1 /** @file clifford.cpp
2  *
3  *  Implementation of GiNaC's clifford algebra (Dirac gamma) objects. */
4 
5 /*
6  *  GiNaC Copyright (C) 1999-2022 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
21  */
22 
23 #include "clifford.h"
24 
25 #include "ex.h"
26 #include "idx.h"
27 #include "ncmul.h"
28 #include "symbol.h"
29 #include "numeric.h" // for I
30 #include "symmetry.h"
31 #include "lst.h"
32 #include "relational.h"
33 #include "operators.h"
34 #include "add.h"
35 #include "mul.h"
36 #include "power.h"
37 #include "matrix.h"
38 #include "archive.h"
39 #include "utils.h"
40 
41 #include <stdexcept>
42 
43 namespace GiNaC {
44 
45 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(clifford, indexed,
46   print_func<print_dflt>(&clifford::do_print_dflt).
47   print_func<print_latex>(&clifford::do_print_latex).
48   print_func<print_tree>(&clifford::do_print_tree))
49 
50 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracone, tensor,
51   print_func<print_dflt>(&diracone::do_print).
52   print_func<print_latex>(&diracone::do_print_latex))
53 
54 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(cliffordunit, tensor,
55   print_func<print_dflt>(&cliffordunit::do_print).
56   print_func<print_latex>(&cliffordunit::do_print_latex))
57 
58 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgamma, cliffordunit,
59   print_func<print_dflt>(&diracgamma::do_print).
60   print_func<print_latex>(&diracgamma::do_print_latex))
61 
62 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgamma5, tensor,
63   print_func<print_dflt>(&diracgamma5::do_print).
64   print_func<print_latex>(&diracgamma5::do_print_latex))
65 
66 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgammaL, tensor,
67   print_func<print_context>(&diracgammaL::do_print).
68   print_func<print_latex>(&diracgammaL::do_print_latex))
69 
70 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgammaR, tensor,
71   print_func<print_context>(&diracgammaR::do_print).
72   print_func<print_latex>(&diracgammaR::do_print_latex))
73 
74 //////////
75 // default constructors
76 //////////
77 
clifford()78 clifford::clifford() : representation_label(0), metric(0), commutator_sign(-1)
79 {
80 }
81 
82 DEFAULT_CTOR(diracone)
DEFAULT_CTOR(cliffordunit)83 DEFAULT_CTOR(cliffordunit)
84 DEFAULT_CTOR(diracgamma)
85 DEFAULT_CTOR(diracgamma5)
86 DEFAULT_CTOR(diracgammaL)
87 DEFAULT_CTOR(diracgammaR)
88 
89 //////////
90 // other constructors
91 //////////
92 
93 /** Construct object without any indices. This constructor is for internal
94  *  use only. Use the dirac_ONE() function instead.
95  *  @see dirac_ONE */
96 clifford::clifford(const ex & b, unsigned char rl) : inherited(b), representation_label(rl), metric(0), commutator_sign(-1)
97 {
98 }
99 
100 /** Construct object with one Lorentz index. This constructor is for internal
101  *  use only. Use the clifford_unit() or dirac_gamma() functions instead.
102  *  @see clifford_unit
103  *  @see dirac_gamma */
clifford(const ex & b,const ex & mu,const ex & metr,unsigned char rl,int comm_sign)104 clifford::clifford(const ex & b, const ex & mu, const ex & metr, unsigned char rl, int comm_sign) : inherited(b, mu), representation_label(rl), metric(metr), commutator_sign(comm_sign)
105 {
106 	GINAC_ASSERT(is_a<idx>(mu));
107 }
108 
clifford(unsigned char rl,const ex & metr,int comm_sign,const exvector & v)109 clifford::clifford(unsigned char rl, const ex & metr, int comm_sign, const exvector & v) : inherited(not_symmetric(), v), representation_label(rl), metric(metr), commutator_sign(comm_sign)
110 {
111 }
112 
clifford(unsigned char rl,const ex & metr,int comm_sign,exvector && v)113 clifford::clifford(unsigned char rl, const ex & metr, int comm_sign, exvector && v) : inherited(not_symmetric(), std::move(v)), representation_label(rl), metric(metr), commutator_sign(comm_sign)
114 {
115 }
116 
return_type_tinfo() const117 return_type_t clifford::return_type_tinfo() const
118 {
119 	return make_return_type_t<clifford>(representation_label);
120 }
121 
122 //////////
123 // archiving
124 //////////
125 
read_archive(const archive_node & n,lst & sym_lst)126 void clifford::read_archive(const archive_node& n, lst& sym_lst)
127 {
128 	inherited::read_archive(n, sym_lst);
129 	unsigned rl;
130 	n.find_unsigned("label", rl);
131 	representation_label = rl;
132 	n.find_ex("metric", metric, sym_lst);
133 	n.find_unsigned("commutator_sign+1", rl);
134 	commutator_sign = rl - 1;
135 }
136 
archive(archive_node & n) const137 void clifford::archive(archive_node & n) const
138 {
139 	inherited::archive(n);
140 	n.add_unsigned("label", representation_label);
141 	n.add_ex("metric", metric);
142 	n.add_unsigned("commutator_sign+1", commutator_sign+1);
143 }
144 
145 GINAC_BIND_UNARCHIVER(clifford);
146 GINAC_BIND_UNARCHIVER(cliffordunit);
147 GINAC_BIND_UNARCHIVER(diracone);
148 GINAC_BIND_UNARCHIVER(diracgamma);
149 GINAC_BIND_UNARCHIVER(diracgamma5);
150 GINAC_BIND_UNARCHIVER(diracgammaL);
151 GINAC_BIND_UNARCHIVER(diracgammaR);
152 
153 
get_metric(const ex & i,const ex & j,bool symmetrised) const154 ex clifford::get_metric(const ex & i, const ex & j, bool symmetrised) const
155 {
156 	if (is_a<indexed>(metric)) {
157 		if (symmetrised && !(ex_to<symmetry>(ex_to<indexed>(metric).get_symmetry()).has_symmetry())) {
158 			if (is_a<matrix>(metric.op(0))) {
159 				return indexed((ex_to<matrix>(metric.op(0)).add(ex_to<matrix>(metric.op(0)).transpose())).mul(numeric(1, 2)),
160 				               symmetric2(), i, j);
161 			} else {
162 				return simplify_indexed(indexed(metric.op(0)*_ex1_2, i, j) + indexed(metric.op(0)*_ex1_2, j, i));
163 			}
164 		} else {
165 			return metric.subs(lst{metric.op(1) == i, metric.op(2) == j}, subs_options::no_pattern);
166 		}
167 	} else {
168 		exvector indices = metric.get_free_indices();
169 		if (symmetrised)
170 			return _ex1_2*simplify_indexed(metric.subs(lst{indices[0] == i, indices[1] == j}, subs_options::no_pattern)
171 			                             + metric.subs(lst{indices[0] == j, indices[1] == i}, subs_options::no_pattern));
172 		else
173 			return metric.subs(lst{indices[0] == i, indices[1] == j}, subs_options::no_pattern);
174 	}
175 }
176 
same_metric(const ex & other) const177 bool clifford::same_metric(const ex & other) const
178 {
179 	ex metr;
180 	if (is_a<clifford>(other))
181 		metr = ex_to<clifford>(other).get_metric();
182 	else
183 		metr = other;
184 
185 	if (is_a<indexed>(metr))
186 		return metr.op(0).is_equal(get_metric().op(0));
187 	else {
188 		exvector indices = metr.get_free_indices();
189 		return  (indices.size() == 2)
190 			&& simplify_indexed(get_metric(indices[0], indices[1])-metr).is_zero();
191 	}
192 }
193 
194 //////////
195 // functions overriding virtual functions from base classes
196 //////////
197 
op(size_t i) const198 ex clifford::op(size_t i) const
199 {
200 	GINAC_ASSERT(i<nops());
201 	if (nops()-i == 1)
202 		return representation_label;
203 	else
204 		return inherited::op(i);
205 }
206 
let_op(size_t i)207 ex & clifford::let_op(size_t i)
208 {
209         GINAC_ASSERT(i<nops());
210 
211 	static ex rl = numeric(representation_label);
212 	ensure_if_modifiable();
213 	if (nops()-i == 1)
214 		return rl;
215 	else
216 		return inherited::let_op(i);
217 }
218 
subs(const exmap & m,unsigned options) const219 ex clifford::subs(const exmap & m, unsigned options) const
220 {
221 	ex subsed = inherited::subs(m, options);
222 	if(is_a<clifford>(subsed)) {
223 		ex prevmetric = ex_to<clifford>(subsed).metric;
224 		ex newmetric = prevmetric.subs(m, options);
225 		if(!are_ex_trivially_equal(prevmetric, newmetric)) {
226 			clifford c = ex_to<clifford>(subsed);
227 			c.metric = newmetric;
228 			subsed = c;
229 		}
230 	}
231 	return subsed;
232 }
233 
compare_same_type(const basic & other) const234 int clifford::compare_same_type(const basic & other) const
235 {
236 	GINAC_ASSERT(is_a<clifford>(other));
237 	const clifford &o = static_cast<const clifford &>(other);
238 
239 	if (representation_label != o.representation_label) {
240 		// different representation label
241 		return representation_label < o.representation_label ? -1 : 1;
242 	}
243 
244 	return inherited::compare_same_type(other);
245 }
246 
match_same_type(const basic & other) const247 bool clifford::match_same_type(const basic & other) const
248 {
249 	GINAC_ASSERT(is_a<clifford>(other));
250 	const clifford &o = static_cast<const clifford &>(other);
251 
252 	return ((representation_label == o.representation_label) && (commutator_sign == o.get_commutator_sign()) && same_metric(o));
253 }
254 
is_dirac_slash(const ex & seq0)255 static bool is_dirac_slash(const ex & seq0)
256 {
257 	return !is_a<diracgamma5>(seq0) && !is_a<diracgammaL>(seq0) &&
258 	       !is_a<diracgammaR>(seq0) && !is_a<cliffordunit>(seq0) &&
259 	       !is_a<diracone>(seq0);
260 }
261 
do_print_dflt(const print_dflt & c,unsigned level) const262 void clifford::do_print_dflt(const print_dflt & c, unsigned level) const
263 {
264 	// dirac_slash() object is printed differently
265 	if (is_dirac_slash(seq[0])) {
266 		seq[0].print(c, precedence());
267 		c.s << "\\";
268 	} else { // We do not print representation label if it is 0
269 		if (representation_label == 0) {
270 			this->print_dispatch<inherited>(c, level);
271 		} else { // otherwise we put it before indices in square brackets; the code is borrowed from indexed.cpp
272 			if (precedence() <= level) {
273 				c.s << '(';
274 			}
275 			seq[0].print(c, precedence());
276 			c.s << '[' << int(representation_label) << ']';
277 			printindices(c, level);
278 			if (precedence() <= level) {
279 				c.s << ')';
280 			}
281 		}
282 	}
283 }
284 
do_print_latex(const print_latex & c,unsigned level) const285 void clifford::do_print_latex(const print_latex & c, unsigned level) const
286 {
287 	// dirac_slash() object is printed differently
288 	if (is_dirac_slash(seq[0])) {
289 		c.s << "{";
290 		seq[0].print(c, precedence());
291 		c.s << "\\hspace{-1.0ex}/}";
292 	} else {
293 		c.s << "\\clifford[" << int(representation_label) << "]";
294 		this->print_dispatch<inherited>(c, level);
295 	}
296 }
297 
do_print_tree(const print_tree & c,unsigned level) const298 void clifford::do_print_tree(const print_tree & c, unsigned level) const
299 {
300 	c.s << std::string(level, ' ') << class_name() << " @" << this
301 	    << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
302 	    << ", " << seq.size()-1 << " indices"
303 	    << ", symmetry=" << symtree << std::endl;
304 	metric.print(c, level + c.delta_indent);
305 	seq[0].print(c, level + c.delta_indent);
306 	printindices(c, level + c.delta_indent);
307 }
308 
309 DEFAULT_COMPARE(diracone)
DEFAULT_COMPARE(cliffordunit)310 DEFAULT_COMPARE(cliffordunit)
311 DEFAULT_COMPARE(diracgamma)
312 DEFAULT_COMPARE(diracgamma5)
313 DEFAULT_COMPARE(diracgammaL)
314 DEFAULT_COMPARE(diracgammaR)
315 
316 DEFAULT_PRINT_LATEX(diracone, "ONE", "\\mathbf{1}")
317 DEFAULT_PRINT_LATEX(cliffordunit, "e", "e")
318 DEFAULT_PRINT_LATEX(diracgamma, "gamma", "\\gamma")
319 DEFAULT_PRINT_LATEX(diracgamma5, "gamma5", "{\\gamma^5}")
320 DEFAULT_PRINT_LATEX(diracgammaL, "gammaL", "{\\gamma_L}")
321 DEFAULT_PRINT_LATEX(diracgammaR, "gammaR", "{\\gamma_R}")
322 
323 /** This function decomposes gamma~mu -> (1, mu) and a\ -> (a.ix, ix) */
324 static void base_and_index(const ex & c, ex & b, ex & i)
325 {
326 	GINAC_ASSERT(is_a<clifford>(c));
327 	GINAC_ASSERT(c.nops() == 2+1);
328 
329 	if (is_a<cliffordunit>(c.op(0))) { // proper dirac gamma object or clifford unit
330 		i = c.op(1);
331 		b = _ex1;
332 	} else if (is_a<diracgamma5>(c.op(0)) || is_a<diracgammaL>(c.op(0)) || is_a<diracgammaR>(c.op(0))) { // gamma5/L/R
333 		i = _ex0;
334 		b = _ex1;
335 	} else { // slash object, generate new dummy index
336 		varidx ix(dynallocate<symbol>(), ex_to<idx>(c.op(1)).get_dim());
337 		b = indexed(c.op(0), ix.toggle_variance());
338 		i = ix;
339 	}
340 }
341 
342 /** Predicate for finding non-clifford objects. */
343 struct is_not_a_clifford {
operator ()GiNaC::is_not_a_clifford344 	bool operator()(const ex & e)
345 	{
346 		return !is_a<clifford>(e);
347 	}
348 };
349 
350 /** Contraction of a gamma matrix with something else. */
contract_with(exvector::iterator self,exvector::iterator other,exvector & v) const351 bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
352 {
353 	GINAC_ASSERT(is_a<clifford>(*self));
354 	GINAC_ASSERT(is_a<indexed>(*other));
355 	GINAC_ASSERT(is_a<diracgamma>(self->op(0)));
356 	unsigned char rl = ex_to<clifford>(*self).get_representation_label();
357 
358 	ex dim = ex_to<idx>(self->op(1)).get_dim();
359 	if (other->nops() > 1)
360 		dim = minimal_dim(dim, ex_to<idx>(other->op(1)).get_dim());
361 
362 	if (is_a<clifford>(*other)) {
363 
364 		// Contraction only makes sense if the representation labels are equal
365 		if (ex_to<clifford>(*other).get_representation_label() != rl)
366 			return false;
367 
368 		size_t num = other - self;
369 
370 		// gamma~mu gamma.mu = dim ONE
371 		if (num == 1) {
372 			*self = dim;
373 			*other = dirac_ONE(rl);
374 			return true;
375 
376 		// gamma~mu gamma~alpha gamma.mu = (2-dim) gamma~alpha
377 		} else if (num == 2
378 		        && is_a<clifford>(self[1])) {
379 			*self = 2 - dim;
380 			*other = _ex1;
381 			return true;
382 
383 		// gamma~mu gamma~alpha gamma~beta gamma.mu = 4 g~alpha~beta + (dim-4) gamam~alpha gamma~beta
384 		} else if (num == 3
385 		        && is_a<clifford>(self[1])
386 		        && is_a<clifford>(self[2])) {
387 			ex b1, i1, b2, i2;
388 			base_and_index(self[1], b1, i1);
389 			base_and_index(self[2], b2, i2);
390 			*self = 4 * lorentz_g(i1, i2) * b1 * b2 * dirac_ONE(rl) + (dim - 4) * self[1] * self[2];
391 			self[1] = _ex1;
392 			self[2] = _ex1;
393 			*other = _ex1;
394 			return true;
395 
396 		// gamma~mu gamma~alpha gamma~beta gamma~delta gamma.mu = -2 gamma~delta gamma~beta gamma~alpha - (dim-4) gamam~alpha gamma~beta gamma~delta
397 		} else if (num == 4
398 		        && is_a<clifford>(self[1])
399 		        && is_a<clifford>(self[2])
400 		        && is_a<clifford>(self[3])) {
401 			*self = -2 * self[3] * self[2] * self[1] - (dim - 4) * self[1] * self[2] * self[3];
402 			self[1] = _ex1;
403 			self[2] = _ex1;
404 			self[3] = _ex1;
405 			*other = _ex1;
406 			return true;
407 
408 		// gamma~mu Sodd gamma.mu = -2 Sodd_R
409 		// (Chisholm identity in 4 dimensions)
410 		} else if (!((other - self) & 1) && dim.is_equal(4)) {
411 			if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
412 				return false;
413 
414 			*self = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(other), std::reverse_iterator<exvector::const_iterator>(self + 1)));
415 			std::fill(self + 1, other, _ex1);
416 			*other = _ex_2;
417 			return true;
418 
419 		// gamma~mu Sodd gamma~alpha gamma.mu = 2 gamma~alpha Sodd + 2 Sodd_R gamma~alpha
420 		// (commutate contracted indices towards each other, then use
421 		// Chisholm identity in 4 dimensions)
422 		} else if (((other - self) & 1) && dim.is_equal(4)) {
423 			if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
424 				return false;
425 
426 			auto next_to_last = other - 1;
427 			ex S = ncmul(exvector(self + 1, next_to_last));
428 			ex SR = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(next_to_last), std::reverse_iterator<exvector::const_iterator>(self + 1)));
429 
430 			*self = (*next_to_last) * S + SR * (*next_to_last);
431 			std::fill(self + 1, other, _ex1);
432 			*other = _ex2;
433 			return true;
434 
435 		// gamma~mu S gamma~alpha gamma.mu = 2 gamma~alpha S - gamma~mu S gamma.mu gamma~alpha
436 		// (commutate contracted indices towards each other, simplify_indexed()
437 		// will re-expand and re-run the simplification)
438 		} else {
439 			if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
440 				return false;
441 
442 			auto next_to_last = other - 1;
443 			ex S = ncmul(exvector(self + 1, next_to_last));
444 
445 			*self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last);
446 			std::fill(self + 1, other + 1, _ex1);
447 			return true;
448 		}
449 
450 	} else if (is_a<symbol>(other->op(0)) && other->nops() == 2) {
451 
452 		// x.mu gamma~mu -> x-slash
453 		*self = dirac_slash(other->op(0), dim, rl);
454 		*other = _ex1;
455 		return true;
456 	}
457 
458 	return false;
459 }
460 
461 /** Contraction of a Clifford unit with something else. */
contract_with(exvector::iterator self,exvector::iterator other,exvector & v) const462 bool cliffordunit::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
463 {
464 	GINAC_ASSERT(is_a<clifford>(*self));
465 	GINAC_ASSERT(is_a<indexed>(*other));
466 	GINAC_ASSERT(is_a<cliffordunit>(self->op(0)));
467 	clifford unit = ex_to<clifford>(*self);
468 	unsigned char rl = unit.get_representation_label();
469 
470 	if (is_a<clifford>(*other)) {
471 		// Contraction only makes sense if the representation labels are equal
472 		// and the metrics are the same
473 		if ((ex_to<clifford>(*other).get_representation_label() != rl)
474 		    && unit.same_metric(*other))
475 			return false;
476 
477 		auto before_other = other - 1;
478 		ex mu = self->op(1);
479 		ex mu_toggle = other->op(1);
480 		ex alpha = before_other->op(1);
481 
482 		// e~mu e.mu = Tr ONE
483 		if (other - self == 1) {
484 			*self = unit.get_metric(mu, mu_toggle, true);
485 			*other = dirac_ONE(rl);
486 			return true;
487 
488 		} else if (other - self == 2) {
489 			if (is_a<clifford>(*before_other) && ex_to<clifford>(*before_other).get_representation_label() == rl) {
490 				// e~mu e~alpha e.mu = 2*e~mu B(alpha, mu.toggle_variance())-Tr(B) e~alpha
491 				*self = 2 * (*self) * unit.get_metric(alpha, mu_toggle, true) - unit.get_metric(mu, mu_toggle, true) * (*before_other);
492 				*before_other = _ex1;
493 				*other = _ex1;
494 				return true;
495 
496 			} else {
497 				// e~mu S e.mu = Tr S ONE
498 				*self = unit.get_metric(mu, mu_toggle, true);
499 				*other = dirac_ONE(rl);
500 				return true;
501 			}
502 		} else {
503 		// e~mu S e~alpha e.mu = 2 e~mu S B(alpha, mu.toggle_variance()) - e~mu S e.mu e~alpha
504 		// (commutate contracted indices towards each other, simplify_indexed()
505 		// will re-expand and re-run the simplification)
506 			if (std::find_if(self + 1, other, is_not_a_clifford()) != other) {
507 				return false;
508 			}
509 
510 			ex S = ncmul(exvector(self + 1, before_other));
511 
512 			if (is_a<clifford>(*before_other) && ex_to<clifford>(*before_other).get_representation_label() == rl) {
513 				*self = 2 * (*self) * S * unit.get_metric(alpha, mu_toggle, true) - (*self) * S * (*other) * (*before_other);
514 			} else {
515 				// simply commutes
516 				*self = (*self) * S * (*other) * (*before_other);
517 			}
518 
519 			std::fill(self + 1, other + 1, _ex1);
520 			return true;
521 		}
522 	}
523 	return false;
524 }
525 
526 /** Perform automatic simplification on noncommutative product of clifford
527  *  objects. This removes superfluous ONEs, permutes gamma5/L/R's to the front
528  *  and removes squares of gamma objects. */
eval_ncmul(const exvector & v) const529 ex clifford::eval_ncmul(const exvector & v) const
530 {
531 	exvector s;
532 	s.reserve(v.size());
533 
534 	// Remove superfluous ONEs
535 	for (auto & it : v) {
536 		if (!is_a<clifford>(it) || !is_a<diracone>(it.op(0)))
537 			s.push_back(it);
538 	}
539 
540 	bool something_changed = false;
541 	int sign = 1;
542 
543 	// Anticommutate gamma5/L/R's to the front
544 	if (s.size() >= 2) {
545 		auto first = s.begin(), next_to_last = s.end() - 2;
546 		while (true) {
547 			auto it = next_to_last;
548 			while (true) {
549 				auto it2 = it + 1;
550 				if (is_a<clifford>(*it) && is_a<clifford>(*it2)) {
551 					ex e1 = it->op(0), e2 = it2->op(0);
552 
553 					if (is_a<diracgamma5>(e2)) {
554 
555 						if (is_a<diracgammaL>(e1) || is_a<diracgammaR>(e1)) {
556 
557 							// gammaL/R gamma5 -> gamma5 gammaL/R
558 							it->swap(*it2);
559 							something_changed = true;
560 
561 						} else if (!is_a<diracgamma5>(e1)) {
562 
563 							// gamma5 gamma5 -> gamma5 gamma5 (do nothing)
564 							// x gamma5 -> -gamma5 x
565 							it->swap(*it2);
566 							sign = -sign;
567 							something_changed = true;
568 						}
569 
570 					} else if (is_a<diracgammaL>(e2)) {
571 
572 						if (is_a<diracgammaR>(e1)) {
573 
574 							// gammaR gammaL -> 0
575 							return _ex0;
576 
577 						} else if (!is_a<diracgammaL>(e1) && !is_a<diracgamma5>(e1)) {
578 
579 							// gammaL gammaL -> gammaL gammaL (do nothing)
580 							// gamma5 gammaL -> gamma5 gammaL (do nothing)
581 							// x gammaL -> gammaR x
582 							it->swap(*it2);
583 							*it = clifford(diracgammaR(), ex_to<clifford>(*it).get_representation_label());
584 							something_changed = true;
585 						}
586 
587 					} else if (is_a<diracgammaR>(e2)) {
588 
589 						if (is_a<diracgammaL>(e1)) {
590 
591 							// gammaL gammaR -> 0
592 							return _ex0;
593 
594 						} else if (!is_a<diracgammaR>(e1) && !is_a<diracgamma5>(e1)) {
595 
596 							// gammaR gammaR -> gammaR gammaR (do nothing)
597 							// gamma5 gammaR -> gamma5 gammaR (do nothing)
598 							// x gammaR -> gammaL x
599 							it->swap(*it2);
600 							*it = clifford(diracgammaL(), ex_to<clifford>(*it).get_representation_label());
601 							something_changed = true;
602 						}
603 					}
604 				}
605 				if (it == first)
606 					break;
607 				--it;
608 			}
609 			if (next_to_last == first)
610 				break;
611 			--next_to_last;
612 		}
613 	}
614 
615 	// Remove equal adjacent gammas
616 	if (s.size() >= 2) {
617 		exvector::iterator it, itend = s.end() - 1;
618 		for (it = s.begin(); it != itend; ++it) {
619 			ex & a = it[0];
620 			ex & b = it[1];
621 			if (!is_a<clifford>(a) || !is_a<clifford>(b))
622 				continue;
623 
624 			const ex & ag = a.op(0);
625 			const ex & bg = b.op(0);
626 			bool a_is_cliffordunit = is_a<cliffordunit>(ag);
627 			bool b_is_cliffordunit =  is_a<cliffordunit>(bg);
628 
629 			if (a_is_cliffordunit && b_is_cliffordunit && ex_to<clifford>(a).same_metric(b)
630 				&& (ex_to<clifford>(a).get_commutator_sign() == -1)) {
631 				// This is done only for Clifford algebras
632 
633 				const ex & ia = a.op(1);
634 				const ex & ib = b.op(1);
635 				if (ia.is_equal(ib)) { // gamma~alpha gamma~alpha -> g~alpha~alpha
636 					a = ex_to<clifford>(a).get_metric(ia, ib, true);
637 					b = dirac_ONE(representation_label);
638 					something_changed = true;
639 				}
640 
641 			} else if ((is_a<diracgamma5>(ag) && is_a<diracgamma5>(bg))) {
642 
643 				// Remove squares of gamma5
644 				a = dirac_ONE(representation_label);
645 				b = dirac_ONE(representation_label);
646 				something_changed = true;
647 
648 			} else if ((is_a<diracgammaL>(ag) && is_a<diracgammaL>(bg))
649 			        || (is_a<diracgammaR>(ag) && is_a<diracgammaR>(bg))) {
650 
651 				// Remove squares of gammaL/R
652 				b = dirac_ONE(representation_label);
653 				something_changed = true;
654 
655 			} else if (is_a<diracgammaL>(ag) && is_a<diracgammaR>(bg)) {
656 
657 				// gammaL and gammaR are orthogonal
658 				return _ex0;
659 
660 			} else if (is_a<diracgamma5>(ag) && is_a<diracgammaL>(bg)) {
661 
662 				// gamma5 gammaL -> -gammaL
663 				a = dirac_ONE(representation_label);
664 				sign = -sign;
665 				something_changed = true;
666 
667 			} else if (is_a<diracgamma5>(ag) && is_a<diracgammaR>(bg)) {
668 
669 				// gamma5 gammaR -> gammaR
670 				a = dirac_ONE(representation_label);
671 				something_changed = true;
672 
673 			} else if (!a_is_cliffordunit && !b_is_cliffordunit && ag.is_equal(bg)) {
674 
675 				// a\ a\ -> a^2
676 				varidx ix(dynallocate<symbol>(), ex_to<idx>(a.op(1)).minimal_dim(ex_to<idx>(b.op(1))));
677 
678 				a = indexed(ag, ix) * indexed(ag, ix.toggle_variance());
679 				b = dirac_ONE(representation_label);
680 				something_changed = true;
681 			}
682 		}
683 	}
684 
685 	if (s.empty())
686 		return dirac_ONE(representation_label) * sign;
687 	if (something_changed)
688 		return reeval_ncmul(s) * sign;
689 	else
690 		return hold_ncmul(s) * sign;
691 }
692 
thiscontainer(const exvector & v) const693 ex clifford::thiscontainer(const exvector & v) const
694 {
695 	return clifford(representation_label, metric, commutator_sign, v);
696 }
697 
thiscontainer(exvector && v) const698 ex clifford::thiscontainer(exvector && v) const
699 {
700 	return clifford(representation_label, metric, commutator_sign, std::move(v));
701 }
702 
conjugate() const703 ex diracgamma5::conjugate() const
704 {
705 	return _ex_1 * (*this);
706 }
707 
conjugate() const708 ex diracgammaL::conjugate() const
709 {
710 	return dynallocate<diracgammaR>();
711 }
712 
conjugate() const713 ex diracgammaR::conjugate() const
714 {
715 	return dynallocate<diracgammaL>();
716 }
717 
718 //////////
719 // global functions
720 //////////
721 
dirac_ONE(unsigned char rl)722 ex dirac_ONE(unsigned char rl)
723 {
724 	static ex ONE = dynallocate<diracone>();
725 	return clifford(ONE, rl);
726 }
727 
get_dim_uint(const ex & e)728 static unsigned get_dim_uint(const ex& e)
729 {
730 	if (!is_a<idx>(e))
731 		throw std::invalid_argument("get_dim_uint: argument is not an index");
732 	ex dim = ex_to<idx>(e).get_dim();
733 	if (!dim.info(info_flags::posint))
734 		throw std::invalid_argument("get_dim_uint: dimension of index should be a positive integer");
735 	unsigned d = ex_to<numeric>(dim).to_int();
736 	return d;
737 }
738 
clifford_unit(const ex & mu,const ex & metr,unsigned char rl)739 ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl)
740 {
741 	ex unit = dynallocate<cliffordunit>();
742 
743 	if (!is_a<idx>(mu))
744 		throw(std::invalid_argument("clifford_unit(): index of Clifford unit must be of type idx or varidx"));
745 
746 	exvector indices = metr.get_free_indices();
747 
748 	if (indices.size() == 2) {
749 		return clifford(unit, mu, metr, rl);
750 	} else if (is_a<matrix>(metr)) {
751 		matrix M = ex_to<matrix>(metr);
752 		unsigned n = M.rows();
753 		bool symmetric = true;
754 
755 		//static idx xi(dynallocate<symbol>(), n),
756 		//           chi(dynallocate<symbol>(), n);
757 		idx xi(dynallocate<symbol>(), n),
758 		    chi(dynallocate<symbol>(), n);
759 		if ((n ==  M.cols()) && (n == get_dim_uint(mu))) {
760 			for (unsigned i = 0; i < n; i++) {
761 				for (unsigned j = i+1; j < n; j++) {
762 					if (!M(i, j).is_equal(M(j, i))) {
763 						symmetric = false;
764 					}
765 				}
766 			}
767 			return clifford(unit, mu, indexed(metr, symmetric?symmetric2():not_symmetric(), xi, chi), rl);
768 		} else {
769 			throw(std::invalid_argument("clifford_unit(): metric for Clifford unit must be a square matrix with the same dimensions as index"));
770 		}
771 	} else if (indices.size() == 0) { // a tensor or other expression without indices
772 		//static varidx xi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim()),
773 		//              chi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim());
774 		varidx xi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim()),
775 		       chi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim());
776 		return clifford(unit, mu, indexed(metr, xi, chi), rl);
777 	}  else
778 		throw(std::invalid_argument("clifford_unit(): metric for Clifford unit must be of type tensor, matrix or an expression with two free indices"));
779 }
780 
dirac_gamma(const ex & mu,unsigned char rl)781 ex dirac_gamma(const ex & mu, unsigned char rl)
782 {
783 	static ex gamma = dynallocate<diracgamma>();
784 
785 	if (!is_a<varidx>(mu))
786 		throw(std::invalid_argument("dirac_gamma(): index of Dirac gamma must be of type varidx"));
787 
788 	static varidx xi(dynallocate<symbol>(), ex_to<varidx>(mu).get_dim()),
789 	              chi(dynallocate<symbol>(), ex_to<varidx>(mu).get_dim());
790 	return clifford(gamma, mu, indexed(dynallocate<minkmetric>(), symmetric2(), xi, chi), rl);
791 }
792 
dirac_gamma5(unsigned char rl)793 ex dirac_gamma5(unsigned char rl)
794 {
795 	static ex gamma5 = dynallocate<diracgamma5>();
796 	return clifford(gamma5, rl);
797 }
798 
dirac_gammaL(unsigned char rl)799 ex dirac_gammaL(unsigned char rl)
800 {
801 	static ex gammaL = dynallocate<diracgammaL>();
802 	return clifford(gammaL, rl);
803 }
804 
dirac_gammaR(unsigned char rl)805 ex dirac_gammaR(unsigned char rl)
806 {
807 	static ex gammaR = dynallocate<diracgammaR>();
808 	return clifford(gammaR, rl);
809 }
810 
dirac_slash(const ex & e,const ex & dim,unsigned char rl)811 ex dirac_slash(const ex & e, const ex & dim, unsigned char rl)
812 {
813 	// Slashed vectors are actually stored as a clifford object with the
814 	// vector as its base expression and a (dummy) index that just serves
815 	// for storing the space dimensionality
816 
817 	static varidx xi(dynallocate<symbol>(), dim),
818 	              chi(dynallocate<symbol>(), dim);
819 	return clifford(e, varidx(0, dim), indexed(dynallocate<minkmetric>(), symmetric2(), xi, chi), rl);
820 }
821 
822 /** Extract representation label from tinfo key (as returned by
823  *  return_type_tinfo()). */
get_representation_label(const return_type_t & ti)824 static unsigned char get_representation_label(const return_type_t& ti)
825 {
826 	return (unsigned char)ti.rl;
827 }
828 
829 /** Take trace of a string of an even number of Dirac gammas given a vector
830  *  of indices. */
trace_string(exvector::const_iterator ix,size_t num)831 static ex trace_string(exvector::const_iterator ix, size_t num)
832 {
833 	// Tr gamma.mu gamma.nu = 4 g.mu.nu
834 	if (num == 2)
835 		return lorentz_g(ix[0], ix[1]);
836 
837 	// Tr gamma.mu gamma.nu gamma.rho gamma.sig = 4 (g.mu.nu g.rho.sig + g.nu.rho g.mu.sig - g.mu.rho g.nu.sig )
838 	else if (num == 4)
839 		return lorentz_g(ix[0], ix[1]) * lorentz_g(ix[2], ix[3])
840 		     + lorentz_g(ix[1], ix[2]) * lorentz_g(ix[0], ix[3])
841 		     - lorentz_g(ix[0], ix[2]) * lorentz_g(ix[1], ix[3]);
842 
843 	// Traces of 6 or more gammas are computed recursively:
844 	// Tr gamma.mu1 gamma.mu2 ... gamma.mun =
845 	//   + g.mu1.mu2 * Tr gamma.mu3 ... gamma.mun
846 	//   - g.mu1.mu3 * Tr gamma.mu2 gamma.mu4 ... gamma.mun
847 	//   + g.mu1.mu4 * Tr gamma.mu3 gamma.mu3 gamma.mu5 ... gamma.mun
848 	//   - ...
849 	//   + g.mu1.mun * Tr gamma.mu2 ... gamma.mu(n-1)
850 	exvector v(num - 2);
851 	int sign = 1;
852 	ex result;
853 	for (size_t i=1; i<num; i++) {
854 		for (size_t n=1, j=0; n<num; n++) {
855 			if (n == i)
856 				continue;
857 			v[j++] = ix[n];
858 		}
859 		result += sign * lorentz_g(ix[0], ix[i]) * trace_string(v.begin(), num-2);
860 		sign = -sign;
861 	}
862 	return result;
863 }
864 
dirac_trace(const ex & e,const std::set<unsigned char> & rls,const ex & trONE)865 ex dirac_trace(const ex & e, const std::set<unsigned char> & rls, const ex & trONE)
866 {
867 	if (is_a<clifford>(e)) {
868 
869 		unsigned char rl = ex_to<clifford>(e).get_representation_label();
870 
871 		// Are we taking the trace over this object's representation label?
872 		if (rls.find(rl) == rls.end())
873 			return e;
874 
875 		// Yes, all elements are traceless, except for dirac_ONE and dirac_L/R
876 		const ex & g = e.op(0);
877 		if (is_a<diracone>(g))
878 			return trONE;
879 		else if (is_a<diracgammaL>(g) || is_a<diracgammaR>(g))
880 			return trONE/2;
881 		else
882 			return _ex0;
883 
884 	} else if (is_exactly_a<mul>(e)) {
885 
886 		// Trace of product: pull out non-clifford factors
887 		ex prod = _ex1;
888 		for (size_t i=0; i<e.nops(); i++) {
889 			const ex &o = e.op(i);
890 			if (is_clifford_tinfo(o.return_type_tinfo()))
891 				prod *= dirac_trace(o, rls, trONE);
892 			else
893 				prod *= o;
894 		}
895 		return prod;
896 
897 	} else if (is_exactly_a<ncmul>(e)) {
898 
899 		unsigned char rl = get_representation_label(e.return_type_tinfo());
900 
901 		// Are we taking the trace over this string's representation label?
902 		if (rls.find(rl) == rls.end())
903 			return e;
904 
905 		// Substitute gammaL/R and expand product, if necessary
906 		ex e_expanded = e.subs(lst{
907 			dirac_gammaL(rl) == (dirac_ONE(rl)-dirac_gamma5(rl))/2,
908 			dirac_gammaR(rl) == (dirac_ONE(rl)+dirac_gamma5(rl))/2
909 		}, subs_options::no_pattern).expand();
910 		if (!is_a<ncmul>(e_expanded))
911 			return dirac_trace(e_expanded, rls, trONE);
912 
913 		// gamma5 gets moved to the front so this check is enough
914 		bool has_gamma5 = is_a<diracgamma5>(e.op(0).op(0));
915 		size_t num = e.nops();
916 
917 		if (has_gamma5) {
918 
919 			// Trace of gamma5 * odd number of gammas and trace of
920 			// gamma5 * gamma.mu * gamma.nu are zero
921 			if ((num & 1) == 0 || num == 3)
922 				return _ex0;
923 
924 			// Tr gamma5 gamma.mu gamma.nu gamma.rho gamma.sigma = 4I * epsilon(mu, nu, rho, sigma)
925 			// (the epsilon is always 4-dimensional)
926 			if (num == 5) {
927 				ex b1, i1, b2, i2, b3, i3, b4, i4;
928 				base_and_index(e.op(1), b1, i1);
929 				base_and_index(e.op(2), b2, i2);
930 				base_and_index(e.op(3), b3, i3);
931 				base_and_index(e.op(4), b4, i4);
932 				return trONE * I * (lorentz_eps(ex_to<idx>(i1).replace_dim(_ex4), ex_to<idx>(i2).replace_dim(_ex4), ex_to<idx>(i3).replace_dim(_ex4), ex_to<idx>(i4).replace_dim(_ex4)) * b1 * b2 * b3 * b4).simplify_indexed();
933 			}
934 
935 			// Tr gamma5 S_2k =
936 			//   I/4! * epsilon0123.mu1.mu2.mu3.mu4 * Tr gamma.mu1 gamma.mu2 gamma.mu3 gamma.mu4 S_2k
937 			// (the epsilon is always 4-dimensional)
938 			exvector ix(num-1), bv(num-1);
939 			for (size_t i=1; i<num; i++)
940 				base_and_index(e.op(i), bv[i-1], ix[i-1]);
941 			num--;
942 			int *iv = new int[num];
943 			ex result;
944 			for (size_t i=0; i<num-3; i++) {
945 				ex idx1 = ix[i];
946 				for (size_t j=i+1; j<num-2; j++) {
947 					ex idx2 = ix[j];
948 					for (size_t k=j+1; k<num-1; k++) {
949 						ex idx3 = ix[k];
950 						for (size_t l=k+1; l<num; l++) {
951 							ex idx4 = ix[l];
952 							iv[0] = i; iv[1] = j; iv[2] = k; iv[3] = l;
953 							exvector v;
954 							v.reserve(num - 4);
955 							for (size_t n=0, t=4; n<num; n++) {
956 								if (n == i || n == j || n == k || n == l)
957 									continue;
958 								iv[t++] = n;
959 								v.push_back(ix[n]);
960 							}
961 							int sign = permutation_sign(iv, iv + num);
962 							result += sign * lorentz_eps(ex_to<idx>(idx1).replace_dim(_ex4), ex_to<idx>(idx2).replace_dim(_ex4), ex_to<idx>(idx3).replace_dim(_ex4), ex_to<idx>(idx4).replace_dim(_ex4))
963 							        * trace_string(v.begin(), num - 4);
964 						}
965 					}
966 				}
967 			}
968 			delete[] iv;
969 			return trONE * I * result * mul(bv);
970 
971 		} else { // no gamma5
972 
973 			// Trace of odd number of gammas is zero
974 			if ((num & 1) == 1)
975 				return _ex0;
976 
977 			// Tr gamma.mu gamma.nu = 4 g.mu.nu
978 			if (num == 2) {
979 				ex b1, i1, b2, i2;
980 				base_and_index(e.op(0), b1, i1);
981 				base_and_index(e.op(1), b2, i2);
982 				return trONE * (lorentz_g(i1, i2) * b1 * b2).simplify_indexed();
983 			}
984 
985 			exvector iv(num), bv(num);
986 			for (size_t i=0; i<num; i++)
987 				base_and_index(e.op(i), bv[i], iv[i]);
988 
989 			return trONE * (trace_string(iv.begin(), num) * mul(bv)).simplify_indexed();
990 		}
991 
992 	} else if (e.nops() > 0) {
993 
994 		// Trace maps to all other container classes (this includes sums)
995 		pointer_to_map_function_2args<const std::set<unsigned char> &, const ex &> fcn(dirac_trace, rls, trONE);
996 		return e.map(fcn);
997 
998 	} else
999 		return _ex0;
1000 }
1001 
dirac_trace(const ex & e,const lst & rll,const ex & trONE)1002 ex dirac_trace(const ex & e, const lst & rll, const ex & trONE)
1003 {
1004 	// Convert list to set
1005 	std::set<unsigned char> rls;
1006 	for (const auto & i : rll) {
1007 		if (i.info(info_flags::nonnegint))
1008 			rls.insert(ex_to<numeric>(i).to_int());
1009 	}
1010 
1011 	return dirac_trace(e, rls, trONE);
1012 }
1013 
dirac_trace(const ex & e,unsigned char rl,const ex & trONE)1014 ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE)
1015 {
1016 	// Convert label to set
1017 	std::set<unsigned char> rls;
1018 	rls.insert(rl);
1019 
1020 	return dirac_trace(e, rls, trONE);
1021 }
1022 
1023 
canonicalize_clifford(const ex & e_)1024 ex canonicalize_clifford(const ex & e_)
1025 {
1026 	pointer_to_map_function fcn(canonicalize_clifford);
1027 
1028 	if (is_a<matrix>(e_)    // || is_a<pseries>(e) || is_a<integral>(e)
1029 		|| e_.info(info_flags::list)) {
1030 		return e_.map(fcn);
1031 	} else {
1032 		ex e=simplify_indexed(e_);
1033 		// Scan for any ncmul objects
1034 		exmap srl;
1035 		ex aux = e.to_rational(srl);
1036 		for (auto & i : srl) {
1037 
1038 			ex lhs = i.first;
1039 			ex rhs = i.second;
1040 
1041 			if (is_exactly_a<ncmul>(rhs)
1042 					&& rhs.return_type() == return_types::noncommutative
1043 					&& is_clifford_tinfo(rhs.return_type_tinfo())) {
1044 
1045 				// Expand product, if necessary
1046 				ex rhs_expanded = rhs.expand();
1047 				if (!is_a<ncmul>(rhs_expanded)) {
1048 					i.second = canonicalize_clifford(rhs_expanded);
1049 					continue;
1050 
1051 				} else if (!is_a<clifford>(rhs.op(0)))
1052 					continue;
1053 
1054 				exvector v;
1055 				v.reserve(rhs.nops());
1056 				for (size_t j=0; j<rhs.nops(); j++)
1057 					v.push_back(rhs.op(j));
1058 
1059 				// Stupid recursive bubble sort because we only want to swap adjacent gammas
1060 				auto it = v.begin(), next_to_last = v.end() - 1;
1061 				if (is_a<diracgamma5>(it->op(0)) || is_a<diracgammaL>(it->op(0)) || is_a<diracgammaR>(it->op(0)))
1062 					++it;
1063 
1064 				while (it != next_to_last) {
1065 					if (it[0].compare(it[1]) > 0) {
1066 
1067 						ex save0 = it[0], save1 = it[1];
1068 						ex b1, i1, b2, i2;
1069 						base_and_index(it[0], b1, i1);
1070 						base_and_index(it[1], b2, i2);
1071 						// for Clifford algebras (commutator_sign == -1) metric should be symmetrised
1072 						it[0] = (ex_to<clifford>(save0).get_metric(i1, i2, ex_to<clifford>(save0).get_commutator_sign() == -1) * b1 * b2).simplify_indexed();
1073 						it[1] = v.size() ? _ex2 * dirac_ONE(ex_to<clifford>(save0).get_representation_label()) : _ex2;
1074 						ex sum = ncmul(v);
1075 						it[0] = save1;
1076 						it[1] = save0;
1077 						sum += ex_to<clifford>(save0).get_commutator_sign() * ncmul(std::move(v));
1078 						i.second = canonicalize_clifford(sum);
1079 						goto next_sym;
1080 					}
1081 					++it;
1082 				}
1083 next_sym:	;
1084 			}
1085 		}
1086 		return aux.subs(srl, subs_options::no_pattern).simplify_indexed();
1087 	}
1088 }
1089 
clifford_star_bar(const ex & e,bool do_bar,unsigned options)1090 ex clifford_star_bar(const ex & e, bool do_bar, unsigned options)
1091 {
1092 	pointer_to_map_function_2args<bool, unsigned> fcn(clifford_star_bar, do_bar, options | 1);
1093 
1094 	// is a child, no need to expand
1095 	ex e1= (options & 1 ? e : e.expand());
1096 
1097 	if (is_a<ncmul>(e1) ) { // reversing order of clifford units
1098 		exvector ev, cv;
1099 		ev.reserve(e1.nops());
1100 		cv.reserve(e1.nops());
1101 		// separate clifford and non-clifford entries
1102 		for (int i= 0; i < e1.nops(); ++i) {
1103 			if (is_a<clifford>(e1.op(i)) && is_a<cliffordunit>(e1.op(i).op(0)))
1104 				cv.push_back(e1.op(i));
1105 			else
1106 				ev.push_back(e1.op(i));
1107 		}
1108 		for (auto i=cv.rbegin(); i!=cv.rend(); ++i) { // reverse order of Clifford units
1109 			ev.push_back(i->conjugate());
1110 		}
1111 		// For clifford_bar an odd number of clifford units reverts the sign
1112 		if (do_bar && (cv.size() % 2 == 1))
1113 			return -dynallocate<ncmul>(std::move(ev));
1114 		else
1115 			return dynallocate<ncmul>(std::move(ev));
1116 	} else if (is_a<clifford>(e1) && is_a<cliffordunit>(e1.op(0))) {
1117 		if (do_bar)
1118 			return -e;
1119 		else
1120 			return e;
1121 	} else if (is_a<power>(e1)) {
1122 		// apply the procedure to the base of a power
1123 		return pow(clifford_star_bar(e1.op(0), do_bar, 0), e1.op(1));
1124 	} else if (is_a<add>(e1) || is_a<mul>(e1) || e.info(info_flags::list)) {
1125 		// recurse into subexpressions
1126 		return e1.map(fcn);
1127 	} else  // nothing meaningful can be done
1128 		return e;
1129 }
1130 
clifford_prime(const ex & e)1131 ex clifford_prime(const ex & e)
1132 {
1133 	pointer_to_map_function fcn(clifford_prime);
1134 	if (is_a<clifford>(e) && is_a<cliffordunit>(e.op(0))) {
1135 		return -e;
1136 	} else if (is_a<add>(e) || is_a<ncmul>(e) || is_a<mul>(e) //|| is_a<pseries>(e) || is_a<integral>(e)
1137 			   || is_a<matrix>(e) || e.info(info_flags::list)) {
1138 		return e.map(fcn);
1139 	} else if (is_a<power>(e)) {
1140 		return pow(clifford_prime(e.op(0)), e.op(1));
1141 	} else
1142 		return e;
1143 }
1144 
remove_dirac_ONE(const ex & e,unsigned char rl,unsigned options)1145 ex remove_dirac_ONE(const ex & e, unsigned char rl, unsigned options)
1146 {
1147 	pointer_to_map_function_2args<unsigned char, unsigned> fcn(remove_dirac_ONE, rl, options | 1);
1148 	bool need_reevaluation = false;
1149 	ex e1 = e;
1150 	if (! (options & 1) )  { // is not a child
1151 		if (options & 2)
1152 			e1 = expand_dummy_sum(e, true);
1153 		e1 = canonicalize_clifford(e1);
1154 	}
1155 
1156 	if (is_a<clifford>(e1) && ex_to<clifford>(e1).get_representation_label() >= rl) {
1157 		if (is_a<diracone>(e1.op(0)))
1158 			return 1;
1159 		else
1160 			throw(std::invalid_argument("remove_dirac_ONE(): expression is a non-scalar Clifford number!"));
1161 	} else if (is_a<add>(e1) || is_a<ncmul>(e1) || is_a<mul>(e1)
1162 			   || is_a<matrix>(e1) || e1.info(info_flags::list)) {
1163 		if (options & 3) // is a child or was already expanded
1164 			return e1.map(fcn);
1165 		else
1166 			try {
1167 				return e1.map(fcn);
1168 			} catch (std::exception &p) {
1169 				need_reevaluation = true;
1170 			}
1171 	} else if (is_a<power>(e1)) {
1172 		if (options & 3) // is a child or was already expanded
1173 			return pow(remove_dirac_ONE(e1.op(0), rl, options | 1), e1.op(1));
1174 		else
1175 			try {
1176 				return pow(remove_dirac_ONE(e1.op(0), rl, options | 1), e1.op(1));
1177 			} catch (std::exception &p) {
1178 				need_reevaluation = true;
1179 			}
1180 	}
1181 	if (need_reevaluation)
1182 		return remove_dirac_ONE(e, rl, options | 2);
1183 	return e1;
1184 }
1185 
clifford_max_label(const ex & e,bool ignore_ONE)1186 int clifford_max_label(const ex & e, bool ignore_ONE)
1187 {
1188 	if (is_a<clifford>(e))
1189 		if (ignore_ONE && is_a<diracone>(e.op(0)))
1190 			return -1;
1191 		else
1192 			return ex_to<clifford>(e).get_representation_label();
1193 	else {
1194 		int rl = -1;
1195 		for (size_t i=0; i < e.nops(); i++)
1196 			rl = (rl > clifford_max_label(e.op(i), ignore_ONE)) ? rl : clifford_max_label(e.op(i), ignore_ONE);
1197 		return rl;
1198 	}
1199 }
1200 
clifford_norm(const ex & e)1201 ex clifford_norm(const ex & e)
1202 {
1203 	return sqrt(remove_dirac_ONE(e * clifford_bar(e)));
1204 }
1205 
clifford_inverse(const ex & e)1206 ex clifford_inverse(const ex & e)
1207 {
1208 	ex norm = clifford_norm(e);
1209 	if (!norm.is_zero())
1210 		return clifford_bar(e) / pow(norm, 2);
1211 	else
1212 		throw(std::invalid_argument("clifford_inverse(): cannot find inverse of Clifford number with zero norm!"));
1213 }
1214 
lst_to_clifford(const ex & v,const ex & mu,const ex & metr,unsigned char rl)1215 ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr, unsigned char rl)
1216 {
1217 	if (!ex_to<idx>(mu).is_dim_numeric())
1218 		throw(std::invalid_argument("lst_to_clifford(): Index should have a numeric dimension"));
1219 	ex e = clifford_unit(mu, metr, rl);
1220 	return lst_to_clifford(v, e);
1221 }
1222 
lst_to_clifford(const ex & v,const ex & e)1223 ex lst_to_clifford(const ex & v, const ex & e) {
1224 	unsigned min, max;
1225 
1226 	if (is_a<clifford>(e)) {
1227 		ex mu = e.op(1);
1228 		ex mu_toggle
1229 			= is_a<varidx>(mu) ? ex_to<varidx>(mu).toggle_variance() : mu;
1230 		unsigned dim = get_dim_uint(mu);
1231 
1232 		if (is_a<matrix>(v)) {
1233 			if (ex_to<matrix>(v).cols() > ex_to<matrix>(v).rows()) {
1234 				min = ex_to<matrix>(v).rows();
1235 				max = ex_to<matrix>(v).cols();
1236 			} else {
1237 				min = ex_to<matrix>(v).cols();
1238 				max = ex_to<matrix>(v).rows();
1239 			}
1240 			if (min == 1) {
1241 				if (dim == max)
1242 					return indexed(v, mu_toggle) * e;
1243 				else if (max - dim == 1) {
1244 					if (ex_to<matrix>(v).cols() > ex_to<matrix>(v).rows())
1245 						return v.op(0) * dirac_ONE(ex_to<clifford>(e).get_representation_label()) + indexed(sub_matrix(ex_to<matrix>(v), 0, 1, 1, dim), mu_toggle) * e;
1246 					else
1247 						return v.op(0) * dirac_ONE(ex_to<clifford>(e).get_representation_label()) + indexed(sub_matrix(ex_to<matrix>(v), 1, dim, 0, 1), mu_toggle) * e;
1248 				} else
1249 					throw(std::invalid_argument("lst_to_clifford(): dimensions of vector and clifford unit mismatch"));
1250 			} else
1251 				throw(std::invalid_argument("lst_to_clifford(): first argument should be a vector (nx1 or 1xn matrix)"));
1252 		} else if (v.info(info_flags::list)) {
1253 			if (dim == ex_to<lst>(v).nops())
1254 				return indexed(matrix(dim, 1, ex_to<lst>(v)), mu_toggle) * e;
1255 			else if (ex_to<lst>(v).nops() - dim == 1)
1256 				return v.op(0) * dirac_ONE(ex_to<clifford>(e).get_representation_label()) + indexed(sub_matrix(matrix(dim+1, 1, ex_to<lst>(v)), 1, dim, 0, 1), mu_toggle) * e;
1257 			else
1258 				throw(std::invalid_argument("lst_to_clifford(): list length and dimension of clifford unit mismatch"));
1259 		} else
1260 			throw(std::invalid_argument("lst_to_clifford(): cannot construct from anything but list or vector"));
1261 	} else
1262 		throw(std::invalid_argument("lst_to_clifford(): the second argument should be a Clifford unit"));
1263 }
1264 
1265 /** Auxiliary structure to define a function for striping one Clifford unit
1266  * from vectors. Used in  clifford_to_lst(). */
get_clifford_comp(const ex & e,const ex & c,bool root=true)1267 static ex get_clifford_comp(const ex & e, const ex & c, bool root=true)
1268 {
1269 	// make expansion on the top-level call only
1270 	ex e1=(root? e.expand() : e);
1271 
1272 	pointer_to_map_function_2args<const ex &, bool> fcn(get_clifford_comp, c, false);
1273 	int ival = ex_to<numeric>(ex_to<idx>(c.op(1)).get_value()).to_int();
1274 	int rl=ex_to<clifford>(c).get_representation_label();
1275 
1276 	if ( (is_a<add>(e1) || e1.info(info_flags::list) || is_a<matrix>(e1))) {
1277 		return e1.map(fcn);
1278 	} else if (is_a<ncmul>(e1) || is_a<mul>(e1)) {
1279 		// searches are done within products only
1280 		exvector ev, all_dummy=get_all_dummy_indices(e1);
1281 		bool found=false, same_value_found=false;
1282 		ex dummy_ind=0;
1283 		ev.reserve(e1.nops());
1284 		for (int i=0; i < e1.nops();++i) {
1285 			// look for a Clifford unit with the same metric and representation label,
1286 			// if found remember its index
1287 			if (is_a<clifford>(e1.op(i)) && ex_to<clifford>(e1.op(i)).get_representation_label() == rl
1288 				&& is_a<cliffordunit>(e1.op(i).op(0)) && ex_to<clifford>(e1.op(i)).same_metric(c)) { // same Clifford unit
1289 				if (found)
1290 					throw(std::invalid_argument("get_clifford_comp(): expression is a Clifford multi-vector"));
1291 				found=true;
1292 				if (ex_to<idx>(e1.op(i).op(1)).is_numeric() &&
1293 				    (ival == ex_to<numeric>(ex_to<idx>(e1.op(i).op(1)).get_value()).to_int())) {
1294 					same_value_found = true; // desired index value is found
1295 				} else if ((std::find(all_dummy.begin(), all_dummy.end(), e1.op(i).op(1)) != all_dummy.end())
1296 				           || (is_a<varidx>(e1.op(i).op(1))
1297 				               && std::find(all_dummy.begin(), all_dummy.end(),
1298 				                            ex_to<varidx>(e1.op(i).op(1)).toggle_variance()) != all_dummy.end())) {
1299 					dummy_ind=(e1.op(i).op(1)); // suitable dummy index found
1300 				} else
1301 					ev.push_back(e.op(i)); // another index value
1302 			} else
1303 				ev.push_back(e1.op(i));
1304 		}
1305 
1306 		if (! found) // no Clifford units found at all
1307 			throw(std::invalid_argument("get_clifford_comp(): expression is not a Clifford vector to the given units"));
1308 
1309 		ex res=dynallocate<ncmul>(std::move(ev));
1310 		if (same_value_found) {
1311 			return  res;
1312 		} else if (! dummy_ind.is_zero()) { // a dummy index was found
1313 			if (is_a<varidx>(dummy_ind))
1314 				dummy_ind = ex_to<varidx>(dummy_ind).toggle_variance();
1315 			return res.subs(dummy_ind==ival, subs_options::no_pattern);
1316 		} else // found a Clifford unit with another index
1317 			return 0;
1318 	} else if (e1.is_zero()) {
1319 		return 0;
1320 	} else if (is_a<clifford>(e1) && is_a<cliffordunit>(e1.op(0)) && ex_to<clifford>(e1).same_metric(c)) {
1321 		if (ex_to<idx>(e1.op(1)).is_numeric() &&
1322 		    (ival == ex_to<numeric>(ex_to<idx>(e1.op(1)).get_value()).to_int()) )
1323 			return 1;
1324 		else
1325 			return 0;
1326 	} else
1327 		throw(std::invalid_argument("get_clifford_comp(): expression is not usable as a Clifford vector"));
1328 }
1329 
clifford_to_lst(const ex & e,const ex & c,bool algebraic)1330 lst clifford_to_lst(const ex & e, const ex & c, bool algebraic)
1331 {
1332 	GINAC_ASSERT(is_a<clifford>(c));
1333 	ex mu = c.op(1);
1334 	if (! ex_to<idx>(mu).is_dim_numeric())
1335 		throw(std::invalid_argument("clifford_to_lst(): index should have a numeric dimension"));
1336 	unsigned int D = ex_to<numeric>(ex_to<idx>(mu).get_dim()).to_int();
1337 
1338 	if (algebraic) // check if algebraic method is applicable
1339 		for (unsigned int i = 0; i < D; i++)
1340 			if (pow(c.subs(mu == i, subs_options::no_pattern), 2).is_zero()
1341 				|| (! is_a<numeric>(pow(c.subs(mu == i, subs_options::no_pattern), 2))))
1342 				algebraic = false;
1343 	lst V;
1344 	ex v0 = remove_dirac_ONE(canonicalize_clifford(e+clifford_prime(e)))/2;
1345 	if (! v0.is_zero())
1346 		V.append(v0);
1347 	ex e1 = canonicalize_clifford(e - v0 * dirac_ONE(ex_to<clifford>(c).get_representation_label()));
1348 	if (algebraic) {
1349 		for (unsigned int i = 0; i < D; i++)
1350 			V.append(remove_dirac_ONE(
1351 						simplify_indexed(canonicalize_clifford(e1 * c.subs(mu == i, subs_options::no_pattern) +  c.subs(mu == i, subs_options::no_pattern) * e1))
1352 						/ (2*pow(c.subs(mu == i, subs_options::no_pattern), 2))));
1353 	} else {
1354 		try {
1355 			for (unsigned int i = 0; i < D; i++)
1356 				V.append(get_clifford_comp(e1, c.subs(c.op(1) == i, subs_options::no_pattern)));
1357 		} catch  (std::exception &p) {
1358 			/* Try to expand dummy summations to simplify the expression*/
1359 			e1 = canonicalize_clifford(expand_dummy_sum(e, true));
1360 			V.remove_all();
1361 			v0 = remove_dirac_ONE(canonicalize_clifford(e1+clifford_prime(e1)))/2;
1362 			if (! v0.is_zero()) {
1363 				V.append(v0);
1364 				e1 = canonicalize_clifford(e1 - v0 * dirac_ONE(ex_to<clifford>(c).get_representation_label()));
1365 			}
1366 			for (unsigned int i = 0; i < D; i++)
1367 				V.append(get_clifford_comp(e1, c.subs(c.op(1) == i, subs_options::no_pattern)));
1368 		}
1369 	}
1370 	return V;
1371 }
1372 
1373 
clifford_moebius_map(const ex & a,const ex & b,const ex & c,const ex & d,const ex & v,const ex & G,unsigned char rl)1374 ex clifford_moebius_map(const ex & a, const ex & b, const ex & c, const ex & d, const ex & v, const ex & G, unsigned char rl)
1375 {
1376 	ex x, D, cu;
1377 
1378 	if (! is_a<matrix>(v) && ! v.info(info_flags::list))
1379 		throw(std::invalid_argument("clifford_moebius_map(): parameter v should be either vector or list"));
1380 
1381 	if (is_a<clifford>(G)) {
1382 		cu = G;
1383 	} else {
1384 		if (is_a<indexed>(G)) {
1385 			D = ex_to<idx>(G.op(1)).get_dim();
1386 			varidx mu(dynallocate<symbol>(), D);
1387 			cu = clifford_unit(mu, G, rl);
1388 		} else if (is_a<matrix>(G)) {
1389 			D = ex_to<matrix>(G).rows();
1390 			idx mu(dynallocate<symbol>(), D);
1391 			cu = clifford_unit(mu, G, rl);
1392 		} else throw(std::invalid_argument("clifford_moebius_map(): metric should be an indexed object, matrix, or a Clifford unit"));
1393 
1394 	}
1395 
1396 	x = lst_to_clifford(v, cu);
1397 	ex e = clifford_to_lst(simplify_indexed(canonicalize_clifford((a * x + b) * clifford_inverse(c * x + d))), cu, false);
1398 	return (is_a<matrix>(v) ? matrix(ex_to<matrix>(v).rows(), ex_to<matrix>(v).cols(), ex_to<lst>(e)) : e);
1399 }
1400 
clifford_moebius_map(const ex & M,const ex & v,const ex & G,unsigned char rl)1401 ex clifford_moebius_map(const ex & M, const ex & v, const ex & G, unsigned char rl)
1402 {
1403 	if (is_a<matrix>(M) && (ex_to<matrix>(M).rows() == 2) && (ex_to<matrix>(M).cols() == 2))
1404 		return clifford_moebius_map(M.op(0), M.op(1), M.op(2), M.op(3), v, G, rl);
1405 	else
1406 		throw(std::invalid_argument("clifford_moebius_map(): parameter M should be a 2x2 matrix"));
1407 }
1408 
1409 } // namespace GiNaC
1410