1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <emmintrin.h>  // SSE2
13 
14 #include "config/aom_dsp_rtcd.h"
15 
16 #include "aom_dsp/txfm_common.h"
17 #include "aom_dsp/x86/fwd_txfm_sse2.h"
18 #include "aom_dsp/x86/txfm_common_sse2.h"
19 #include "aom_ports/mem.h"
20 
21 // TODO(jingning) The high bit-depth functions need rework for performance.
22 // After we properly fix the high bit-depth function implementations, this
23 // file's dependency should be substantially simplified.
24 #if DCT_HIGH_BIT_DEPTH
25 #define ADD_EPI16 _mm_adds_epi16
26 #define SUB_EPI16 _mm_subs_epi16
27 
28 #else
29 #define ADD_EPI16 _mm_add_epi16
30 #define SUB_EPI16 _mm_sub_epi16
31 #endif
32 
FDCT8x8_2D(const int16_t * input,tran_low_t * output,int stride)33 void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) {
34   int pass;
35   // Constants
36   //    When we use them, in one case, they are all the same. In all others
37   //    it's a pair of them that we need to repeat four times. This is done
38   //    by constructing the 32 bit constant corresponding to that pair.
39   const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
40   const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
41   const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
42   const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
43   const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
44   const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
45   const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
46   const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
47   const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
48 #if DCT_HIGH_BIT_DEPTH
49   int overflow;
50 #endif
51   // Load input
52   __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
53   __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
54   __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
55   __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
56   __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
57   __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
58   __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
59   __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
60   // Pre-condition input (shift by two)
61   in0 = _mm_slli_epi16(in0, 2);
62   in1 = _mm_slli_epi16(in1, 2);
63   in2 = _mm_slli_epi16(in2, 2);
64   in3 = _mm_slli_epi16(in3, 2);
65   in4 = _mm_slli_epi16(in4, 2);
66   in5 = _mm_slli_epi16(in5, 2);
67   in6 = _mm_slli_epi16(in6, 2);
68   in7 = _mm_slli_epi16(in7, 2);
69 
70   // We do two passes, first the columns, then the rows. The results of the
71   // first pass are transposed so that the same column code can be reused. The
72   // results of the second pass are also transposed so that the rows (processed
73   // as columns) are put back in row positions.
74   for (pass = 0; pass < 2; pass++) {
75     // To store results of each pass before the transpose.
76     __m128i res0, res1, res2, res3, res4, res5, res6, res7;
77     // Add/subtract
78     const __m128i q0 = ADD_EPI16(in0, in7);
79     const __m128i q1 = ADD_EPI16(in1, in6);
80     const __m128i q2 = ADD_EPI16(in2, in5);
81     const __m128i q3 = ADD_EPI16(in3, in4);
82     const __m128i q4 = SUB_EPI16(in3, in4);
83     const __m128i q5 = SUB_EPI16(in2, in5);
84     const __m128i q6 = SUB_EPI16(in1, in6);
85     const __m128i q7 = SUB_EPI16(in0, in7);
86 #if DCT_HIGH_BIT_DEPTH
87     if (pass == 1) {
88       overflow =
89           check_epi16_overflow_x8(&q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7);
90       if (overflow) {
91         aom_highbd_fdct8x8_c(input, output, stride);
92         return;
93       }
94     }
95 #endif  // DCT_HIGH_BIT_DEPTH
96     // Work on first four results
97     {
98       // Add/subtract
99       const __m128i r0 = ADD_EPI16(q0, q3);
100       const __m128i r1 = ADD_EPI16(q1, q2);
101       const __m128i r2 = SUB_EPI16(q1, q2);
102       const __m128i r3 = SUB_EPI16(q0, q3);
103 #if DCT_HIGH_BIT_DEPTH
104       overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
105       if (overflow) {
106         aom_highbd_fdct8x8_c(input, output, stride);
107         return;
108       }
109 #endif  // DCT_HIGH_BIT_DEPTH
110       // Interleave to do the multiply by constants which gets us into 32bits
111       {
112         const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
113         const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
114         const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
115         const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
116         const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
117         const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
118         const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
119         const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
120         const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
121         const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
122         const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
123         const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
124         // dct_const_round_shift
125         const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
126         const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
127         const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
128         const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
129         const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
130         const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
131         const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
132         const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
133         const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
134         const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
135         const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
136         const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
137         const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
138         const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
139         const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
140         const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
141         // Combine
142         res0 = _mm_packs_epi32(w0, w1);
143         res4 = _mm_packs_epi32(w2, w3);
144         res2 = _mm_packs_epi32(w4, w5);
145         res6 = _mm_packs_epi32(w6, w7);
146 #if DCT_HIGH_BIT_DEPTH
147         overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6);
148         if (overflow) {
149           aom_highbd_fdct8x8_c(input, output, stride);
150           return;
151         }
152 #endif  // DCT_HIGH_BIT_DEPTH
153       }
154     }
155     // Work on next four results
156     {
157       // Interleave to do the multiply by constants which gets us into 32bits
158       const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
159       const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
160       const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
161       const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
162       const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
163       const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
164       // dct_const_round_shift
165       const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
166       const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
167       const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
168       const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
169       const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
170       const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
171       const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
172       const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
173       // Combine
174       const __m128i r0 = _mm_packs_epi32(s0, s1);
175       const __m128i r1 = _mm_packs_epi32(s2, s3);
176 #if DCT_HIGH_BIT_DEPTH
177       overflow = check_epi16_overflow_x2(&r0, &r1);
178       if (overflow) {
179         aom_highbd_fdct8x8_c(input, output, stride);
180         return;
181       }
182 #endif  // DCT_HIGH_BIT_DEPTH
183       {
184         // Add/subtract
185         const __m128i x0 = ADD_EPI16(q4, r0);
186         const __m128i x1 = SUB_EPI16(q4, r0);
187         const __m128i x2 = SUB_EPI16(q7, r1);
188         const __m128i x3 = ADD_EPI16(q7, r1);
189 #if DCT_HIGH_BIT_DEPTH
190         overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
191         if (overflow) {
192           aom_highbd_fdct8x8_c(input, output, stride);
193           return;
194         }
195 #endif  // DCT_HIGH_BIT_DEPTH
196         // Interleave to do the multiply by constants which gets us into 32bits
197         {
198           const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
199           const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
200           const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
201           const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
202           const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
203           const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
204           const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
205           const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
206           const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
207           const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
208           const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
209           const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
210           // dct_const_round_shift
211           const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
212           const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
213           const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
214           const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
215           const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
216           const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
217           const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
218           const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
219           const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
220           const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
221           const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
222           const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
223           const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
224           const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
225           const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
226           const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
227           // Combine
228           res1 = _mm_packs_epi32(w0, w1);
229           res7 = _mm_packs_epi32(w2, w3);
230           res5 = _mm_packs_epi32(w4, w5);
231           res3 = _mm_packs_epi32(w6, w7);
232 #if DCT_HIGH_BIT_DEPTH
233           overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3);
234           if (overflow) {
235             aom_highbd_fdct8x8_c(input, output, stride);
236             return;
237           }
238 #endif  // DCT_HIGH_BIT_DEPTH
239         }
240       }
241     }
242     // Transpose the 8x8.
243     {
244       // 00 01 02 03 04 05 06 07
245       // 10 11 12 13 14 15 16 17
246       // 20 21 22 23 24 25 26 27
247       // 30 31 32 33 34 35 36 37
248       // 40 41 42 43 44 45 46 47
249       // 50 51 52 53 54 55 56 57
250       // 60 61 62 63 64 65 66 67
251       // 70 71 72 73 74 75 76 77
252       const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
253       const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
254       const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
255       const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
256       const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
257       const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
258       const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
259       const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
260       // 00 10 01 11 02 12 03 13
261       // 20 30 21 31 22 32 23 33
262       // 04 14 05 15 06 16 07 17
263       // 24 34 25 35 26 36 27 37
264       // 40 50 41 51 42 52 43 53
265       // 60 70 61 71 62 72 63 73
266       // 54 54 55 55 56 56 57 57
267       // 64 74 65 75 66 76 67 77
268       const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
269       const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
270       const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
271       const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
272       const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
273       const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
274       const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
275       const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
276       // 00 10 20 30 01 11 21 31
277       // 40 50 60 70 41 51 61 71
278       // 02 12 22 32 03 13 23 33
279       // 42 52 62 72 43 53 63 73
280       // 04 14 24 34 05 15 21 36
281       // 44 54 64 74 45 55 61 76
282       // 06 16 26 36 07 17 27 37
283       // 46 56 66 76 47 57 67 77
284       in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
285       in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
286       in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
287       in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
288       in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
289       in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
290       in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
291       in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
292       // 00 10 20 30 40 50 60 70
293       // 01 11 21 31 41 51 61 71
294       // 02 12 22 32 42 52 62 72
295       // 03 13 23 33 43 53 63 73
296       // 04 14 24 34 44 54 64 74
297       // 05 15 25 35 45 55 65 75
298       // 06 16 26 36 46 56 66 76
299       // 07 17 27 37 47 57 67 77
300     }
301   }
302   // Post-condition output and store it
303   {
304     // Post-condition (division by two)
305     //    division of two 16 bits signed numbers using shifts
306     //    n / 2 = (n - (n >> 15)) >> 1
307     const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
308     const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
309     const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
310     const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
311     const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
312     const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
313     const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
314     const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
315     in0 = _mm_sub_epi16(in0, sign_in0);
316     in1 = _mm_sub_epi16(in1, sign_in1);
317     in2 = _mm_sub_epi16(in2, sign_in2);
318     in3 = _mm_sub_epi16(in3, sign_in3);
319     in4 = _mm_sub_epi16(in4, sign_in4);
320     in5 = _mm_sub_epi16(in5, sign_in5);
321     in6 = _mm_sub_epi16(in6, sign_in6);
322     in7 = _mm_sub_epi16(in7, sign_in7);
323     in0 = _mm_srai_epi16(in0, 1);
324     in1 = _mm_srai_epi16(in1, 1);
325     in2 = _mm_srai_epi16(in2, 1);
326     in3 = _mm_srai_epi16(in3, 1);
327     in4 = _mm_srai_epi16(in4, 1);
328     in5 = _mm_srai_epi16(in5, 1);
329     in6 = _mm_srai_epi16(in6, 1);
330     in7 = _mm_srai_epi16(in7, 1);
331     // store results
332     store_output(&in0, (output + 0 * 8));
333     store_output(&in1, (output + 1 * 8));
334     store_output(&in2, (output + 2 * 8));
335     store_output(&in3, (output + 3 * 8));
336     store_output(&in4, (output + 4 * 8));
337     store_output(&in5, (output + 5 * 8));
338     store_output(&in6, (output + 6 * 8));
339     store_output(&in7, (output + 7 * 8));
340   }
341 }
342 
343 #undef ADD_EPI16
344 #undef SUB_EPI16
345