #ifndef _BLAPI_H_
9 #define _BLAPI_H_
10 
11 #include "blapit.h"
12 #include "hasht.h"
13 #include "cmac.h"
14 #include "alghmac.h"
15 
16 SEC_BEGIN_PROTOS
17 
18 /*
19 ** RSA encryption/decryption. When encrypting/decrypting the output
20 ** buffer must be at least the size of the public key modulus.
21 */
22 
23 extern SECStatus BL_Init(void);
24 
25 /*
26 ** Generate and return a new RSA public and private key.
27 **  Both keys are encoded in a single RSAPrivateKey structure.
28 **  "cx" is the random number generator context
29 **  "keySizeInBits" is the size of the key to be generated, in bits.
30 **     512, 1024, etc.
31 **  "publicExponent" when not NULL is a pointer to some data that
32 **     represents the public exponent to use. The data is a byte
33 **     encoded integer, in "big endian" order.
34 */
35 extern RSAPrivateKey *RSA_NewKey(int keySizeInBits,
36                                  SECItem *publicExponent);
37 
38 /*
39 ** Perform a raw public-key operation
40 **  Length of input and output buffers are equal to key's modulus len.
41 */
42 extern SECStatus RSA_PublicKeyOp(RSAPublicKey *key,
43                                  unsigned char *output,
44                                  const unsigned char *input);
45 
46 /*
47 ** Perform a raw private-key operation
48 **  Length of input and output buffers are equal to key's modulus len.
49 */
50 extern SECStatus RSA_PrivateKeyOp(RSAPrivateKey *key,
51                                   unsigned char *output,
52                                   const unsigned char *input);
53 
54 /*
55 ** Perform a raw private-key operation, and check the parameters used in
56 ** the operation for validity by performing a test operation first.
57 **  Length of input and output buffers are equal to key's modulus len.
58 */
59 extern SECStatus RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key,
60                                                unsigned char *output,
61                                                const unsigned char *input);
62 
63 /*
64 ** Perform a check of private key parameters for consistency.
65 */
66 extern SECStatus RSA_PrivateKeyCheck(const RSAPrivateKey *key);
67 
68 /*
69 ** Given only minimal private key parameters, fill in the rest of the
70 ** parameters.
71 **
72 **
73 ** All the entries, including those supplied by the caller, will be
74 ** overwritten with data alocated out of the arena.
75 **
76 ** If no arena is supplied, one will be created.
77 **
78 ** The following fields must be supplied in order for this function
79 ** to succeed:
80 **   one of either publicExponent or privateExponent
81 **   two more of the following 5 parameters (not counting the above).
82 **      modulus (n)
83 **      prime1  (p)
84 **      prime2  (q)
85 **      publicExponent (e)
86 **      privateExponent (d)
87 **
88 ** NOTE: if only the publicExponent, privateExponent, and one prime is given,
89 ** then there may be more than one RSA key that matches that combination. If
90 ** we find 2 possible valid keys that meet this criteria, we return an error.
91 ** If we return the wrong key, and the original modulus is compared to the
92 ** new modulus, both can be factored by calculateing gcd(n_old,n_new) to get
93 ** the common prime.
94 **
95 ** NOTE: in some cases the publicExponent must be less than 2^23 for this
96 ** function to work correctly. (The case where we have only one of: modulus
97 ** prime1 and prime2).
98 **
99 ** All parameters will be replaced in the key structure with new parameters
100 ** allocated out of the arena. There is no attempt to free the old structures.
101 ** prime1 will always be greater than prime2 (even if the caller supplies the
102 ** smaller prime as prime1 or the larger prime as prime2). The parameters are
103 ** not overwritten on failure.
104 **
105 ** While the remaining Chinese remainder theorem parameters (dp,dp, and qinv)
106 ** can also be used in reconstructing the private key, they are currently
107 ** ignored in this implementation.
108 */
109 extern SECStatus RSA_PopulatePrivateKey(RSAPrivateKey *key);
110 
111 /********************************************************************
112 ** RSA algorithm
113 */
114 
115 /********************************************************************
116 ** Raw signing/encryption/decryption operations.
117 **
118 ** No padding or formatting will be applied.
119 ** inputLen MUST be equivalent to the modulus size (in bytes).
120 */
121 extern SECStatus
122 RSA_SignRaw(RSAPrivateKey *key,
123             unsigned char *output,
124             unsigned int *outputLen,
125             unsigned int maxOutputLen,
126             const unsigned char *input,
127             unsigned int inputLen);
128 
129 extern SECStatus
130 RSA_CheckSignRaw(RSAPublicKey *key,
131                  const unsigned char *sig,
132                  unsigned int sigLen,
133                  const unsigned char *hash,
134                  unsigned int hashLen);
135 
136 extern SECStatus
137 RSA_CheckSignRecoverRaw(RSAPublicKey *key,
138                         unsigned char *data,
139                         unsigned int *dataLen,
140                         unsigned int maxDataLen,
141                         const unsigned char *sig,
142                         unsigned int sigLen);
143 
144 extern SECStatus
145 RSA_EncryptRaw(RSAPublicKey *key,
146                unsigned char *output,
147                unsigned int *outputLen,
148                unsigned int maxOutputLen,
149                const unsigned char *input,
150                unsigned int inputLen);
151 
152 extern SECStatus
153 RSA_DecryptRaw(RSAPrivateKey *key,
154                unsigned char *output,
155                unsigned int *outputLen,
156                unsigned int maxOutputLen,
157                const unsigned char *input,
158                unsigned int inputLen);
159 
160 /********************************************************************
161 ** RSAES-OAEP encryption/decryption, as defined in RFC 3447, Section 7.1.
162 **
163 ** Note: Only MGF1 is supported as the mask generation function. It will be
164 ** used with maskHashAlg as the inner hash function.
165 **
166 ** Unless performing Known Answer Tests, "seed" should be NULL, indicating that
167 ** freebl should generate a random value. Otherwise, it should be an octet
168 ** string of seedLen bytes, which should be the same size as the output of
169 ** hashAlg.
170 */
171 extern SECStatus
172 RSA_EncryptOAEP(RSAPublicKey *key,
173                 HASH_HashType hashAlg,
174                 HASH_HashType maskHashAlg,
175                 const unsigned char *label,
176                 unsigned int labelLen,
177                 const unsigned char *seed,
178                 unsigned int seedLen,
179                 unsigned char *output,
180                 unsigned int *outputLen,
181                 unsigned int maxOutputLen,
182                 const unsigned char *input,
183                 unsigned int inputLen);
184 
185 extern SECStatus
186 RSA_DecryptOAEP(RSAPrivateKey *key,
187                 HASH_HashType hashAlg,
188                 HASH_HashType maskHashAlg,
189                 const unsigned char *label,
190                 unsigned int labelLen,
191                 unsigned char *output,
192                 unsigned int *outputLen,
193                 unsigned int maxOutputLen,
194                 const unsigned char *input,
195                 unsigned int inputLen);
196 
197 /********************************************************************
198 ** RSAES-PKCS1-v1_5 encryption/decryption, as defined in RFC 3447, Section 7.2.
199 */
200 extern SECStatus
201 RSA_EncryptBlock(RSAPublicKey *key,
202                  unsigned char *output,
203                  unsigned int *outputLen,
204                  unsigned int maxOutputLen,
205                  const unsigned char *input,
206                  unsigned int inputLen);
207 
208 extern SECStatus
209 RSA_DecryptBlock(RSAPrivateKey *key,
210                  unsigned char *output,
211                  unsigned int *outputLen,
212                  unsigned int maxOutputLen,
213                  const unsigned char *input,
214                  unsigned int inputLen);
215 
216 /********************************************************************
217 ** RSASSA-PSS signing/verifying, as defined in RFC 3447, Section 8.1.
218 **
219 ** Note: Only MGF1 is supported as the mask generation function. It will be
220 ** used with maskHashAlg as the inner hash function.
221 **
222 ** Unless performing Known Answer Tests, "salt" should be NULL, indicating that
223 ** freebl should generate a random value.
224 */
225 extern SECStatus
226 RSA_SignPSS(RSAPrivateKey *key,
227             HASH_HashType hashAlg,
228             HASH_HashType maskHashAlg,
229             const unsigned char *salt,
230             unsigned int saltLen,
231             unsigned char *output,
232             unsigned int *outputLen,
233             unsigned int maxOutputLen,
234             const unsigned char *input,
235             unsigned int inputLen);
236 
237 extern SECStatus
238 RSA_CheckSignPSS(RSAPublicKey *key,
239                  HASH_HashType hashAlg,
240                  HASH_HashType maskHashAlg,
241                  unsigned int saltLen,
242                  const unsigned char *sig,
243                  unsigned int sigLen,
244                  const unsigned char *hash,
245                  unsigned int hashLen);
246 
247 /********************************************************************
248 ** RSASSA-PKCS1-v1_5 signing/verifying, as defined in RFC 3447, Section 8.2.
249 **
250 ** These functions expect as input to be the raw value to be signed. For most
251 ** cases using PKCS1-v1_5, this should be the value of T, the DER-encoded
252 ** DigestInfo structure defined in Section 9.2, Step 2.
253 ** Note: This can also be used for signatures that use PKCS1-v1_5 padding, such
254 ** as the signatures used in SSL/TLS, which sign a raw hash.
255 */
256 extern SECStatus
257 RSA_Sign(RSAPrivateKey *key,
258          unsigned char *output,
259          unsigned int *outputLen,
260          unsigned int maxOutputLen,
261          const unsigned char *data,
262          unsigned int dataLen);
263 
264 extern SECStatus
265 RSA_CheckSign(RSAPublicKey *key,
266               const unsigned char *sig,
267               unsigned int sigLen,
268               const unsigned char *data,
269               unsigned int dataLen);
270 
271 extern SECStatus
272 RSA_CheckSignRecover(RSAPublicKey *key,
273                      unsigned char *output,
274                      unsigned int *outputLen,
275                      unsigned int maxOutputLen,
276                      const unsigned char *sig,
277                      unsigned int sigLen);
278 
279 /********************************************************************
280 ** DSA signing algorithm
281 */
282 
283 /* Generate a new random value within the interval [2, q-1].
284 */
285 extern SECStatus DSA_NewRandom(PLArenaPool *arena, const SECItem *q,
286                                SECItem *random);
287 
288 /*
289 ** Generate and return a new DSA public and private key pair,
290 **  both of which are encoded into a single DSAPrivateKey struct.
291 **  "params" is a pointer to the PQG parameters for the domain
292 **  Uses a random seed.
293 */
294 extern SECStatus DSA_NewKey(const PQGParams *params,
295                             DSAPrivateKey **privKey);
296 
297 /* signature is caller-supplied buffer of at least 20 bytes.
298 ** On input,  signature->len == size of buffer to hold signature.
299 **            digest->len    == size of digest.
300 ** On output, signature->len == size of signature in buffer.
301 ** Uses a random seed.
302 */
303 extern SECStatus DSA_SignDigest(DSAPrivateKey *key,
304                                 SECItem *signature,
305                                 const SECItem *digest);
306 
307 /* signature is caller-supplied buffer of at least 20 bytes.
308 ** On input,  signature->len == size of buffer to hold signature.
309 **            digest->len    == size of digest.
310 */
311 extern SECStatus DSA_VerifyDigest(DSAPublicKey *key,
312                                   const SECItem *signature,
313                                   const SECItem *digest);
314 
315 /* For FIPS compliance testing. Seed must be exactly 20 bytes long */
316 extern SECStatus DSA_NewKeyFromSeed(const PQGParams *params,
317                                     const unsigned char *seed,
318                                     DSAPrivateKey **privKey);
319 
320 /* For FIPS compliance testing. Seed must be exactly 20 bytes. */
321 extern SECStatus DSA_SignDigestWithSeed(DSAPrivateKey *key,
322                                         SECItem *signature,
323                                         const SECItem *digest,
324                                         const unsigned char *seed);
325 
326 /******************************************************
327 ** Diffie Helman key exchange algorithm
328 */
329 
330 /* Generates parameters for Diffie-Helman key generation.
331 **  primeLen is the length in bytes of prime P to be generated.
332 */
333 extern SECStatus DH_GenParam(int primeLen, DHParams **params);
334 
335 /* Generates a public and private key, both of which are encoded in a single
336 **  DHPrivateKey struct. Params is input, privKey are output.
337 **  This is Phase 1 of Diffie Hellman.
338 */
339 extern SECStatus DH_NewKey(DHParams *params,
340                            DHPrivateKey **privKey);
341 
342 /*
343 ** DH_Derive does the Diffie-Hellman phase 2 calculation, using the
344 ** other party's publicValue, and the prime and our privateValue.
345 ** maxOutBytes is the requested length of the generated secret in bytes.
346 ** A zero value means produce a value of any length up to the size of
347 ** the prime.   If successful, derivedSecret->data is set
348 ** to the address of the newly allocated buffer containing the derived
349 ** secret, and derivedSecret->len is the size of the secret produced.
350 ** The size of the secret produced will depend on the value of outBytes.
351 ** If outBytes is 0, the key length will be all the significant bytes of
352 ** the derived secret (leading zeros are dropped). This length could be less
353 ** than the length of the prime. If outBytes is nonzero, the length of the
354 ** produced key will be outBytes long. If the key is truncated, the most
355 ** significant bytes are truncated. If it is expanded, zero bytes are added
356 ** at the beginning.
357 ** It is the caller's responsibility to free the allocated buffer
358 ** containing the derived secret.
359 */
360 extern SECStatus DH_Derive(SECItem *publicValue,
361                            SECItem *prime,
362                            SECItem *privateValue,
363                            SECItem *derivedSecret,
364                            unsigned int outBytes);
365 
366 /*
367 ** KEA_CalcKey returns octet string with the private key for a dual
368 ** Diffie-Helman  key generation as specified for government key exchange.
369 */
370 extern SECStatus KEA_Derive(SECItem *prime,
371                             SECItem *public1,
372                             SECItem *public2,
373                             SECItem *private1,
374                             SECItem *private2,
375                             SECItem *derivedSecret);
376 
377 /*
378  * verify that a KEA or DSA public key is a valid key for this prime and
379  * subprime domain.
380  */
381 extern PRBool KEA_Verify(SECItem *Y, SECItem *prime, SECItem *subPrime);
382 
383 /* verify a value is prime */
384 PRBool KEA_PrimeCheck(SECItem *prime);
385 
386 /****************************************
387  * J-PAKE key transport
388  */
389 
390 /* Given gx == g^x, create a Schnorr zero-knowledge proof for the value x
391  * using the specified hash algorithm and signer ID. The signature is
392  * returned in the values gv and r. testRandom must be NULL for a PRNG
393  * generated random committment to be used in the sigature. When testRandom
394  * is non-NULL, that value must contain a value in the subgroup q; that
395  * value will be used instead of a PRNG-generated committment in order to
396  * facilitate known-answer tests.
397  *
398  * If gxIn is non-NULL then it must contain a pre-computed value of g^x that
399  * will be used by the function; in this case, the gxOut parameter must be NULL.
400  * If the gxIn parameter is NULL then gxOut must be non-NULL; in this case
401  * gxOut will contain the value g^x on output.
402  *
403  * gx (if not supplied by the caller), gv, and r will be allocated in the arena.
404  * The arena is *not* optional so do not pass NULL for the arena parameter.
405  * The arena should be zeroed when it is freed.
406  */
407 SECStatus
408 JPAKE_Sign(PLArenaPool *arena, const PQGParams *pqg, HASH_HashType hashType,
409            const SECItem *signerID, const SECItem *x,
410            const SECItem *testRandom, const SECItem *gxIn, SECItem *gxOut,
411            SECItem *gv, SECItem *r);
412 
413 /* Given gx == g^x, verify the Schnorr zero-knowledge proof (gv, r) for the
414  * value x using the specified hash algorithm and signer ID.
415  *
416  * The arena is *not* optional so do not pass NULL for the arena parameter.
417  */
418 SECStatus
419 JPAKE_Verify(PLArenaPool *arena, const PQGParams *pqg,
420              HASH_HashType hashType, const SECItem *signerID,
421              const SECItem *peerID, const SECItem *gx,
422              const SECItem *gv, const SECItem *r);
423 
424 /* Call before round 2 with x2, s, and x2s all non-NULL. This will calculate
425  * base = g^(x1+x3+x4) (mod p) and x2s = x2*s (mod q). The values to send in
426  * round 2 (A and the proof of knowledge of x2s) can then be calculated with
427  * JPAKE_Sign using pqg->base = base and x = x2s.
428  *
429  * Call after round 2 with x2, s, and x2s all NULL, and passing (gx1, gx2, gx3)
430  * instead of (gx1, gx3, gx4). This will calculate base = g^(x1+x2+x3). Then call
431  * JPAKE_Verify with pqg->base = base and then JPAKE_Final.
432  *
433  * base and x2s will be allocated in the arena. The arena is *not* optional so
434  * do not pass NULL for the arena parameter. The arena should be zeroed when it
435  * is freed.
436 */
437 SECStatus
438 JPAKE_Round2(PLArenaPool *arena, const SECItem *p, const SECItem *q,
439              const SECItem *gx1, const SECItem *gx3, const SECItem *gx4,
440              SECItem *base, const SECItem *x2, const SECItem *s, SECItem *x2s);
441 
442 /* K = (B/g^(x2*x4*s))^x2 (mod p)
443  *
444  * K will be allocated in the arena. The arena is *not* optional so do not pass
445  * NULL for the arena parameter. The arena should be zeroed when it is freed.
446  */
447 SECStatus
448 JPAKE_Final(PLArenaPool *arena, const SECItem *p, const SECItem *q,
449             const SECItem *x2, const SECItem *gx4, const SECItem *x2s,
450             const SECItem *B, SECItem *K);
451 
452 /******************************************************
453 ** Elliptic Curve algorithms
454 */
455 
456 /* Generates a public and private key, both of which are encoded
457 ** in a single ECPrivateKey struct. Params is input, privKey are
458 ** output.
459 */
460 extern SECStatus EC_NewKey(ECParams *params,
461                            ECPrivateKey **privKey);
462 
463 extern SECStatus EC_NewKeyFromSeed(ECParams *params,
464                                    ECPrivateKey **privKey,
465                                    const unsigned char *seed,
466                                    int seedlen);
467 
468 /* Validates an EC public key as described in Section 5.2.2 of
469  * X9.62. Such validation prevents against small subgroup attacks
470  * when the ECDH primitive is used with the cofactor.
471  */
472 extern SECStatus EC_ValidatePublicKey(ECParams *params,
473                                       SECItem *publicValue);
474 
475 /*
476 ** ECDH_Derive performs a scalar point multiplication of a point
477 ** representing a (peer's) public key and a large integer representing
478 ** a private key (its own). Both keys must use the same elliptic curve
479 ** parameters. If the withCofactor parameter is true, the
480 ** multiplication also uses the cofactor associated with the curve
481 ** parameters.  The output of this scheme is the x-coordinate of the
482 ** resulting point. If successful, derivedSecret->data is set to the
483 ** address of the newly allocated buffer containing the derived
484 ** secret, and derivedSecret->len is the size of the secret
485 ** produced. It is the caller's responsibility to free the allocated
486 ** buffer containing the derived secret.
487 */
488 extern SECStatus ECDH_Derive(SECItem *publicValue,
489                              ECParams *params,
490                              SECItem *privateValue,
491                              PRBool withCofactor,
492                              SECItem *derivedSecret);
493 
494 /* On input,  signature->len == size of buffer to hold signature.
495 **            digest->len    == size of digest.
496 ** On output, signature->len == size of signature in buffer.
497 ** Uses a random seed.
498 */
499 extern SECStatus ECDSA_SignDigest(ECPrivateKey *key,
500                                   SECItem *signature,
501                                   const SECItem *digest);
502 
503 /* On input,  signature->len == size of buffer to hold signature.
504 **            digest->len    == size of digest.
505 */
506 extern SECStatus ECDSA_VerifyDigest(ECPublicKey *key,
507                                     const SECItem *signature,
508                                     const SECItem *digest);
509 
510 /* Uses the provided seed. */
511 extern SECStatus ECDSA_SignDigestWithSeed(ECPrivateKey *key,
512                                           SECItem *signature,
513                                           const SECItem *digest,
514                                           const unsigned char *seed,
515                                           const int seedlen);
516 
517 /******************************************/
518 /*
519 ** RC4 symmetric stream cypher
520 */
521 
522 /*
523 ** Create a new RC4 context suitable for RC4 encryption/decryption.
524 **  "key" raw key data
525 **  "len" the number of bytes of key data
526 */
527 extern RC4Context *RC4_CreateContext(const unsigned char *key, int len);
528 
529 extern RC4Context *RC4_AllocateContext(void);
530 extern SECStatus RC4_InitContext(RC4Context *cx,
531                                  const unsigned char *key,
532                                  unsigned int keylen,
533                                  const unsigned char *,
534                                  int,
535                                  unsigned int,
536                                  unsigned int);
537 
538 /*
539 ** Destroy an RC4 encryption/decryption context.
540 **  "cx" the context
541 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
542 */
543 extern void RC4_DestroyContext(RC4Context *cx, PRBool freeit);
544 
545 /*
546 ** Perform RC4 encryption.
547 **  "cx" the context
548 **  "output" the output buffer to store the encrypted data.
549 **  "outputLen" how much data is stored in "output". Set by the routine
550 **     after some data is stored in output.
551 **  "maxOutputLen" the maximum amount of data that can ever be
552 **     stored in "output"
553 **  "input" the input data
554 **  "inputLen" the amount of input data
555 */
556 extern SECStatus RC4_Encrypt(RC4Context *cx, unsigned char *output,
557                              unsigned int *outputLen, unsigned int maxOutputLen,
558                              const unsigned char *input, unsigned int inputLen);
559 
560 /*
561 ** Perform RC4 decryption.
562 **  "cx" the context
563 **  "output" the output buffer to store the decrypted data.
564 **  "outputLen" how much data is stored in "output". Set by the routine
565 **     after some data is stored in output.
566 **  "maxOutputLen" the maximum amount of data that can ever be
567 **     stored in "output"
568 **  "input" the input data
569 **  "inputLen" the amount of input data
570 */
571 extern SECStatus RC4_Decrypt(RC4Context *cx, unsigned char *output,
572                              unsigned int *outputLen, unsigned int maxOutputLen,
573                              const unsigned char *input, unsigned int inputLen);
574 
575 /******************************************/
576 /*
577 ** RC2 symmetric block cypher
578 */
579 
580 /*
581 ** Create a new RC2 context suitable for RC2 encryption/decryption.
582 **  "key" raw key data
583 **  "len" the number of bytes of key data
584 **  "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC)
585 **  "mode" one of NSS_RC2 or NSS_RC2_CBC
586 **  "effectiveKeyLen" is the effective key length (as specified in
587 **      RFC 2268) in bytes (not bits).
588 **
589 ** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block
590 ** chaining" mode.
591 */
592 extern RC2Context *RC2_CreateContext(const unsigned char *key, unsigned int len,
593                                      const unsigned char *iv, int mode,
594                                      unsigned effectiveKeyLen);
595 extern RC2Context *RC2_AllocateContext(void);
596 extern SECStatus RC2_InitContext(RC2Context *cx,
597                                  const unsigned char *key,
598                                  unsigned int keylen,
599                                  const unsigned char *iv,
600                                  int mode,
601                                  unsigned int effectiveKeyLen,
602                                  unsigned int);
603 
604 /*
605 ** Destroy an RC2 encryption/decryption context.
606 **  "cx" the context
607 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
608 */
609 extern void RC2_DestroyContext(RC2Context *cx, PRBool freeit);
610 
611 /*
612 ** Perform RC2 encryption.
613 **  "cx" the context
614 **  "output" the output buffer to store the encrypted data.
615 **  "outputLen" how much data is stored in "output". Set by the routine
616 **     after some data is stored in output.
617 **  "maxOutputLen" the maximum amount of data that can ever be
618 **     stored in "output"
619 **  "input" the input data
620 **  "inputLen" the amount of input data
621 */
622 extern SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output,
623                              unsigned int *outputLen, unsigned int maxOutputLen,
624                              const unsigned char *input, unsigned int inputLen);
625 
626 /*
627 ** Perform RC2 decryption.
628 **  "cx" the context
629 **  "output" the output buffer to store the decrypted data.
630 **  "outputLen" how much data is stored in "output". Set by the routine
631 **     after some data is stored in output.
632 **  "maxOutputLen" the maximum amount of data that can ever be
633 **     stored in "output"
634 **  "input" the input data
635 **  "inputLen" the amount of input data
636 */
637 extern SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output,
638                              unsigned int *outputLen, unsigned int maxOutputLen,
639                              const unsigned char *input, unsigned int inputLen);
640 
641 /******************************************/
642 /*
643 ** RC5 symmetric block cypher -- 64-bit block size
644 */
645 
646 /*
647 ** Create a new RC5 context suitable for RC5 encryption/decryption.
648 **      "key" raw key data
649 **      "len" the number of bytes of key data
650 **      "iv" is the CBC initialization vector (if mode is NSS_RC5_CBC)
651 **      "mode" one of NSS_RC5 or NSS_RC5_CBC
652 **
653 ** When mode is set to NSS_RC5_CBC the RC5 cipher is run in "cipher block
654 ** chaining" mode.
655 */
656 extern RC5Context *RC5_CreateContext(const SECItem *key, unsigned int rounds,
657                                      unsigned int wordSize, const unsigned char *iv, int mode);
658 extern RC5Context *RC5_AllocateContext(void);
659 extern SECStatus RC5_InitContext(RC5Context *cx,
660                                  const unsigned char *key,
661                                  unsigned int keylen,
662                                  const unsigned char *iv,
663                                  int mode,
664                                  unsigned int rounds,
665                                  unsigned int wordSize);
666 
667 /*
668 ** Destroy an RC5 encryption/decryption context.
669 **      "cx" the context
670 **      "freeit" if PR_TRUE then free the object as well as its sub-objects
671 */
672 extern void RC5_DestroyContext(RC5Context *cx, PRBool freeit);
673 
674 /*
675 ** Perform RC5 encryption.
676 **      "cx" the context
677 **      "output" the output buffer to store the encrypted data.
678 **      "outputLen" how much data is stored in "output". Set by the routine
679 **         after some data is stored in output.
680 **      "maxOutputLen" the maximum amount of data that can ever be
681 **         stored in "output"
682 **      "input" the input data
683 **      "inputLen" the amount of input data
684 */
685 extern SECStatus RC5_Encrypt(RC5Context *cx, unsigned char *output,
686                              unsigned int *outputLen, unsigned int maxOutputLen,
687                              const unsigned char *input, unsigned int inputLen);
688 
689 /*
690 ** Perform RC5 decryption.
691 **      "cx" the context
692 **      "output" the output buffer to store the decrypted data.
693 **      "outputLen" how much data is stored in "output". Set by the routine
694 **         after some data is stored in output.
695 **      "maxOutputLen" the maximum amount of data that can ever be
696 **         stored in "output"
697 **      "input" the input data
698 **      "inputLen" the amount of input data
699 */
700 
701 extern SECStatus RC5_Decrypt(RC5Context *cx, unsigned char *output,
702                              unsigned int *outputLen, unsigned int maxOutputLen,
703                              const unsigned char *input, unsigned int inputLen);
704 
705 /******************************************/
706 /*
707 ** DES symmetric block cypher
708 */
709 
710 /*
711 ** Create a new DES context suitable for DES encryption/decryption.
712 **  "key" raw key data
713 **  "len" the number of bytes of key data
714 **  "iv" is the CBC initialization vector (if mode is NSS_DES_CBC or
715 **     mode is DES_EDE3_CBC)
716 **  "mode" one of NSS_DES, NSS_DES_CBC, NSS_DES_EDE3 or NSS_DES_EDE3_CBC
717 **  "encrypt" is PR_TRUE if the context will be used for encryption
718 **
719 ** When mode is set to NSS_DES_CBC or NSS_DES_EDE3_CBC then the DES
720 ** cipher is run in "cipher block chaining" mode.
721 */
722 extern DESContext *DES_CreateContext(const unsigned char *key,
723                                      const unsigned char *iv,
724                                      int mode, PRBool encrypt);
725 extern DESContext *DES_AllocateContext(void);
726 extern SECStatus DES_InitContext(DESContext *cx,
727                                  const unsigned char *key,
728                                  unsigned int keylen,
729                                  const unsigned char *iv,
730                                  int mode,
731                                  unsigned int encrypt,
732                                  unsigned int);
733 
734 /*
735 ** Destroy an DES encryption/decryption context.
736 **  "cx" the context
737 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
738 */
739 extern void DES_DestroyContext(DESContext *cx, PRBool freeit);
740 
741 /*
742 ** Perform DES encryption.
743 **  "cx" the context
744 **  "output" the output buffer to store the encrypted data.
745 **  "outputLen" how much data is stored in "output". Set by the routine
746 **     after some data is stored in output.
747 **  "maxOutputLen" the maximum amount of data that can ever be
748 **     stored in "output"
749 **  "input" the input data
750 **  "inputLen" the amount of input data
751 **
752 ** NOTE: the inputLen must be a multiple of DES_KEY_LENGTH
753 */
754 extern SECStatus DES_Encrypt(DESContext *cx, unsigned char *output,
755                              unsigned int *outputLen, unsigned int maxOutputLen,
756                              const unsigned char *input, unsigned int inputLen);
757 
758 /*
759 ** Perform DES decryption.
760 **  "cx" the context
761 **  "output" the output buffer to store the decrypted data.
762 **  "outputLen" how much data is stored in "output". Set by the routine
763 **     after some data is stored in output.
764 **  "maxOutputLen" the maximum amount of data that can ever be
765 **     stored in "output"
766 **  "input" the input data
767 **  "inputLen" the amount of input data
768 **
769 ** NOTE: the inputLen must be a multiple of DES_KEY_LENGTH
770 */
771 extern SECStatus DES_Decrypt(DESContext *cx, unsigned char *output,
772                              unsigned int *outputLen, unsigned int maxOutputLen,
773                              const unsigned char *input, unsigned int inputLen);
774 
775 /******************************************/
776 /*
777 ** SEED symmetric block cypher
778 */
779 extern SEEDContext *
780 SEED_CreateContext(const unsigned char *key, const unsigned char *iv,
781                    int mode, PRBool encrypt);
782 extern SEEDContext *SEED_AllocateContext(void);
783 extern SECStatus SEED_InitContext(SEEDContext *cx,
784                                   const unsigned char *key,
785                                   unsigned int keylen,
786                                   const unsigned char *iv,
787                                   int mode, unsigned int encrypt,
788                                   unsigned int);
789 extern void SEED_DestroyContext(SEEDContext *cx, PRBool freeit);
790 extern SECStatus
791 SEED_Encrypt(SEEDContext *cx, unsigned char *output,
792              unsigned int *outputLen, unsigned int maxOutputLen,
793              const unsigned char *input, unsigned int inputLen);
794 extern SECStatus
795 SEED_Decrypt(SEEDContext *cx, unsigned char *output,
796              unsigned int *outputLen, unsigned int maxOutputLen,
797              const unsigned char *input, unsigned int inputLen);
798 
799 /******************************************/
800 /*
801 ** AES symmetric block cypher (Rijndael)
802 */
803 
804 /*
805 ** Create a new AES context suitable for AES encryption/decryption.
806 **  "key" raw key data
807 **  "keylen" the number of bytes of key data (16, 24, or 32)
808 **  "blocklen" is the blocksize to use. NOTE: only 16 is supported!
809 */
810 extern AESContext *
811 AES_CreateContext(const unsigned char *key, const unsigned char *iv,
812                   int mode, int encrypt,
813                   unsigned int keylen, unsigned int blocklen);
814 extern AESContext *AES_AllocateContext(void);
815 extern SECStatus AES_InitContext(AESContext *cx,
816                                  const unsigned char *key,
817                                  unsigned int keylen,
818                                  const unsigned char *iv,
819                                  int mode,
820                                  unsigned int encrypt,
821                                  unsigned int blocklen);
822 
823 /*
824 ** Destroy a AES encryption/decryption context.
825 **  "cx" the context
826 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
827 */
828 extern void
829 AES_DestroyContext(AESContext *cx, PRBool freeit);
830 
831 /*
832 ** Perform AES encryption.
833 **  "cx" the context
834 **  "output" the output buffer to store the encrypted data.
835 **  "outputLen" how much data is stored in "output". Set by the routine
836 **     after some data is stored in output.
837 **  "maxOutputLen" the maximum amount of data that can ever be
838 **     stored in "output"
839 **  "input" the input data
840 **  "inputLen" the amount of input data
841 */
842 extern SECStatus
843 AES_Encrypt(AESContext *cx, unsigned char *output,
844             unsigned int *outputLen, unsigned int maxOutputLen,
845             const unsigned char *input, unsigned int inputLen);
846 
847 /*
848 ** Perform AES decryption.
849 **  "cx" the context
850 **  "output" the output buffer to store the decrypted data.
851 **  "outputLen" how much data is stored in "output". Set by the routine
852 **     after some data is stored in output.
853 **  "maxOutputLen" the maximum amount of data that can ever be
854 **     stored in "output"
855 **  "input" the input data
856 **  "inputLen" the amount of input data
857 */
858 extern SECStatus
859 AES_Decrypt(AESContext *cx, unsigned char *output,
860             unsigned int *outputLen, unsigned int maxOutputLen,
861             const unsigned char *input, unsigned int inputLen);
862 /*
863 ** Perform AES AEAD operation (either encrypt or decrypt), controlled by
864 ** the context.
865 **  "cx" the context
866 **  "output" the output buffer to store the encrypted data.
867 **  "outputLen" how much data is stored in "output". Set by the routine
868 **     after some data is stored in output.
869 **  "maxOutputLen" the maximum amount of data that can ever be
870 **     stored in "output"
871 **  "input" the input data
872 **  "inputLen" the amount of input data
873 **  "params" pointer to an AEAD specific param PKCS #11 param structure
874 **  "paramsLen" length of the param structure pointed to by params
875 **  "aad" addition authenticated data
876 **  "aadLen" the amount of additional authenticated data.
877 */
878 extern SECStatus
879 AES_AEAD(AESContext *cx, unsigned char *output,
880          unsigned int *outputLen, unsigned int maxOutputLen,
881          const unsigned char *input, unsigned int inputLen,
882          void *params, unsigned int paramsLen,
883          const unsigned char *aad, unsigned int aadLen);
884 
885 /******************************************/
886 /*
887 ** AES key wrap algorithm, RFC 3394
888 */
889 
890 /*
891 ** Create a new AES context suitable for AES encryption/decryption.
892 **  "key" raw key data
893 **      "iv"  The 8 byte "initial value"
894 **      "encrypt", a boolean, true for key wrapping, false for unwrapping.
895 **  "keylen" the number of bytes of key data (16, 24, or 32)
896 */
897 extern AESKeyWrapContext *
898 AESKeyWrap_CreateContext(const unsigned char *key, const unsigned char *iv,
899                          int encrypt, unsigned int keylen);
900 extern AESKeyWrapContext *AESKeyWrap_AllocateContext(void);
901 extern SECStatus
902 AESKeyWrap_InitContext(AESKeyWrapContext *cx,
903                        const unsigned char *key,
904                        unsigned int keylen,
905                        const unsigned char *iv,
906                        int,
907                        unsigned int encrypt,
908                        unsigned int);
909 
910 /*
911 ** Destroy a AES KeyWrap context.
912 **  "cx" the context
913 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
914 */
915 extern void
916 AESKeyWrap_DestroyContext(AESKeyWrapContext *cx, PRBool freeit);
917 
918 /*
919 ** Perform AES key wrap.
920 **  "cx" the context
921 **  "output" the output buffer to store the encrypted data.
922 **  "outputLen" how much data is stored in "output". Set by the routine
923 **     after some data is stored in output.
924 **  "maxOutputLen" the maximum amount of data that can ever be
925 **     stored in "output"
926 **  "input" the input data
927 **  "inputLen" the amount of input data
928 */
929 extern SECStatus
930 AESKeyWrap_Encrypt(AESKeyWrapContext *cx, unsigned char *output,
931                    unsigned int *outputLen, unsigned int maxOutputLen,
932                    const unsigned char *input, unsigned int inputLen);
933 
934 /*
935 ** Perform AES key unwrap.
936 **  "cx" the context
937 **  "output" the output buffer to store the decrypted data.
938 **  "outputLen" how much data is stored in "output". Set by the routine
939 **     after some data is stored in output.
940 **  "maxOutputLen" the maximum amount of data that can ever be
941 **     stored in "output"
942 **  "input" the input data
943 **  "inputLen" the amount of input data
944 */
945 extern SECStatus
946 AESKeyWrap_Decrypt(AESKeyWrapContext *cx, unsigned char *output,
947                    unsigned int *outputLen, unsigned int maxOutputLen,
948                    const unsigned char *input, unsigned int inputLen);
949 
950 /*
951 ** Perform AES padded key wrap.
952 **  "cx" the context
953 **  "output" the output buffer to store the encrypted data.
954 **  "outputLen" how much data is stored in "output". Set by the routine
955 **     after some data is stored in output.
956 **  "maxOutputLen" the maximum amount of data that can ever be
957 **     stored in "output"
958 **  "input" the input data
959 **  "inputLen" the amount of input data
960 */
961 extern SECStatus
962 AESKeyWrap_EncryptKWP(AESKeyWrapContext *cx, unsigned char *output,
963                       unsigned int *outputLen, unsigned int maxOutputLen,
964                       const unsigned char *input, unsigned int inputLen);
965 
966 /*
967 ** Perform AES padded key unwrap.
968 **  "cx" the context
969 **  "output" the output buffer to store the decrypted data.
970 **  "outputLen" how much data is stored in "output". Set by the routine
971 **     after some data is stored in output.
972 **  "maxOutputLen" the maximum amount of data that can ever be
973 **     stored in "output"
974 **  "input" the input data
975 **  "inputLen" the amount of input data
976 */
977 extern SECStatus
978 AESKeyWrap_DecryptKWP(AESKeyWrapContext *cx, unsigned char *output,
979                       unsigned int *outputLen, unsigned int maxOutputLen,
980                       const unsigned char *input, unsigned int inputLen);
981 
982 /******************************************/
983 /*
984 ** Camellia symmetric block cypher
985 */
986 
987 /*
988 ** Create a new Camellia context suitable for Camellia encryption/decryption.
989 **  "key" raw key data
990 **  "keylen" the number of bytes of key data (16, 24, or 32)
991 */
992 extern CamelliaContext *
993 Camellia_CreateContext(const unsigned char *key, const unsigned char *iv,
994                        int mode, int encrypt, unsigned int keylen);
995 
996 extern CamelliaContext *Camellia_AllocateContext(void);
997 extern SECStatus Camellia_InitContext(CamelliaContext *cx,
998                                       const unsigned char *key,
999                                       unsigned int keylen,
1000                                       const unsigned char *iv,
1001                                       int mode,
1002                                       unsigned int encrypt,
1003                                       unsigned int unused);
1004 /*
1005 ** Destroy a Camellia encryption/decryption context.
1006 **  "cx" the context
1007 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
1008 */
1009 extern void
1010 Camellia_DestroyContext(CamelliaContext *cx, PRBool freeit);
1011 
1012 /*
1013 ** Perform Camellia encryption.
1014 **  "cx" the context
1015 **  "output" the output buffer to store the encrypted data.
1016 **  "outputLen" how much data is stored in "output". Set by the routine
1017 **     after some data is stored in output.
1018 **  "maxOutputLen" the maximum amount of data that can ever be
1019 **     stored in "output"
1020 **  "input" the input data
1021 **  "inputLen" the amount of input data
1022 */
1023 extern SECStatus
1024 Camellia_Encrypt(CamelliaContext *cx, unsigned char *output,
1025                  unsigned int *outputLen, unsigned int maxOutputLen,
1026                  const unsigned char *input, unsigned int inputLen);
1027 
1028 /*
1029 ** Perform Camellia decryption.
1030 **  "cx" the context
1031 **  "output" the output buffer to store the decrypted data.
1032 **  "outputLen" how much data is stored in "output". Set by the routine
1033 **     after some data is stored in output.
1034 **  "maxOutputLen" the maximum amount of data that can ever be
1035 **     stored in "output"
1036 **  "input" the input data
1037 **  "inputLen" the amount of input data
1038 */
1039 extern SECStatus
1040 Camellia_Decrypt(CamelliaContext *cx, unsigned char *output,
1041                  unsigned int *outputLen, unsigned int maxOutputLen,
1042                  const unsigned char *input, unsigned int inputLen);
1043 
1044 /******************************************/
1045 /*
1046 ** ChaCha20 block cipher
1047 */
1048 
1049 extern SECStatus ChaCha20_InitContext(ChaCha20Context *ctx,
1050                                       const unsigned char *key,
1051                                       unsigned int keyLen,
1052                                       const unsigned char *nonce,
1053                                       unsigned int nonceLen,
1054                                       PRUint32 ctr);
1055 
1056 extern ChaCha20Context *ChaCha20_CreateContext(const unsigned char *key,
1057                                                unsigned int keyLen,
1058                                                const unsigned char *nonce,
1059                                                unsigned int nonceLen,
1060                                                PRUint32 ctr);
1061 
1062 extern void ChaCha20_DestroyContext(ChaCha20Context *ctx, PRBool freeit);
1063 
1064 /******************************************/
1065 /*
1066 ** ChaCha20+Poly1305 AEAD
1067 */
1068 
1069 extern SECStatus ChaCha20Poly1305_InitContext(ChaCha20Poly1305Context *ctx,
1070                                               const unsigned char *key,
1071                                               unsigned int keyLen,
1072                                               unsigned int tagLen);
1073 
1074 extern ChaCha20Poly1305Context *ChaCha20Poly1305_CreateContext(
1075     const unsigned char *key, unsigned int keyLen, unsigned int tagLen);
1076 
1077 extern void ChaCha20Poly1305_DestroyContext(ChaCha20Poly1305Context *ctx,
1078                                             PRBool freeit);
1079 
1080 extern SECStatus ChaCha20Poly1305_Seal(
1081     const ChaCha20Poly1305Context *ctx, unsigned char *output,
1082     unsigned int *outputLen, unsigned int maxOutputLen,
1083     const unsigned char *input, unsigned int inputLen,
1084     const unsigned char *nonce, unsigned int nonceLen,
1085     const unsigned char *ad, unsigned int adLen);
1086 
1087 extern SECStatus ChaCha20Poly1305_Open(
1088     const ChaCha20Poly1305Context *ctx, unsigned char *output,
1089     unsigned int *outputLen, unsigned int maxOutputLen,
1090     const unsigned char *input, unsigned int inputLen,
1091     const unsigned char *nonce, unsigned int nonceLen,
1092     const unsigned char *ad, unsigned int adLen);
1093 
1094 extern SECStatus ChaCha20Poly1305_Encrypt(
1095     const ChaCha20Poly1305Context *ctx, unsigned char *output,
1096     unsigned int *outputLen, unsigned int maxOutputLen,
1097     const unsigned char *input, unsigned int inputLen,
1098     const unsigned char *nonce, unsigned int nonceLen,
1099     const unsigned char *ad, unsigned int adLen, unsigned char *tagOut);
1100 
1101 extern SECStatus ChaCha20Poly1305_Decrypt(
1102     const ChaCha20Poly1305Context *ctx, unsigned char *output,
1103     unsigned int *outputLen, unsigned int maxOutputLen,
1104     const unsigned char *input, unsigned int inputLen,
1105     const unsigned char *nonce, unsigned int nonceLen,
1106     const unsigned char *ad, unsigned int adLen, unsigned char *tagIn);
1107 
1108 extern SECStatus ChaCha20_Xor(
1109     unsigned char *output, const unsigned char *block, unsigned int len,
1110     const unsigned char *k, const unsigned char *nonce, PRUint32 ctr);
1111 
1112 /******************************************/
1113 /*
1114 ** MD5 secure hash function
1115 */
1116 
1117 /*
1118 ** Hash a null terminated string "src" into "dest" using MD5
1119 */
1120 extern SECStatus MD5_Hash(unsigned char *dest, const char *src);
1121 
1122 /*
1123 ** Hash a non-null terminated string "src" into "dest" using MD5
1124 */
1125 extern SECStatus MD5_HashBuf(unsigned char *dest, const unsigned char *src,
1126                              PRUint32 src_length);
1127 
1128 /*
1129 ** Create a new MD5 context
1130 */
1131 extern MD5Context *MD5_NewContext(void);
1132 
1133 /*
1134 ** Destroy an MD5 secure hash context.
1135 **  "cx" the context
1136 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
1137 */
1138 extern void MD5_DestroyContext(MD5Context *cx, PRBool freeit);
1139 
1140 /*
1141 ** Reset an MD5 context, preparing it for a fresh round of hashing
1142 */
1143 extern void MD5_Begin(MD5Context *cx);
1144 
1145 /*
1146 ** Update the MD5 hash function with more data.
1147 **  "cx" the context
1148 **  "input" the data to hash
1149 **  "inputLen" the amount of data to hash
1150 */
1151 extern void MD5_Update(MD5Context *cx,
1152                        const unsigned char *input, unsigned int inputLen);
1153 
1154 /*
1155 ** Finish the MD5 hash function. Produce the digested results in "digest"
1156 **  "cx" the context
1157 **  "digest" where the 16 bytes of digest data are stored
1158 **  "digestLen" where the digest length (16) is stored
1159 **  "maxDigestLen" the maximum amount of data that can ever be
1160 **     stored in "digest"
1161 */
1162 extern void MD5_End(MD5Context *cx, unsigned char *digest,
1163                     unsigned int *digestLen, unsigned int maxDigestLen);
1164 
1165 /*
1166 ** Export the current state of the MD5 hash without appending the standard
1167 ** padding and length bytes. Produce the digested results in "digest"
1168 **  "cx" the context
1169 **  "digest" where the 16 bytes of digest data are stored
1170 **  "digestLen" where the digest length (16) is stored (optional)
1171 **  "maxDigestLen" the maximum amount of data that can ever be
1172 **     stored in "digest"
1173 */
1174 extern void MD5_EndRaw(MD5Context *cx, unsigned char *digest,
1175                        unsigned int *digestLen, unsigned int maxDigestLen);
1176 
1177 /*
1178  * Return the the size of a buffer needed to flatten the MD5 Context into
1179  *    "cx" the context
1180  *  returns size;
1181  */
1182 extern unsigned int MD5_FlattenSize(MD5Context *cx);
1183 
1184 /*
1185  * Flatten the MD5 Context into a buffer:
1186  *    "cx" the context
1187  *    "space" the buffer to flatten to
1188  *  returns status;
1189  */
1190 extern SECStatus MD5_Flatten(MD5Context *cx, unsigned char *space);
1191 
1192 /*
1193  * Resurrect a flattened context into a MD5 Context
1194  *    "space" the buffer of the flattend buffer
1195  *    "arg" ptr to void used by cryptographic resurrect
1196  *  returns resurected context;
1197  */
1198 extern MD5Context *MD5_Resurrect(unsigned char *space, void *arg);
1199 extern void MD5_Clone(MD5Context *dest, MD5Context *src);
1200 
1201 /*
1202 ** trace the intermediate state info of the MD5 hash.
1203 */
1204 extern void MD5_TraceState(MD5Context *cx);
1205 
1206 /******************************************/
1207 /*
1208 ** MD2 secure hash function
1209 */
1210 
1211 /*
1212 ** Hash a null terminated string "src" into "dest" using MD2
1213 */
1214 extern SECStatus MD2_Hash(unsigned char *dest, const char *src);
1215 
1216 /*
1217 ** Create a new MD2 context
1218 */
1219 extern MD2Context *MD2_NewContext(void);
1220 
1221 /*
1222 ** Destroy an MD2 secure hash context.
1223 **  "cx" the context
1224 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
1225 */
1226 extern void MD2_DestroyContext(MD2Context *cx, PRBool freeit);
1227 
1228 /*
1229 ** Reset an MD2 context, preparing it for a fresh round of hashing
1230 */
1231 extern void MD2_Begin(MD2Context *cx);
1232 
1233 /*
1234 ** Update the MD2 hash function with more data.
1235 **  "cx" the context
1236 **  "input" the data to hash
1237 **  "inputLen" the amount of data to hash
1238 */
1239 extern void MD2_Update(MD2Context *cx,
1240                        const unsigned char *input, unsigned int inputLen);
1241 
1242 /*
1243 ** Finish the MD2 hash function. Produce the digested results in "digest"
1244 **  "cx" the context
1245 **  "digest" where the 16 bytes of digest data are stored
1246 **  "digestLen" where the digest length (16) is stored
1247 **  "maxDigestLen" the maximum amount of data that can ever be
1248 **     stored in "digest"
1249 */
1250 extern void MD2_End(MD2Context *cx, unsigned char *digest,
1251                     unsigned int *digestLen, unsigned int maxDigestLen);
1252 
1253 /*
1254  * Return the the size of a buffer needed to flatten the MD2 Context into
1255  *    "cx" the context
1256  *  returns size;
1257  */
1258 extern unsigned int MD2_FlattenSize(MD2Context *cx);
1259 
1260 /*
1261  * Flatten the MD2 Context into a buffer:
1262  *    "cx" the context
1263  *    "space" the buffer to flatten to
1264  *  returns status;
1265  */
1266 extern SECStatus MD2_Flatten(MD2Context *cx, unsigned char *space);
1267 
1268 /*
1269  * Resurrect a flattened context into a MD2 Context
1270  *    "space" the buffer of the flattend buffer
1271  *    "arg" ptr to void used by cryptographic resurrect
1272  *  returns resurected context;
1273  */
1274 extern MD2Context *MD2_Resurrect(unsigned char *space, void *arg);
1275 extern void MD2_Clone(MD2Context *dest, MD2Context *src);
1276 
1277 /******************************************/
1278 /*
1279 ** SHA-1 secure hash function
1280 */
1281 
1282 /*
1283 ** Hash a null terminated string "src" into "dest" using SHA-1
1284 */
1285 extern SECStatus SHA1_Hash(unsigned char *dest, const char *src);
1286 
1287 /*
1288 ** Hash a non-null terminated string "src" into "dest" using SHA-1
1289 */
1290 extern SECStatus SHA1_HashBuf(unsigned char *dest, const unsigned char *src,
1291                               PRUint32 src_length);
1292 
1293 /*
1294 ** Create a new SHA-1 context
1295 */
1296 extern SHA1Context *SHA1_NewContext(void);
1297 
1298 /*
1299 ** Destroy a SHA-1 secure hash context.
1300 **  "cx" the context
1301 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
1302 */
1303 extern void SHA1_DestroyContext(SHA1Context *cx, PRBool freeit);
1304 
1305 /*
1306 ** Reset a SHA-1 context, preparing it for a fresh round of hashing
1307 */
1308 extern void SHA1_Begin(SHA1Context *cx);
1309 
1310 /*
1311 ** Update the SHA-1 hash function with more data.
1312 **  "cx" the context
1313 **  "input" the data to hash
1314 **  "inputLen" the amount of data to hash
1315 */
1316 extern void SHA1_Update(SHA1Context *cx, const unsigned char *input,
1317                         unsigned int inputLen);
1318 
1319 /*
1320 ** Finish the SHA-1 hash function. Produce the digested results in "digest"
1321 **  "cx" the context
1322 **  "digest" where the 16 bytes of digest data are stored
1323 **  "digestLen" where the digest length (20) is stored
1324 **  "maxDigestLen" the maximum amount of data that can ever be
1325 **     stored in "digest"
1326 */
1327 extern void SHA1_End(SHA1Context *cx, unsigned char *digest,
1328                      unsigned int *digestLen, unsigned int maxDigestLen);
1329 
1330 /*
1331 ** Export the current state of the SHA-1 hash without appending the standard
1332 ** padding and length bytes. Produce the digested results in "digest"
1333 **  "cx" the context
1334 **  "digest" where the 20 bytes of digest data are stored
1335 **  "digestLen" where the digest length (20) is stored (optional)
1336 **  "maxDigestLen" the maximum amount of data that can ever be
1337 **     stored in "digest"
1338 */
1339 extern void SHA1_EndRaw(SHA1Context *cx, unsigned char *digest,
1340                         unsigned int *digestLen, unsigned int maxDigestLen);
1341 
1342 /*
1343 ** trace the intermediate state info of the SHA1 hash.
1344 */
1345 extern void SHA1_TraceState(SHA1Context *cx);
1346 
1347 /*
1348  * Return the the size of a buffer needed to flatten the SHA-1 Context into
1349  *    "cx" the context
1350  *  returns size;
1351  */
1352 extern unsigned int SHA1_FlattenSize(SHA1Context *cx);
1353 
1354 /*
1355  * Flatten the SHA-1 Context into a buffer:
1356  *    "cx" the context
1357  *    "space" the buffer to flatten to
1358  *  returns status;
1359  */
1360 extern SECStatus SHA1_Flatten(SHA1Context *cx, unsigned char *space);
1361 
1362 /*
1363  * Resurrect a flattened context into a SHA-1 Context
1364  *    "space" the buffer of the flattend buffer
1365  *    "arg" ptr to void used by cryptographic resurrect
1366  *  returns resurected context;
1367  */
1368 extern SHA1Context *SHA1_Resurrect(unsigned char *space, void *arg);
1369 extern void SHA1_Clone(SHA1Context *dest, SHA1Context *src);
1370 
1371 /******************************************/
1372 
1373 extern SHA224Context *SHA224_NewContext(void);
1374 extern void SHA224_DestroyContext(SHA224Context *cx, PRBool freeit);
1375 extern void SHA224_Begin(SHA224Context *cx);
1376 extern void SHA224_Update(SHA224Context *cx, const unsigned char *input,
1377                           unsigned int inputLen);
1378 extern void SHA224_End(SHA224Context *cx, unsigned char *digest,
1379                        unsigned int *digestLen, unsigned int maxDigestLen);
1380 /*
1381 ** Export the current state of the SHA-224 hash without appending the standard
1382 ** padding and length bytes. Produce the digested results in "digest"
1383 **  "cx" the context
1384 **  "digest" where the 28 bytes of digest data are stored
1385 **  "digestLen" where the digest length (28) is stored (optional)
1386 **  "maxDigestLen" the maximum amount of data that can ever be
1387 **     stored in "digest"
1388 */
1389 extern void SHA224_EndRaw(SHA224Context *cx, unsigned char *digest,
1390                           unsigned int *digestLen, unsigned int maxDigestLen);
1391 extern SECStatus SHA224_HashBuf(unsigned char *dest, const unsigned char *src,
1392                                 PRUint32 src_length);
1393 extern SECStatus SHA224_Hash(unsigned char *dest, const char *src);
1394 extern void SHA224_TraceState(SHA224Context *cx);
1395 extern unsigned int SHA224_FlattenSize(SHA224Context *cx);
1396 extern SECStatus SHA224_Flatten(SHA224Context *cx, unsigned char *space);
1397 extern SHA224Context *SHA224_Resurrect(unsigned char *space, void *arg);
1398 extern void SHA224_Clone(SHA224Context *dest, SHA224Context *src);
1399 
1400 /******************************************/
1401 
1402 extern SHA256Context *SHA256_NewContext(void);
1403 extern void SHA256_DestroyContext(SHA256Context *cx, PRBool freeit);
1404 extern void SHA256_Begin(SHA256Context *cx);
1405 extern void SHA256_Update(SHA256Context *cx, const unsigned char *input,
1406                           unsigned int inputLen);
1407 extern void SHA256_End(SHA256Context *cx, unsigned char *digest,
1408                        unsigned int *digestLen, unsigned int maxDigestLen);
1409 /*
1410 ** Export the current state of the SHA-256 hash without appending the standard
1411 ** padding and length bytes. Produce the digested results in "digest"
1412 **  "cx" the context
1413 **  "digest" where the 32 bytes of digest data are stored
1414 **  "digestLen" where the digest length (32) is stored (optional)
1415 **  "maxDigestLen" the maximum amount of data that can ever be
1416 **     stored in "digest"
1417 */
1418 extern void SHA256_EndRaw(SHA256Context *cx, unsigned char *digest,
1419                           unsigned int *digestLen, unsigned int maxDigestLen);
1420 extern SECStatus SHA256_HashBuf(unsigned char *dest, const unsigned char *src,
1421                                 PRUint32 src_length);
1422 extern SECStatus SHA256_Hash(unsigned char *dest, const char *src);
1423 extern void SHA256_TraceState(SHA256Context *cx);
1424 extern unsigned int SHA256_FlattenSize(SHA256Context *cx);
1425 extern SECStatus SHA256_Flatten(SHA256Context *cx, unsigned char *space);
1426 extern SHA256Context *SHA256_Resurrect(unsigned char *space, void *arg);
1427 extern void SHA256_Clone(SHA256Context *dest, SHA256Context *src);
1428 
1429 /******************************************/
1430 
1431 extern SHA512Context *SHA512_NewContext(void);
1432 extern void SHA512_DestroyContext(SHA512Context *cx, PRBool freeit);
1433 extern void SHA512_Begin(SHA512Context *cx);
1434 extern void SHA512_Update(SHA512Context *cx, const unsigned char *input,
1435                           unsigned int inputLen);
1436 /*
1437 ** Export the current state of the SHA-512 hash without appending the standard
1438 ** padding and length bytes. Produce the digested results in "digest"
1439 **  "cx" the context
1440 **  "digest" where the 64 bytes of digest data are stored
1441 **  "digestLen" where the digest length (64) is stored (optional)
1442 **  "maxDigestLen" the maximum amount of data that can ever be
1443 **     stored in "digest"
1444 */
1445 extern void SHA512_EndRaw(SHA512Context *cx, unsigned char *digest,
1446                           unsigned int *digestLen, unsigned int maxDigestLen);
1447 extern void SHA512_End(SHA512Context *cx, unsigned char *digest,
1448                        unsigned int *digestLen, unsigned int maxDigestLen);
1449 extern SECStatus SHA512_HashBuf(unsigned char *dest, const unsigned char *src,
1450                                 PRUint32 src_length);
1451 extern SECStatus SHA512_Hash(unsigned char *dest, const char *src);
1452 extern void SHA512_TraceState(SHA512Context *cx);
1453 extern unsigned int SHA512_FlattenSize(SHA512Context *cx);
1454 extern SECStatus SHA512_Flatten(SHA512Context *cx, unsigned char *space);
1455 extern SHA512Context *SHA512_Resurrect(unsigned char *space, void *arg);
1456 extern void SHA512_Clone(SHA512Context *dest, SHA512Context *src);
1457 
1458 /******************************************/
1459 
1460 extern SHA384Context *SHA384_NewContext(void);
1461 extern void SHA384_DestroyContext(SHA384Context *cx, PRBool freeit);
1462 extern void SHA384_Begin(SHA384Context *cx);
1463 extern void SHA384_Update(SHA384Context *cx, const unsigned char *input,
1464                           unsigned int inputLen);
1465 extern void SHA384_End(SHA384Context *cx, unsigned char *digest,
1466                        unsigned int *digestLen, unsigned int maxDigestLen);
1467 /*
1468 ** Export the current state of the SHA-384 hash without appending the standard
1469 ** padding and length bytes. Produce the digested results in "digest"
1470 **  "cx" the context
1471 **  "digest" where the 48 bytes of digest data are stored
1472 **  "digestLen" where the digest length (48) is stored (optional)
1473 **  "maxDigestLen" the maximum amount of data that can ever be
1474 **     stored in "digest"
1475 */
1476 extern void SHA384_EndRaw(SHA384Context *cx, unsigned char *digest,
1477                           unsigned int *digestLen, unsigned int maxDigestLen);
1478 extern SECStatus SHA384_HashBuf(unsigned char *dest, const unsigned char *src,
1479                                 PRUint32 src_length);
1480 extern SECStatus SHA384_Hash(unsigned char *dest, const char *src);
1481 extern void SHA384_TraceState(SHA384Context *cx);
1482 extern unsigned int SHA384_FlattenSize(SHA384Context *cx);
1483 extern SECStatus SHA384_Flatten(SHA384Context *cx, unsigned char *space);
1484 extern SHA384Context *SHA384_Resurrect(unsigned char *space, void *arg);
1485 extern void SHA384_Clone(SHA384Context *dest, SHA384Context *src);
1486 
1487 /****************************************
1488  * implement TLS 1.0 Pseudo Random Function (PRF) and TLS P_hash function
1489  */
1490 
1491 extern SECStatus
1492 TLS_PRF(const SECItem *secret, const char *label, SECItem *seed,
1493         SECItem *result, PRBool isFIPS);
1494 
1495 extern SECStatus
1496 TLS_P_hash(HASH_HashType hashAlg, const SECItem *secret, const char *label,
1497            SECItem *seed, SECItem *result, PRBool isFIPS);
1498 
1499 /******************************************/
1500 /*
1501 ** Implements the Blake2b hash function.
1502 */
1503 
1504 /*
1505 ** Hash a null terminated string "src" into "dest" using Blake2b
1506 */
1507 extern SECStatus BLAKE2B_Hash(unsigned char *dest, const char *src);
1508 
1509 /*
1510 ** Hash a non-null terminated string "src" into "dest" using Blake2b
1511 */
1512 extern SECStatus BLAKE2B_HashBuf(unsigned char *output,
1513                                  const unsigned char *input, PRUint32 inlen);
1514 
1515 extern SECStatus BLAKE2B_MAC_HashBuf(unsigned char *output,
1516                                      const unsigned char *input,
1517                                      unsigned int inlen,
1518                                      const unsigned char *key,
1519                                      unsigned int keylen);
1520 
1521 /*
1522 ** Create a new Blake2b context
1523 */
1524 extern BLAKE2BContext *BLAKE2B_NewContext(void);
1525 
1526 /*
1527 ** Destroy a Blake2b secure hash context.
1528 **  "ctx" the context
1529 **  "freeit" if PR_TRUE then free the object as well as its sub-objects
1530 */
1531 extern void BLAKE2B_DestroyContext(BLAKE2BContext *ctx, PRBool freeit);
1532 
1533 /*
1534 ** Reset a Blake2b context, preparing it for a fresh round of hashing
1535 */
1536 extern SECStatus BLAKE2B_Begin(BLAKE2BContext *ctx);
1537 
1538 extern SECStatus BLAKE2B_MAC_Begin(BLAKE2BContext *ctx, const PRUint8 *key,
1539                                    const size_t keylen);
1540 
1541 /*
1542 ** Update the Blake hash function with more data.
1543 */
1544 extern SECStatus BLAKE2B_Update(BLAKE2BContext *ctx, const unsigned char *in,
1545                                 unsigned int inlen);
1546 
1547 /*
1548 ** Finish the Blake hash function. Produce the digested results in "digest"
1549 */
1550 extern SECStatus BLAKE2B_End(BLAKE2BContext *ctx, unsigned char *out,
1551                              unsigned int *digestLen, size_t maxDigestLen);
1552 
1553 /*
1554  * Return the size of a buffer needed to flatten the Blake2b Context into
1555  *    "ctx" the context
1556  *  returns size;
1557  */
1558 extern unsigned int BLAKE2B_FlattenSize(BLAKE2BContext *ctx);
1559 
1560 /*
1561  * Flatten the Blake2b Context into a buffer:
1562  *    "ctx" the context
1563  *    "space" the buffer to flatten to
1564  *  returns status;
1565  */
1566 extern SECStatus BLAKE2B_Flatten(BLAKE2BContext *ctx, unsigned char *space);
1567 
1568 /*
1569  * Resurrect a flattened context into a Blake2b Context
1570  *    "space" the buffer of the flattend buffer
1571  *    "arg" ptr to void used by cryptographic resurrect
1572  *  returns resurected context
1573  */
1574 extern BLAKE2BContext *BLAKE2B_Resurrect(unsigned char *space, void *arg);
1575 extern void BLAKE2B_Clone(BLAKE2BContext *dest, BLAKE2BContext *src);
1576 
1577 /******************************************/
1578 /*
1579 ** Pseudo Random Number Generation.  FIPS compliance desirable.
1580 */
1581 
1582 /*
1583 ** Initialize the global RNG context and give it some seed input taken
1584 ** from the system.  This function is thread-safe and will only allow
1585 ** the global context to be initialized once.  The seed input is likely
1586 ** small, so it is imperative that RNG_RandomUpdate() be called with
1587 ** additional seed data before the generator is used.  A good way to
1588 ** provide the generator with additional entropy is to call
1589 ** RNG_SystemInfoForRNG().  Note that NSS_Init() does exactly that.
1590 */
1591 extern SECStatus RNG_RNGInit(void);
1592 
1593 /*
1594 ** Update the global random number generator with more seeding
1595 ** material
1596 */
1597 extern SECStatus RNG_RandomUpdate(const void *data, size_t bytes);
1598 
1599 /*
1600 ** Generate some random bytes, using the global random number generator
1601 ** object.
1602 */
1603 extern SECStatus RNG_GenerateGlobalRandomBytes(void *dest, size_t len);
1604 
1605 /* Destroy the global RNG context.  After a call to RNG_RNGShutdown()
1606 ** a call to RNG_RNGInit() is required in order to use the generator again,
1607 ** along with seed data (see the comment above RNG_RNGInit()).
1608 */
1609 extern void RNG_RNGShutdown(void);
1610 
1611 extern void RNG_SystemInfoForRNG(void);
1612 
1613 /*
1614  * FIPS 186-2 Change Notice 1 RNG Algorithm 1, used both to
1615  * generate the DSA X parameter and as a generic purpose RNG.
1616  *
1617  * The following two FIPS186Change functions are needed for
1618  * NIST RNG Validation System.
1619  */
1620 
1621 /*
1622  * FIPS186Change_GenerateX is now deprecated. It will return SECFailure with
1623  * the error set to PR_NOT_IMPLEMENTED_ERROR.
1624  */
1625 extern SECStatus
1626 FIPS186Change_GenerateX(unsigned char *XKEY,
1627                         const unsigned char *XSEEDj,
1628                         unsigned char *x_j);
1629 
1630 /*
1631  * When generating the DSA X parameter, we generate 2*GSIZE bytes
1632  * of random output and reduce it mod q.
1633  *
1634  * Input: w, 2*GSIZE bytes
1635  *        q, DSA_SUBPRIME_LEN bytes
1636  * Output: xj, DSA_SUBPRIME_LEN bytes
1637  */
1638 extern SECStatus
1639 FIPS186Change_ReduceModQForDSA(const unsigned char *w,
1640                                const unsigned char *q,
1641                                unsigned char *xj);
1642 
1643 /* To allow NIST KAT tests */
1644 extern SECStatus
1645 PRNGTEST_Instantiate_Kat(const PRUint8 *entropy, unsigned int entropy_len,
1646                          const PRUint8 *nonce, unsigned int nonce_len,
1647                          const PRUint8 *personal_string, unsigned int ps_len);
1648 
1649 /*
1650  * The following functions are for FIPS poweron self test and FIPS algorithm
1651  * testing.
1652  */
1653 extern SECStatus
1654 PRNGTEST_Instantiate(const PRUint8 *entropy, unsigned int entropy_len,
1655                      const PRUint8 *nonce, unsigned int nonce_len,
1656                      const PRUint8 *personal_string, unsigned int ps_len);
1657 
1658 extern SECStatus
1659 PRNGTEST_Reseed(const PRUint8 *entropy, unsigned int entropy_len,
1660                 const PRUint8 *additional, unsigned int additional_len);
1661 
1662 extern SECStatus
1663 PRNGTEST_Generate(PRUint8 *bytes, unsigned int bytes_len,
1664                   const PRUint8 *additional, unsigned int additional_len);
1665 
1666 extern SECStatus
1667 PRNGTEST_Uninstantiate(void);
1668 
1669 extern SECStatus
1670 PRNGTEST_RunHealthTests(void);
1671 
1672 /* Generate PQGParams and PQGVerify structs.
1673  * Length of seed and length of h both equal length of P.
1674  * All lengths are specified by "j", according to the table above.
1675  *
1676  * The verify parameters will conform to FIPS186-1.
1677  */
1678 extern SECStatus
1679 PQG_ParamGen(unsigned int j,      /* input : determines length of P. */
1680              PQGParams **pParams, /* output: P Q and G returned here */
1681              PQGVerify **pVfy);   /* output: counter and seed. */
1682 
1683 /* Generate PQGParams and PQGVerify structs.
1684  * Length of P specified by j.  Length of h will match length of P.
1685  * Length of SEED in bytes specified in seedBytes.
1686  * seedBbytes must be in the range [20..255] or an error will result.
1687  *
1688  * The verify parameters will conform to FIPS186-1.
1689  */
1690 extern SECStatus
1691 PQG_ParamGenSeedLen(
1692     unsigned int j,         /* input : determines length of P. */
1693     unsigned int seedBytes, /* input : length of seed in bytes.*/
1694     PQGParams **pParams,    /* output: P Q and G returned here */
1695     PQGVerify **pVfy);      /* output: counter and seed. */
1696 
1697 /* Generate PQGParams and PQGVerify structs.
1698  * Length of P specified by L in bits.
1699  * Length of Q specified by N in bits.
1700  * Length of SEED in bytes specified in seedBytes.
1701  * seedBbytes must be in the range [N..L*2] or an error will result.
1702  *
1703  * Not that J uses the above table, L is the length exact. L and N must
1704  * match the table below or an error will result:
1705  *
1706  *  L            N
1707  * 1024         160
1708  * 2048         224
1709  * 2048         256
1710  * 3072         256
1711  *
1712  * If N or seedBytes are set to zero, then PQG_ParamGenSeedLen will
1713  * pick a default value (typically the smallest secure value for these
1714  * variables).
1715  *
1716  * The verify parameters will conform to FIPS186-3 using the smallest
1717  * permissible hash for the key strength.
1718  */
1719 extern SECStatus
1720 PQG_ParamGenV2(
1721     unsigned int L,         /* input : determines length of P. */
1722     unsigned int N,         /* input : determines length of Q. */
1723     unsigned int seedBytes, /* input : length of seed in bytes.*/
1724     PQGParams **pParams,    /* output: P Q and G returned here */
1725     PQGVerify **pVfy);      /* output: counter and seed. */
1726 
1727 /*  Test PQGParams for validity as DSS PQG values.
1728  *  If vfy is non-NULL, test PQGParams to make sure they were generated
1729  *       using the specified seed, counter, and h values.
1730  *
1731  *  Return value indicates whether Verification operation ran successfully
1732  *  to completion, but does not indicate if PQGParams are valid or not.
1733  *  If return value is SECSuccess, then *pResult has these meanings:
1734  *       SECSuccess: PQGParams are valid.
1735  *       SECFailure: PQGParams are invalid.
1736  *
1737  * Verify the PQG againts the counter, SEED and h.
1738  * These tests are specified in FIPS 186-3 Appendix A.1.1.1, A.1.1.3, and A.2.2
1739  * PQG_VerifyParams will automatically choose the appropriate test.
1740  */
1741 
1742 extern SECStatus PQG_VerifyParams(const PQGParams *params,
1743                                   const PQGVerify *vfy, SECStatus *result);
1744 
1745 extern void PQG_DestroyParams(PQGParams *params);
1746 
1747 extern void PQG_DestroyVerify(PQGVerify *vfy);
1748 
1749 /*
1750  * clean-up any global tables freebl may have allocated after it starts up.
1751  * This function is not thread safe and should be called only after the
1752  * library has been quiessed.
1753  */
1754 extern void BL_Cleanup(void);
1755 
1756 /* unload freebl shared library from memory */
1757 extern void BL_Unload(void);
1758 
1759 /**************************************************************************
1760  *  Verify a given Shared library signature                               *
1761  **************************************************************************/
1762 PRBool BLAPI_SHVerify(const char *name, PRFuncPtr addr);
1763 
1764 /**************************************************************************
1765  *  Verify a given filename's signature                               *
1766  **************************************************************************/
1767 PRBool BLAPI_SHVerifyFile(const char *shName);
1768 
1769 /**************************************************************************
1770  *  Verify Are Own Shared library signature                               *
1771  **************************************************************************/
1772 PRBool BLAPI_VerifySelf(const char *name);
1773 
1774 /*********************************************************************/
1775 extern const SECHashObject *HASH_GetRawHashObject(HASH_HashType hashType);
1776 
1777 extern void BL_SetForkState(PRBool forked);
1778 
1779 /*
1780 ** pepare an ECParam structure from DEREncoded params
1781  */
1782 extern SECStatus EC_FillParams(PLArenaPool *arena,
1783                                const SECItem *encodedParams, ECParams *params);
1784 extern SECStatus EC_DecodeParams(const SECItem *encodedParams,
1785                                  ECParams **ecparams);
1786 extern SECStatus EC_CopyParams(PLArenaPool *arena, ECParams *dstParams,
1787                                const ECParams *srcParams);
1788 
1789 /*
1790  * use the internal table to get the size in bytes of a single EC point
1791  */
1792 extern int EC_GetPointSize(const ECParams *params);
1793 
1794 SEC_END_PROTOS
1795 
1796 #endif /* _BLAPI_H_ */
1797