1 /*
2  * Copyright 2015-2021 Arm Limited
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * At your option, you may choose to accept this material under either:
19  *  1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
20  *  2. The MIT License, found at <http://opensource.org/licenses/MIT>.
21  * SPDX-License-Identifier: Apache-2.0 OR MIT.
22  */
23 
24 #ifndef SPIRV_CROSS_HPP
25 #define SPIRV_CROSS_HPP
26 
27 #include "spirv.hpp"
28 #include "spirv_cfg.hpp"
29 #include "spirv_cross_parsed_ir.hpp"
30 
31 namespace SPIRV_CROSS_NAMESPACE
32 {
33 struct Resource
34 {
35 	// Resources are identified with their SPIR-V ID.
36 	// This is the ID of the OpVariable.
37 	ID id;
38 
39 	// The type ID of the variable which includes arrays and all type modifications.
40 	// This type ID is not suitable for parsing OpMemberDecoration of a struct and other decorations in general
41 	// since these modifications typically happen on the base_type_id.
42 	TypeID type_id;
43 
44 	// The base type of the declared resource.
45 	// This type is the base type which ignores pointers and arrays of the type_id.
46 	// This is mostly useful to parse decorations of the underlying type.
47 	// base_type_id can also be obtained with get_type(get_type(type_id).self).
48 	TypeID base_type_id;
49 
50 	// The declared name (OpName) of the resource.
51 	// For Buffer blocks, the name actually reflects the externally
52 	// visible Block name.
53 	//
54 	// This name can be retrieved again by using either
55 	// get_name(id) or get_name(base_type_id) depending if it's a buffer block or not.
56 	//
57 	// This name can be an empty string in which case get_fallback_name(id) can be
58 	// used which obtains a suitable fallback identifier for an ID.
59 	std::string name;
60 };
61 
62 struct ShaderResources
63 {
64 	SmallVector<Resource> uniform_buffers;
65 	SmallVector<Resource> storage_buffers;
66 	SmallVector<Resource> stage_inputs;
67 	SmallVector<Resource> stage_outputs;
68 	SmallVector<Resource> subpass_inputs;
69 	SmallVector<Resource> storage_images;
70 	SmallVector<Resource> sampled_images;
71 	SmallVector<Resource> atomic_counters;
72 	SmallVector<Resource> acceleration_structures;
73 
74 	// There can only be one push constant block,
75 	// but keep the vector in case this restriction is lifted in the future.
76 	SmallVector<Resource> push_constant_buffers;
77 
78 	// For Vulkan GLSL and HLSL source,
79 	// these correspond to separate texture2D and samplers respectively.
80 	SmallVector<Resource> separate_images;
81 	SmallVector<Resource> separate_samplers;
82 };
83 
84 struct CombinedImageSampler
85 {
86 	// The ID of the sampler2D variable.
87 	VariableID combined_id;
88 	// The ID of the texture2D variable.
89 	VariableID image_id;
90 	// The ID of the sampler variable.
91 	VariableID sampler_id;
92 };
93 
94 struct SpecializationConstant
95 {
96 	// The ID of the specialization constant.
97 	ConstantID id;
98 	// The constant ID of the constant, used in Vulkan during pipeline creation.
99 	uint32_t constant_id;
100 };
101 
102 struct BufferRange
103 {
104 	unsigned index;
105 	size_t offset;
106 	size_t range;
107 };
108 
109 enum BufferPackingStandard
110 {
111 	BufferPackingStd140,
112 	BufferPackingStd430,
113 	BufferPackingStd140EnhancedLayout,
114 	BufferPackingStd430EnhancedLayout,
115 	BufferPackingHLSLCbuffer,
116 	BufferPackingHLSLCbufferPackOffset,
117 	BufferPackingScalar,
118 	BufferPackingScalarEnhancedLayout
119 };
120 
121 struct EntryPoint
122 {
123 	std::string name;
124 	spv::ExecutionModel execution_model;
125 };
126 
127 class Compiler
128 {
129 public:
130 	friend class CFG;
131 	friend class DominatorBuilder;
132 
133 	// The constructor takes a buffer of SPIR-V words and parses it.
134 	// It will create its own parser, parse the SPIR-V and move the parsed IR
135 	// as if you had called the constructors taking ParsedIR directly.
136 	explicit Compiler(std::vector<uint32_t> ir);
137 	Compiler(const uint32_t *ir, size_t word_count);
138 
139 	// This is more modular. We can also consume a ParsedIR structure directly, either as a move, or copy.
140 	// With copy, we can reuse the same parsed IR for multiple Compiler instances.
141 	explicit Compiler(const ParsedIR &ir);
142 	explicit Compiler(ParsedIR &&ir);
143 
144 	virtual ~Compiler() = default;
145 
146 	// After parsing, API users can modify the SPIR-V via reflection and call this
147 	// to disassemble the SPIR-V into the desired langauage.
148 	// Sub-classes actually implement this.
149 	virtual std::string compile();
150 
151 	// Gets the identifier (OpName) of an ID. If not defined, an empty string will be returned.
152 	const std::string &get_name(ID id) const;
153 
154 	// Applies a decoration to an ID. Effectively injects OpDecorate.
155 	void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0);
156 	void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument);
157 
158 	// Overrides the identifier OpName of an ID.
159 	// Identifiers beginning with underscores or identifiers which contain double underscores
160 	// are reserved by the implementation.
161 	void set_name(ID id, const std::string &name);
162 
163 	// Gets a bitmask for the decorations which are applied to ID.
164 	// I.e. (1ull << spv::DecorationFoo) | (1ull << spv::DecorationBar)
165 	const Bitset &get_decoration_bitset(ID id) const;
166 
167 	// Returns whether the decoration has been applied to the ID.
168 	bool has_decoration(ID id, spv::Decoration decoration) const;
169 
170 	// Gets the value for decorations which take arguments.
171 	// If the decoration is a boolean (i.e. spv::DecorationNonWritable),
172 	// 1 will be returned.
173 	// If decoration doesn't exist or decoration is not recognized,
174 	// 0 will be returned.
175 	uint32_t get_decoration(ID id, spv::Decoration decoration) const;
176 	const std::string &get_decoration_string(ID id, spv::Decoration decoration) const;
177 
178 	// Removes the decoration for an ID.
179 	void unset_decoration(ID id, spv::Decoration decoration);
180 
181 	// Gets the SPIR-V type associated with ID.
182 	// Mostly used with Resource::type_id and Resource::base_type_id to parse the underlying type of a resource.
183 	const SPIRType &get_type(TypeID id) const;
184 
185 	// Gets the SPIR-V type of a variable.
186 	const SPIRType &get_type_from_variable(VariableID id) const;
187 
188 	// Gets the underlying storage class for an OpVariable.
189 	spv::StorageClass get_storage_class(VariableID id) const;
190 
191 	// If get_name() is an empty string, get the fallback name which will be used
192 	// instead in the disassembled source.
193 	virtual const std::string get_fallback_name(ID id) const;
194 
195 	// If get_name() of a Block struct is an empty string, get the fallback name.
196 	// This needs to be per-variable as multiple variables can use the same block type.
197 	virtual const std::string get_block_fallback_name(VariableID id) const;
198 
199 	// Given an OpTypeStruct in ID, obtain the identifier for member number "index".
200 	// This may be an empty string.
201 	const std::string &get_member_name(TypeID id, uint32_t index) const;
202 
203 	// Given an OpTypeStruct in ID, obtain the OpMemberDecoration for member number "index".
204 	uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
205 	const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const;
206 
207 	// Sets the member identifier for OpTypeStruct ID, member number "index".
208 	void set_member_name(TypeID id, uint32_t index, const std::string &name);
209 
210 	// Returns the qualified member identifier for OpTypeStruct ID, member number "index",
211 	// or an empty string if no qualified alias exists
212 	const std::string &get_member_qualified_name(TypeID type_id, uint32_t index) const;
213 
214 	// Gets the decoration mask for a member of a struct, similar to get_decoration_mask.
215 	const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const;
216 
217 	// Returns whether the decoration has been applied to a member of a struct.
218 	bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
219 
220 	// Similar to set_decoration, but for struct members.
221 	void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0);
222 	void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration,
223 	                                  const std::string &argument);
224 
225 	// Unsets a member decoration, similar to unset_decoration.
226 	void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration);
227 
228 	// Gets the fallback name for a member, similar to get_fallback_name.
get_fallback_member_name(uint32_t index) const229 	virtual const std::string get_fallback_member_name(uint32_t index) const
230 	{
231 		return join("_", index);
232 	}
233 
234 	// Returns a vector of which members of a struct are potentially in use by a
235 	// SPIR-V shader. The granularity of this analysis is per-member of a struct.
236 	// This can be used for Buffer (UBO), BufferBlock/StorageBuffer (SSBO) and PushConstant blocks.
237 	// ID is the Resource::id obtained from get_shader_resources().
238 	SmallVector<BufferRange> get_active_buffer_ranges(VariableID id) const;
239 
240 	// Returns the effective size of a buffer block.
241 	size_t get_declared_struct_size(const SPIRType &struct_type) const;
242 
243 	// Returns the effective size of a buffer block, with a given array size
244 	// for a runtime array.
245 	// SSBOs are typically declared as runtime arrays. get_declared_struct_size() will return 0 for the size.
246 	// This is not very helpful for applications which might need to know the array stride of its last member.
247 	// This can be done through the API, but it is not very intuitive how to accomplish this, so here we provide a helper function
248 	// to query the size of the buffer, assuming that the last member has a certain size.
249 	// If the buffer does not contain a runtime array, array_size is ignored, and the function will behave as
250 	// get_declared_struct_size().
251 	// To get the array stride of the last member, something like:
252 	// get_declared_struct_size_runtime_array(type, 1) - get_declared_struct_size_runtime_array(type, 0) will work.
253 	size_t get_declared_struct_size_runtime_array(const SPIRType &struct_type, size_t array_size) const;
254 
255 	// Returns the effective size of a buffer block struct member.
256 	size_t get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const;
257 
258 	// Returns a set of all global variables which are statically accessed
259 	// by the control flow graph from the current entry point.
260 	// Only variables which change the interface for a shader are returned, that is,
261 	// variables with storage class of Input, Output, Uniform, UniformConstant, PushConstant and AtomicCounter
262 	// storage classes are returned.
263 	//
264 	// To use the returned set as the filter for which variables are used during compilation,
265 	// this set can be moved to set_enabled_interface_variables().
266 	std::unordered_set<VariableID> get_active_interface_variables() const;
267 
268 	// Sets the interface variables which are used during compilation.
269 	// By default, all variables are used.
270 	// Once set, compile() will only consider the set in active_variables.
271 	void set_enabled_interface_variables(std::unordered_set<VariableID> active_variables);
272 
273 	// Query shader resources, use ids with reflection interface to modify or query binding points, etc.
274 	ShaderResources get_shader_resources() const;
275 
276 	// Query shader resources, but only return the variables which are part of active_variables.
277 	// E.g.: get_shader_resources(get_active_variables()) to only return the variables which are statically
278 	// accessed.
279 	ShaderResources get_shader_resources(const std::unordered_set<VariableID> &active_variables) const;
280 
281 	// Remapped variables are considered built-in variables and a backend will
282 	// not emit a declaration for this variable.
283 	// This is mostly useful for making use of builtins which are dependent on extensions.
284 	void set_remapped_variable_state(VariableID id, bool remap_enable);
285 	bool get_remapped_variable_state(VariableID id) const;
286 
287 	// For subpassInput variables which are remapped to plain variables,
288 	// the number of components in the remapped
289 	// variable must be specified as the backing type of subpass inputs are opaque.
290 	void set_subpass_input_remapped_components(VariableID id, uint32_t components);
291 	uint32_t get_subpass_input_remapped_components(VariableID id) const;
292 
293 	// All operations work on the current entry point.
294 	// Entry points can be swapped out with set_entry_point().
295 	// Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point.
296 	// Resource reflection also depends on the entry point.
297 	// By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module.
298 
299 	// Some shader languages restrict the names that can be given to entry points, and the
300 	// corresponding backend will automatically rename an entry point name, during the call
301 	// to compile() if it is illegal. For example, the common entry point name main() is
302 	// illegal in MSL, and is renamed to an alternate name by the MSL backend.
303 	// Given the original entry point name contained in the SPIR-V, this function returns
304 	// the name, as updated by the backend during the call to compile(). If the name is not
305 	// illegal, and has not been renamed, or if this function is called before compile(),
306 	// this function will simply return the same name.
307 
308 	// New variants of entry point query and reflection.
309 	// Names for entry points in the SPIR-V module may alias if they belong to different execution models.
310 	// To disambiguate, we must pass along with the entry point names the execution model.
311 	SmallVector<EntryPoint> get_entry_points_and_stages() const;
312 	void set_entry_point(const std::string &entry, spv::ExecutionModel execution_model);
313 
314 	// Renames an entry point from old_name to new_name.
315 	// If old_name is currently selected as the current entry point, it will continue to be the current entry point,
316 	// albeit with a new name.
317 	// get_entry_points() is essentially invalidated at this point.
318 	void rename_entry_point(const std::string &old_name, const std::string &new_name,
319 	                        spv::ExecutionModel execution_model);
320 	const SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model) const;
321 	SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model);
322 	const std::string &get_cleansed_entry_point_name(const std::string &name,
323 	                                                 spv::ExecutionModel execution_model) const;
324 
325 	// Traverses all reachable opcodes and sets active_builtins to a bitmask of all builtin variables which are accessed in the shader.
326 	void update_active_builtins();
327 	bool has_active_builtin(spv::BuiltIn builtin, spv::StorageClass storage);
328 
329 	// Query and modify OpExecutionMode.
330 	const Bitset &get_execution_mode_bitset() const;
331 
332 	void unset_execution_mode(spv::ExecutionMode mode);
333 	void set_execution_mode(spv::ExecutionMode mode, uint32_t arg0 = 0, uint32_t arg1 = 0, uint32_t arg2 = 0);
334 
335 	// Gets argument for an execution mode (LocalSize, Invocations, OutputVertices).
336 	// For LocalSize, the index argument is used to select the dimension (X = 0, Y = 1, Z = 2).
337 	// For execution modes which do not have arguments, 0 is returned.
338 	uint32_t get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index = 0) const;
339 	spv::ExecutionModel get_execution_model() const;
340 
341 	bool is_tessellation_shader() const;
342 
343 	// In SPIR-V, the compute work group size can be represented by a constant vector, in which case
344 	// the LocalSize execution mode is ignored.
345 	//
346 	// This constant vector can be a constant vector, specialization constant vector, or partly specialized constant vector.
347 	// To modify and query work group dimensions which are specialization constants, SPIRConstant values must be modified
348 	// directly via get_constant() rather than using LocalSize directly. This function will return which constants should be modified.
349 	//
350 	// To modify dimensions which are *not* specialization constants, set_execution_mode should be used directly.
351 	// Arguments to set_execution_mode which are specialization constants are effectively ignored during compilation.
352 	// NOTE: This is somewhat different from how SPIR-V works. In SPIR-V, the constant vector will completely replace LocalSize,
353 	// while in this interface, LocalSize is only ignored for specialization constants.
354 	//
355 	// The specialization constant will be written to x, y and z arguments.
356 	// If the component is not a specialization constant, a zeroed out struct will be written.
357 	// The return value is the constant ID of the builtin WorkGroupSize, but this is not expected to be useful
358 	// for most use cases.
359 	uint32_t get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y,
360 	                                                      SpecializationConstant &z) const;
361 
362 	// Analyzes all OpImageFetch (texelFetch) opcodes and checks if there are instances where
363 	// said instruction is used without a combined image sampler.
364 	// GLSL targets do not support the use of texelFetch without a sampler.
365 	// To workaround this, we must inject a dummy sampler which can be used to form a sampler2D at the call-site of
366 	// texelFetch as necessary.
367 	//
368 	// This must be called before build_combined_image_samplers().
369 	// build_combined_image_samplers() may refer to the ID returned by this method if the returned ID is non-zero.
370 	// The return value will be the ID of a sampler object if a dummy sampler is necessary, or 0 if no sampler object
371 	// is required.
372 	//
373 	// If the returned ID is non-zero, it can be decorated with set/bindings as desired before calling compile().
374 	// Calling this function also invalidates get_active_interface_variables(), so this should be called
375 	// before that function.
376 	VariableID build_dummy_sampler_for_combined_images();
377 
378 	// Analyzes all separate image and samplers used from the currently selected entry point,
379 	// and re-routes them all to a combined image sampler instead.
380 	// This is required to "support" separate image samplers in targets which do not natively support
381 	// this feature, like GLSL/ESSL.
382 	//
383 	// This must be called before compile() if such remapping is desired.
384 	// This call will add new sampled images to the SPIR-V,
385 	// so it will appear in reflection if get_shader_resources() is called after build_combined_image_samplers.
386 	//
387 	// If any image/sampler remapping was found, no separate image/samplers will appear in the decompiled output,
388 	// but will still appear in reflection.
389 	//
390 	// The resulting samplers will be void of any decorations like name, descriptor sets and binding points,
391 	// so this can be added before compile() if desired.
392 	//
393 	// Combined image samplers originating from this set are always considered active variables.
394 	// Arrays of separate samplers are not supported, but arrays of separate images are supported.
395 	// Array of images + sampler -> Array of combined image samplers.
396 	void build_combined_image_samplers();
397 
398 	// Gets a remapping for the combined image samplers.
get_combined_image_samplers() const399 	const SmallVector<CombinedImageSampler> &get_combined_image_samplers() const
400 	{
401 		return combined_image_samplers;
402 	}
403 
404 	// Set a new variable type remap callback.
405 	// The type remapping is designed to allow global interface variable to assume more special types.
406 	// A typical example here is to remap sampler2D into samplerExternalOES, which currently isn't supported
407 	// directly by SPIR-V.
408 	//
409 	// In compile() while emitting code,
410 	// for every variable that is declared, including function parameters, the callback will be called
411 	// and the API user has a chance to change the textual representation of the type used to declare the variable.
412 	// The API user can detect special patterns in names to guide the remapping.
set_variable_type_remap_callback(VariableTypeRemapCallback cb)413 	void set_variable_type_remap_callback(VariableTypeRemapCallback cb)
414 	{
415 		variable_remap_callback = std::move(cb);
416 	}
417 
418 	// API for querying which specialization constants exist.
419 	// To modify a specialization constant before compile(), use get_constant(constant.id),
420 	// then update constants directly in the SPIRConstant data structure.
421 	// For composite types, the subconstants can be iterated over and modified.
422 	// constant_type is the SPIRType for the specialization constant,
423 	// which can be queried to determine which fields in the unions should be poked at.
424 	SmallVector<SpecializationConstant> get_specialization_constants() const;
425 	SPIRConstant &get_constant(ConstantID id);
426 	const SPIRConstant &get_constant(ConstantID id) const;
427 
get_current_id_bound() const428 	uint32_t get_current_id_bound() const
429 	{
430 		return uint32_t(ir.ids.size());
431 	}
432 
433 	// API for querying buffer objects.
434 	// The type passed in here should be the base type of a resource, i.e.
435 	// get_type(resource.base_type_id)
436 	// as decorations are set in the basic Block type.
437 	// The type passed in here must have these decorations set, or an exception is raised.
438 	// Only UBOs and SSBOs or sub-structs which are part of these buffer types will have these decorations set.
439 	uint32_t type_struct_member_offset(const SPIRType &type, uint32_t index) const;
440 	uint32_t type_struct_member_array_stride(const SPIRType &type, uint32_t index) const;
441 	uint32_t type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const;
442 
443 	// Gets the offset in SPIR-V words (uint32_t) for a decoration which was originally declared in the SPIR-V binary.
444 	// The offset will point to one or more uint32_t literals which can be modified in-place before using the SPIR-V binary.
445 	// Note that adding or removing decorations using the reflection API will not change the behavior of this function.
446 	// If the decoration was declared, sets the word_offset to an offset into the provided SPIR-V binary buffer and returns true,
447 	// otherwise, returns false.
448 	// If the decoration does not have any value attached to it (e.g. DecorationRelaxedPrecision), this function will also return false.
449 	bool get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const;
450 
451 	// HLSL counter buffer reflection interface.
452 	// Append/Consume/Increment/Decrement in HLSL is implemented as two "neighbor" buffer objects where
453 	// one buffer implements the storage, and a single buffer containing just a lone "int" implements the counter.
454 	// To SPIR-V these will be exposed as two separate buffers, but glslang HLSL frontend emits a special indentifier
455 	// which lets us link the two buffers together.
456 
457 	// Queries if a variable ID is a counter buffer which "belongs" to a regular buffer object.
458 
459 	// If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
460 	// Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
461 	// only return true if OpSource was reported HLSL.
462 	// To rely on this functionality, ensure that the SPIR-V module is not stripped.
463 
464 	bool buffer_is_hlsl_counter_buffer(VariableID id) const;
465 
466 	// Queries if a buffer object has a neighbor "counter" buffer.
467 	// If so, the ID of that counter buffer will be returned in counter_id.
468 	// If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
469 	// Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
470 	// only return true if OpSource was reported HLSL.
471 	// To rely on this functionality, ensure that the SPIR-V module is not stripped.
472 	bool buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const;
473 
474 	// Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module.
475 	const SmallVector<spv::Capability> &get_declared_capabilities() const;
476 
477 	// Gets the list of all SPIR-V extensions which were declared in the SPIR-V module.
478 	const SmallVector<std::string> &get_declared_extensions() const;
479 
480 	// When declaring buffer blocks in GLSL, the name declared in the GLSL source
481 	// might not be the same as the name declared in the SPIR-V module due to naming conflicts.
482 	// In this case, SPIRV-Cross needs to find a fallback-name, and it might only
483 	// be possible to know this name after compiling to GLSL.
484 	// This is particularly important for HLSL input and UAVs which tends to reuse the same block type
485 	// for multiple distinct blocks. For these cases it is not possible to modify the name of the type itself
486 	// because it might be unique. Instead, you can use this interface to check after compilation which
487 	// name was actually used if your input SPIR-V tends to have this problem.
488 	// For other names like remapped names for variables, etc, it's generally enough to query the name of the variables
489 	// after compiling, block names are an exception to this rule.
490 	// ID is the name of a variable as returned by Resource::id, and must be a variable with a Block-like type.
491 	//
492 	// This also applies to HLSL cbuffers.
493 	std::string get_remapped_declared_block_name(VariableID id) const;
494 
495 	// For buffer block variables, get the decorations for that variable.
496 	// Sometimes, decorations for buffer blocks are found in member decorations instead
497 	// of direct decorations on the variable itself.
498 	// The most common use here is to check if a buffer is readonly or writeonly.
499 	Bitset get_buffer_block_flags(VariableID id) const;
500 
501 protected:
stream(const Instruction & instr) const502 	const uint32_t *stream(const Instruction &instr) const
503 	{
504 		// If we're not going to use any arguments, just return nullptr.
505 		// We want to avoid case where we return an out of range pointer
506 		// that trips debug assertions on some platforms.
507 		if (!instr.length)
508 			return nullptr;
509 
510 		if (instr.offset + instr.length > ir.spirv.size())
511 			SPIRV_CROSS_THROW("Compiler::stream() out of range.");
512 		return &ir.spirv[instr.offset];
513 	}
514 
515 	ParsedIR ir;
516 	// Marks variables which have global scope and variables which can alias with other variables
517 	// (SSBO, image load store, etc)
518 	SmallVector<uint32_t> global_variables;
519 	SmallVector<uint32_t> aliased_variables;
520 
521 	SPIRFunction *current_function = nullptr;
522 	SPIRBlock *current_block = nullptr;
523 	uint32_t current_loop_level = 0;
524 	std::unordered_set<VariableID> active_interface_variables;
525 	bool check_active_interface_variables = false;
526 
527 	void add_loop_level();
528 
set_initializers(SPIRExpression & e)529 	void set_initializers(SPIRExpression &e)
530 	{
531 		e.emitted_loop_level = current_loop_level;
532 	}
533 
534 	template <typename T>
set_initializers(const T &)535 	void set_initializers(const T &)
536 	{
537 	}
538 
539 	// If our IDs are out of range here as part of opcodes, throw instead of
540 	// undefined behavior.
541 	template <typename T, typename... P>
542 	T &set(uint32_t id, P &&... args)
543 	{
544 		ir.add_typed_id(static_cast<Types>(T::type), id);
545 		auto &var = variant_set<T>(ir.ids[id], std::forward<P>(args)...);
546 		var.self = id;
547 		set_initializers(var);
548 		return var;
549 	}
550 
551 	template <typename T>
get(uint32_t id)552 	T &get(uint32_t id)
553 	{
554 		return variant_get<T>(ir.ids[id]);
555 	}
556 
557 	template <typename T>
maybe_get(uint32_t id)558 	T *maybe_get(uint32_t id)
559 	{
560 		if (id >= ir.ids.size())
561 			return nullptr;
562 		else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
563 			return &get<T>(id);
564 		else
565 			return nullptr;
566 	}
567 
568 	template <typename T>
get(uint32_t id) const569 	const T &get(uint32_t id) const
570 	{
571 		return variant_get<T>(ir.ids[id]);
572 	}
573 
574 	template <typename T>
maybe_get(uint32_t id) const575 	const T *maybe_get(uint32_t id) const
576 	{
577 		if (id >= ir.ids.size())
578 			return nullptr;
579 		else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
580 			return &get<T>(id);
581 		else
582 			return nullptr;
583 	}
584 
585 	// Gets the id of SPIR-V type underlying the given type_id, which might be a pointer.
586 	uint32_t get_pointee_type_id(uint32_t type_id) const;
587 
588 	// Gets the SPIR-V type underlying the given type, which might be a pointer.
589 	const SPIRType &get_pointee_type(const SPIRType &type) const;
590 
591 	// Gets the SPIR-V type underlying the given type_id, which might be a pointer.
592 	const SPIRType &get_pointee_type(uint32_t type_id) const;
593 
594 	// Gets the ID of the SPIR-V type underlying a variable.
595 	uint32_t get_variable_data_type_id(const SPIRVariable &var) const;
596 
597 	// Gets the SPIR-V type underlying a variable.
598 	SPIRType &get_variable_data_type(const SPIRVariable &var);
599 
600 	// Gets the SPIR-V type underlying a variable.
601 	const SPIRType &get_variable_data_type(const SPIRVariable &var) const;
602 
603 	// Gets the SPIR-V element type underlying an array variable.
604 	SPIRType &get_variable_element_type(const SPIRVariable &var);
605 
606 	// Gets the SPIR-V element type underlying an array variable.
607 	const SPIRType &get_variable_element_type(const SPIRVariable &var) const;
608 
609 	// Sets the qualified member identifier for OpTypeStruct ID, member number "index".
610 	void set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name);
611 	void set_qualified_name(uint32_t id, const std::string &name);
612 
613 	// Returns if the given type refers to a sampled image.
614 	bool is_sampled_image_type(const SPIRType &type);
615 
616 	const SPIREntryPoint &get_entry_point() const;
617 	SPIREntryPoint &get_entry_point();
618 	static bool is_tessellation_shader(spv::ExecutionModel model);
619 
620 	virtual std::string to_name(uint32_t id, bool allow_alias = true) const;
621 	bool is_builtin_variable(const SPIRVariable &var) const;
622 	bool is_builtin_type(const SPIRType &type) const;
623 	bool is_hidden_variable(const SPIRVariable &var, bool include_builtins = false) const;
624 	bool is_immutable(uint32_t id) const;
625 	bool is_member_builtin(const SPIRType &type, uint32_t index, spv::BuiltIn *builtin) const;
626 	bool is_scalar(const SPIRType &type) const;
627 	bool is_vector(const SPIRType &type) const;
628 	bool is_matrix(const SPIRType &type) const;
629 	bool is_array(const SPIRType &type) const;
630 	uint32_t expression_type_id(uint32_t id) const;
631 	const SPIRType &expression_type(uint32_t id) const;
632 	bool expression_is_lvalue(uint32_t id) const;
633 	bool variable_storage_is_aliased(const SPIRVariable &var);
634 	SPIRVariable *maybe_get_backing_variable(uint32_t chain);
635 	spv::StorageClass get_expression_effective_storage_class(uint32_t ptr);
636 
637 	void register_read(uint32_t expr, uint32_t chain, bool forwarded);
638 	void register_write(uint32_t chain);
639 
is_continue(uint32_t next) const640 	inline bool is_continue(uint32_t next) const
641 	{
642 		return (ir.block_meta[next] & ParsedIR::BLOCK_META_CONTINUE_BIT) != 0;
643 	}
644 
is_single_block_loop(uint32_t next) const645 	inline bool is_single_block_loop(uint32_t next) const
646 	{
647 		auto &block = get<SPIRBlock>(next);
648 		return block.merge == SPIRBlock::MergeLoop && block.continue_block == ID(next);
649 	}
650 
is_break(uint32_t next) const651 	inline bool is_break(uint32_t next) const
652 	{
653 		return (ir.block_meta[next] &
654 		        (ParsedIR::BLOCK_META_LOOP_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
655 	}
656 
is_loop_break(uint32_t next) const657 	inline bool is_loop_break(uint32_t next) const
658 	{
659 		return (ir.block_meta[next] & ParsedIR::BLOCK_META_LOOP_MERGE_BIT) != 0;
660 	}
661 
is_conditional(uint32_t next) const662 	inline bool is_conditional(uint32_t next) const
663 	{
664 		return (ir.block_meta[next] &
665 		        (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
666 	}
667 
668 	// Dependency tracking for temporaries read from variables.
669 	void flush_dependees(SPIRVariable &var);
670 	void flush_all_active_variables();
671 	void flush_control_dependent_expressions(uint32_t block);
672 	void flush_all_atomic_capable_variables();
673 	void flush_all_aliased_variables();
674 	void register_global_read_dependencies(const SPIRBlock &func, uint32_t id);
675 	void register_global_read_dependencies(const SPIRFunction &func, uint32_t id);
676 	std::unordered_set<uint32_t> invalid_expressions;
677 
678 	void update_name_cache(std::unordered_set<std::string> &cache, std::string &name);
679 
680 	// A variant which takes two sets of names. The secondary is only used to verify there are no collisions,
681 	// but the set is not updated when we have found a new name.
682 	// Used primarily when adding block interface names.
683 	void update_name_cache(std::unordered_set<std::string> &cache_primary,
684 	                       const std::unordered_set<std::string> &cache_secondary, std::string &name);
685 
686 	bool function_is_pure(const SPIRFunction &func);
687 	bool block_is_pure(const SPIRBlock &block);
688 
689 	bool execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const;
690 	bool execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const;
691 	bool execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const;
692 	SPIRBlock::ContinueBlockType continue_block_type(const SPIRBlock &continue_block) const;
693 
694 	void force_recompile();
695 	void clear_force_recompile();
696 	bool is_forcing_recompilation() const;
697 	bool is_force_recompile = false;
698 
699 	bool block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const;
700 
701 	bool types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const;
702 	void inherit_expression_dependencies(uint32_t dst, uint32_t source);
703 	void add_implied_read_expression(SPIRExpression &e, uint32_t source);
704 	void add_implied_read_expression(SPIRAccessChain &e, uint32_t source);
705 
706 	// For proper multiple entry point support, allow querying if an Input or Output
707 	// variable is part of that entry points interface.
708 	bool interface_variable_exists_in_entry_point(uint32_t id) const;
709 
710 	SmallVector<CombinedImageSampler> combined_image_samplers;
711 
remap_variable_type_name(const SPIRType & type,const std::string & var_name,std::string & type_name) const712 	void remap_variable_type_name(const SPIRType &type, const std::string &var_name, std::string &type_name) const
713 	{
714 		if (variable_remap_callback)
715 			variable_remap_callback(type, var_name, type_name);
716 	}
717 
718 	void set_ir(const ParsedIR &parsed);
719 	void set_ir(ParsedIR &&parsed);
720 	void parse_fixup();
721 
722 	// Used internally to implement various traversals for queries.
723 	struct OpcodeHandler
724 	{
725 		virtual ~OpcodeHandler() = default;
726 
727 		// Return true if traversal should continue.
728 		// If false, traversal will end immediately.
729 		virtual bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) = 0;
730 
follow_function_callSPIRV_CROSS_NAMESPACE::Compiler::OpcodeHandler731 		virtual bool follow_function_call(const SPIRFunction &)
732 		{
733 			return true;
734 		}
735 
set_current_blockSPIRV_CROSS_NAMESPACE::Compiler::OpcodeHandler736 		virtual void set_current_block(const SPIRBlock &)
737 		{
738 		}
739 
740 		// Called after returning from a function or when entering a block,
741 		// can be called multiple times per block,
742 		// while set_current_block is only called on block entry.
rearm_current_blockSPIRV_CROSS_NAMESPACE::Compiler::OpcodeHandler743 		virtual void rearm_current_block(const SPIRBlock &)
744 		{
745 		}
746 
begin_function_scopeSPIRV_CROSS_NAMESPACE::Compiler::OpcodeHandler747 		virtual bool begin_function_scope(const uint32_t *, uint32_t)
748 		{
749 			return true;
750 		}
751 
end_function_scopeSPIRV_CROSS_NAMESPACE::Compiler::OpcodeHandler752 		virtual bool end_function_scope(const uint32_t *, uint32_t)
753 		{
754 			return true;
755 		}
756 	};
757 
758 	struct BufferAccessHandler : OpcodeHandler
759 	{
BufferAccessHandlerSPIRV_CROSS_NAMESPACE::Compiler::BufferAccessHandler760 		BufferAccessHandler(const Compiler &compiler_, SmallVector<BufferRange> &ranges_, uint32_t id_)
761 		    : compiler(compiler_)
762 		    , ranges(ranges_)
763 		    , id(id_)
764 		{
765 		}
766 
767 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
768 
769 		const Compiler &compiler;
770 		SmallVector<BufferRange> &ranges;
771 		uint32_t id;
772 
773 		std::unordered_set<uint32_t> seen;
774 	};
775 
776 	struct InterfaceVariableAccessHandler : OpcodeHandler
777 	{
InterfaceVariableAccessHandlerSPIRV_CROSS_NAMESPACE::Compiler::InterfaceVariableAccessHandler778 		InterfaceVariableAccessHandler(const Compiler &compiler_, std::unordered_set<VariableID> &variables_)
779 		    : compiler(compiler_)
780 		    , variables(variables_)
781 		{
782 		}
783 
784 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
785 
786 		const Compiler &compiler;
787 		std::unordered_set<VariableID> &variables;
788 	};
789 
790 	struct CombinedImageSamplerHandler : OpcodeHandler
791 	{
CombinedImageSamplerHandlerSPIRV_CROSS_NAMESPACE::Compiler::CombinedImageSamplerHandler792 		CombinedImageSamplerHandler(Compiler &compiler_)
793 		    : compiler(compiler_)
794 		{
795 		}
796 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
797 		bool begin_function_scope(const uint32_t *args, uint32_t length) override;
798 		bool end_function_scope(const uint32_t *args, uint32_t length) override;
799 
800 		Compiler &compiler;
801 
802 		// Each function in the call stack needs its own remapping for parameters so we can deduce which global variable each texture/sampler the parameter is statically bound to.
803 		std::stack<std::unordered_map<uint32_t, uint32_t>> parameter_remapping;
804 		std::stack<SPIRFunction *> functions;
805 
806 		uint32_t remap_parameter(uint32_t id);
807 		void push_remap_parameters(const SPIRFunction &func, const uint32_t *args, uint32_t length);
808 		void pop_remap_parameters();
809 		void register_combined_image_sampler(SPIRFunction &caller, VariableID combined_id, VariableID texture_id,
810 		                                     VariableID sampler_id, bool depth);
811 	};
812 
813 	struct DummySamplerForCombinedImageHandler : OpcodeHandler
814 	{
DummySamplerForCombinedImageHandlerSPIRV_CROSS_NAMESPACE::Compiler::DummySamplerForCombinedImageHandler815 		DummySamplerForCombinedImageHandler(Compiler &compiler_)
816 		    : compiler(compiler_)
817 		{
818 		}
819 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
820 
821 		Compiler &compiler;
822 		bool need_dummy_sampler = false;
823 	};
824 
825 	struct ActiveBuiltinHandler : OpcodeHandler
826 	{
ActiveBuiltinHandlerSPIRV_CROSS_NAMESPACE::Compiler::ActiveBuiltinHandler827 		ActiveBuiltinHandler(Compiler &compiler_)
828 		    : compiler(compiler_)
829 		{
830 		}
831 
832 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
833 		Compiler &compiler;
834 
835 		void handle_builtin(const SPIRType &type, spv::BuiltIn builtin, const Bitset &decoration_flags);
836 		void add_if_builtin(uint32_t id);
837 		void add_if_builtin_or_block(uint32_t id);
838 		void add_if_builtin(uint32_t id, bool allow_blocks);
839 	};
840 
841 	bool traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const;
842 	bool traverse_all_reachable_opcodes(const SPIRFunction &block, OpcodeHandler &handler) const;
843 	// This must be an ordered data structure so we always pick the same type aliases.
844 	SmallVector<uint32_t> global_struct_cache;
845 
846 	ShaderResources get_shader_resources(const std::unordered_set<VariableID> *active_variables) const;
847 
848 	VariableTypeRemapCallback variable_remap_callback;
849 
850 	bool get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type);
851 
852 	std::unordered_set<uint32_t> forced_temporaries;
853 	std::unordered_set<uint32_t> forwarded_temporaries;
854 	std::unordered_set<uint32_t> suppressed_usage_tracking;
855 	std::unordered_set<uint32_t> hoisted_temporaries;
856 	std::unordered_set<uint32_t> forced_invariant_temporaries;
857 
858 	Bitset active_input_builtins;
859 	Bitset active_output_builtins;
860 	uint32_t clip_distance_count = 0;
861 	uint32_t cull_distance_count = 0;
862 	bool position_invariant = false;
863 
864 	void analyze_parameter_preservation(
865 	    SPIRFunction &entry, const CFG &cfg,
866 	    const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &variable_to_blocks,
867 	    const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &complete_write_blocks);
868 
869 	// If a variable ID or parameter ID is found in this set, a sampler is actually a shadow/comparison sampler.
870 	// SPIR-V does not support this distinction, so we must keep track of this information outside the type system.
871 	// There might be unrelated IDs found in this set which do not correspond to actual variables.
872 	// This set should only be queried for the existence of samplers which are already known to be variables or parameter IDs.
873 	// Similar is implemented for images, as well as if subpass inputs are needed.
874 	std::unordered_set<uint32_t> comparison_ids;
875 	bool need_subpass_input = false;
876 
877 	// In certain backends, we will need to use a dummy sampler to be able to emit code.
878 	// GLSL does not support texelFetch on texture2D objects, but SPIR-V does,
879 	// so we need to workaround by having the application inject a dummy sampler.
880 	uint32_t dummy_sampler_id = 0;
881 
882 	void analyze_image_and_sampler_usage();
883 
884 	struct CombinedImageSamplerDrefHandler : OpcodeHandler
885 	{
CombinedImageSamplerDrefHandlerSPIRV_CROSS_NAMESPACE::Compiler::CombinedImageSamplerDrefHandler886 		CombinedImageSamplerDrefHandler(Compiler &compiler_)
887 		    : compiler(compiler_)
888 		{
889 		}
890 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
891 
892 		Compiler &compiler;
893 		std::unordered_set<uint32_t> dref_combined_samplers;
894 	};
895 
896 	struct CombinedImageSamplerUsageHandler : OpcodeHandler
897 	{
CombinedImageSamplerUsageHandlerSPIRV_CROSS_NAMESPACE::Compiler::CombinedImageSamplerUsageHandler898 		CombinedImageSamplerUsageHandler(Compiler &compiler_,
899 		                                 const std::unordered_set<uint32_t> &dref_combined_samplers_)
900 		    : compiler(compiler_)
901 		    , dref_combined_samplers(dref_combined_samplers_)
902 		{
903 		}
904 
905 		bool begin_function_scope(const uint32_t *args, uint32_t length) override;
906 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
907 		Compiler &compiler;
908 		const std::unordered_set<uint32_t> &dref_combined_samplers;
909 
910 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> dependency_hierarchy;
911 		std::unordered_set<uint32_t> comparison_ids;
912 
913 		void add_hierarchy_to_comparison_ids(uint32_t ids);
914 		bool need_subpass_input = false;
915 		void add_dependency(uint32_t dst, uint32_t src);
916 	};
917 
918 	void build_function_control_flow_graphs_and_analyze();
919 	std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
920 	const CFG &get_cfg_for_current_function() const;
921 	const CFG &get_cfg_for_function(uint32_t id) const;
922 
923 	struct CFGBuilder : OpcodeHandler
924 	{
925 		explicit CFGBuilder(Compiler &compiler_);
926 
927 		bool follow_function_call(const SPIRFunction &func) override;
928 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
929 		Compiler &compiler;
930 		std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
931 	};
932 
933 	struct AnalyzeVariableScopeAccessHandler : OpcodeHandler
934 	{
935 		AnalyzeVariableScopeAccessHandler(Compiler &compiler_, SPIRFunction &entry_);
936 
937 		bool follow_function_call(const SPIRFunction &) override;
938 		void set_current_block(const SPIRBlock &block) override;
939 
940 		void notify_variable_access(uint32_t id, uint32_t block);
941 		bool id_is_phi_variable(uint32_t id) const;
942 		bool id_is_potential_temporary(uint32_t id) const;
943 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
944 
945 		Compiler &compiler;
946 		SPIRFunction &entry;
947 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_variables_to_block;
948 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_temporaries_to_block;
949 		std::unordered_map<uint32_t, uint32_t> result_id_to_type;
950 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> complete_write_variables_to_block;
951 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> partial_write_variables_to_block;
952 		std::unordered_set<uint32_t> access_chain_expressions;
953 		// Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
954 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> access_chain_children;
955 		const SPIRBlock *current_block = nullptr;
956 	};
957 
958 	struct StaticExpressionAccessHandler : OpcodeHandler
959 	{
960 		StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_);
961 		bool follow_function_call(const SPIRFunction &) override;
962 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
963 
964 		Compiler &compiler;
965 		uint32_t variable_id;
966 		uint32_t static_expression = 0;
967 		uint32_t write_count = 0;
968 	};
969 
970 	struct PhysicalStorageBufferPointerHandler : OpcodeHandler
971 	{
972 		explicit PhysicalStorageBufferPointerHandler(Compiler &compiler_);
973 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
974 		Compiler &compiler;
975 		std::unordered_set<uint32_t> types;
976 	};
977 	void analyze_non_block_pointer_types();
978 	SmallVector<uint32_t> physical_storage_non_block_pointer_types;
979 
980 	void analyze_variable_scope(SPIRFunction &function, AnalyzeVariableScopeAccessHandler &handler);
981 	void find_function_local_luts(SPIRFunction &function, const AnalyzeVariableScopeAccessHandler &handler,
982 	                              bool single_function);
983 	bool may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var);
984 
985 	// Finds all resources that are written to from inside the critical section, if present.
986 	// The critical section is delimited by OpBeginInvocationInterlockEXT and
987 	// OpEndInvocationInterlockEXT instructions. In MSL and HLSL, any resources written
988 	// while inside the critical section must be placed in a raster order group.
989 	struct InterlockedResourceAccessHandler : OpcodeHandler
990 	{
InterlockedResourceAccessHandlerSPIRV_CROSS_NAMESPACE::Compiler::InterlockedResourceAccessHandler991 		InterlockedResourceAccessHandler(Compiler &compiler_, uint32_t entry_point_id)
992 		    : compiler(compiler_)
993 		{
994 			call_stack.push_back(entry_point_id);
995 		}
996 
997 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
998 		bool begin_function_scope(const uint32_t *args, uint32_t length) override;
999 		bool end_function_scope(const uint32_t *args, uint32_t length) override;
1000 
1001 		Compiler &compiler;
1002 		bool in_crit_sec = false;
1003 
1004 		uint32_t interlock_function_id = 0;
1005 		bool split_function_case = false;
1006 		bool control_flow_interlock = false;
1007 		bool use_critical_section = false;
1008 		bool call_stack_is_interlocked = false;
1009 		SmallVector<uint32_t> call_stack;
1010 
1011 		void access_potential_resource(uint32_t id);
1012 	};
1013 
1014 	struct InterlockedResourceAccessPrepassHandler : OpcodeHandler
1015 	{
InterlockedResourceAccessPrepassHandlerSPIRV_CROSS_NAMESPACE::Compiler::InterlockedResourceAccessPrepassHandler1016 		InterlockedResourceAccessPrepassHandler(Compiler &compiler_, uint32_t entry_point_id)
1017 		    : compiler(compiler_)
1018 		{
1019 			call_stack.push_back(entry_point_id);
1020 		}
1021 
1022 		void rearm_current_block(const SPIRBlock &block) override;
1023 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1024 		bool begin_function_scope(const uint32_t *args, uint32_t length) override;
1025 		bool end_function_scope(const uint32_t *args, uint32_t length) override;
1026 
1027 		Compiler &compiler;
1028 		uint32_t interlock_function_id = 0;
1029 		uint32_t current_block_id = 0;
1030 		bool split_function_case = false;
1031 		bool control_flow_interlock = false;
1032 		SmallVector<uint32_t> call_stack;
1033 	};
1034 
1035 	void analyze_interlocked_resource_usage();
1036 	// The set of all resources written while inside the critical section, if present.
1037 	std::unordered_set<uint32_t> interlocked_resources;
1038 	bool interlocked_is_complex = false;
1039 
1040 	void make_constant_null(uint32_t id, uint32_t type);
1041 
1042 	std::unordered_map<uint32_t, std::string> declared_block_names;
1043 
1044 	bool instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, const uint32_t *args,
1045 	                                uint32_t length);
1046 
1047 	Bitset combined_decoration_for_member(const SPIRType &type, uint32_t index) const;
1048 	static bool is_desktop_only_format(spv::ImageFormat format);
1049 
1050 	bool image_is_comparison(const SPIRType &type, uint32_t id) const;
1051 
1052 	void set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value = 0);
1053 	uint32_t get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
1054 	bool has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
1055 	void unset_extended_decoration(uint32_t id, ExtendedDecorations decoration);
1056 
1057 	void set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration,
1058 	                                    uint32_t value = 0);
1059 	uint32_t get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
1060 	bool has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
1061 	void unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration);
1062 
1063 	bool type_is_array_of_pointers(const SPIRType &type) const;
1064 	bool type_is_top_level_physical_pointer(const SPIRType &type) const;
1065 	bool type_is_block_like(const SPIRType &type) const;
1066 	bool type_is_opaque_value(const SPIRType &type) const;
1067 
1068 	bool reflection_ssbo_instance_name_is_significant() const;
1069 	std::string get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const;
1070 
1071 	bool flush_phi_required(BlockID from, BlockID to) const;
1072 
1073 	uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const;
1074 	uint32_t evaluate_constant_u32(uint32_t id) const;
1075 
1076 	bool is_vertex_like_shader() const;
1077 
1078 private:
1079 	// Used only to implement the old deprecated get_entry_point() interface.
1080 	const SPIREntryPoint &get_first_entry_point(const std::string &name) const;
1081 	SPIREntryPoint &get_first_entry_point(const std::string &name);
1082 };
1083 } // namespace SPIRV_CROSS_NAMESPACE
1084 
1085 #endif
1086