1 /** @file inifcns.cpp
2  *
3  *  Implementation of GiNaC's initially known functions. */
4 
5 /*
6  *  GiNaC Copyright (C) 1999-2022 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
21  */
22 
23 #include "inifcns.h"
24 #include "ex.h"
25 #include "constant.h"
26 #include "lst.h"
27 #include "fderivative.h"
28 #include "matrix.h"
29 #include "mul.h"
30 #include "power.h"
31 #include "operators.h"
32 #include "relational.h"
33 #include "pseries.h"
34 #include "symbol.h"
35 #include "symmetry.h"
36 #include "utils.h"
37 
38 #include <stdexcept>
39 #include <vector>
40 
41 namespace GiNaC {
42 
43 //////////
44 // complex conjugate
45 //////////
46 
conjugate_evalf(const ex & arg)47 static ex conjugate_evalf(const ex & arg)
48 {
49 	if (is_exactly_a<numeric>(arg)) {
50 		return ex_to<numeric>(arg).conjugate();
51 	}
52 	return conjugate_function(arg).hold();
53 }
54 
conjugate_eval(const ex & arg)55 static ex conjugate_eval(const ex & arg)
56 {
57 	return arg.conjugate();
58 }
59 
conjugate_print_latex(const ex & arg,const print_context & c)60 static void conjugate_print_latex(const ex & arg, const print_context & c)
61 {
62 	c.s << "\\bar{"; arg.print(c); c.s << "}";
63 }
64 
conjugate_conjugate(const ex & arg)65 static ex conjugate_conjugate(const ex & arg)
66 {
67 	return arg;
68 }
69 
70 // If x is real then U.diff(x)-I*V.diff(x) represents both conjugate(U+I*V).diff(x)
71 // and conjugate((U+I*V).diff(x))
conjugate_expl_derivative(const ex & arg,const symbol & s)72 static ex conjugate_expl_derivative(const ex & arg, const symbol & s)
73 {
74 	if (s.info(info_flags::real))
75 		return conjugate(arg.diff(s));
76 	else {
77 		exvector vec_arg;
78 		vec_arg.push_back(arg);
79 		return fderivative(ex_to<function>(conjugate(arg)).get_serial(),0,vec_arg).hold()*arg.diff(s);
80 	}
81 }
82 
conjugate_real_part(const ex & arg)83 static ex conjugate_real_part(const ex & arg)
84 {
85 	return arg.real_part();
86 }
87 
conjugate_imag_part(const ex & arg)88 static ex conjugate_imag_part(const ex & arg)
89 {
90 	return -arg.imag_part();
91 }
92 
func_arg_info(const ex & arg,unsigned inf)93 static bool func_arg_info(const ex & arg, unsigned inf)
94 {
95 	// for some functions we can return the info() of its argument
96 	// (think of conjugate())
97 	switch (inf) {
98 		case info_flags::polynomial:
99 		case info_flags::integer_polynomial:
100 		case info_flags::cinteger_polynomial:
101 		case info_flags::rational_polynomial:
102 		case info_flags::real:
103 		case info_flags::rational:
104 		case info_flags::integer:
105 		case info_flags::crational:
106 		case info_flags::cinteger:
107 		case info_flags::even:
108 		case info_flags::odd:
109 		case info_flags::prime:
110 		case info_flags::crational_polynomial:
111 		case info_flags::rational_function:
112 		case info_flags::positive:
113 		case info_flags::negative:
114 		case info_flags::nonnegative:
115 		case info_flags::posint:
116 		case info_flags::negint:
117 		case info_flags::nonnegint:
118 		case info_flags::has_indices:
119 			return arg.info(inf);
120 	}
121 	return false;
122 }
123 
conjugate_info(const ex & arg,unsigned inf)124 static bool conjugate_info(const ex & arg, unsigned inf)
125 {
126 	return func_arg_info(arg, inf);
127 }
128 
129 REGISTER_FUNCTION(conjugate_function, eval_func(conjugate_eval).
130                                       evalf_func(conjugate_evalf).
131                                       expl_derivative_func(conjugate_expl_derivative).
132                                       info_func(conjugate_info).
133                                       print_func<print_latex>(conjugate_print_latex).
134                                       conjugate_func(conjugate_conjugate).
135                                       real_part_func(conjugate_real_part).
136                                       imag_part_func(conjugate_imag_part).
137                                       set_name("conjugate","conjugate"));
138 
139 //////////
140 // real part
141 //////////
142 
real_part_evalf(const ex & arg)143 static ex real_part_evalf(const ex & arg)
144 {
145 	if (is_exactly_a<numeric>(arg)) {
146 		return ex_to<numeric>(arg).real();
147 	}
148 	return real_part_function(arg).hold();
149 }
150 
real_part_eval(const ex & arg)151 static ex real_part_eval(const ex & arg)
152 {
153 	return arg.real_part();
154 }
155 
real_part_print_latex(const ex & arg,const print_context & c)156 static void real_part_print_latex(const ex & arg, const print_context & c)
157 {
158 	c.s << "\\Re"; arg.print(c); c.s << "";
159 }
160 
real_part_conjugate(const ex & arg)161 static ex real_part_conjugate(const ex & arg)
162 {
163 	return real_part_function(arg).hold();
164 }
165 
real_part_real_part(const ex & arg)166 static ex real_part_real_part(const ex & arg)
167 {
168 	return real_part_function(arg).hold();
169 }
170 
real_part_imag_part(const ex & arg)171 static ex real_part_imag_part(const ex & arg)
172 {
173 	return 0;
174 }
175 
176 // If x is real then Re(e).diff(x) is equal to Re(e.diff(x))
real_part_expl_derivative(const ex & arg,const symbol & s)177 static ex real_part_expl_derivative(const ex & arg, const symbol & s)
178 {
179 	if (s.info(info_flags::real))
180 		return real_part_function(arg.diff(s));
181 	else {
182 		exvector vec_arg;
183 		vec_arg.push_back(arg);
184 		return fderivative(ex_to<function>(real_part(arg)).get_serial(),0,vec_arg).hold()*arg.diff(s);
185 	}
186 }
187 
188 REGISTER_FUNCTION(real_part_function, eval_func(real_part_eval).
189                                       evalf_func(real_part_evalf).
190                                       expl_derivative_func(real_part_expl_derivative).
191                                       print_func<print_latex>(real_part_print_latex).
192                                       conjugate_func(real_part_conjugate).
193                                       real_part_func(real_part_real_part).
194                                       imag_part_func(real_part_imag_part).
195                                       set_name("real_part","real_part"));
196 
197 //////////
198 // imag part
199 //////////
200 
imag_part_evalf(const ex & arg)201 static ex imag_part_evalf(const ex & arg)
202 {
203 	if (is_exactly_a<numeric>(arg)) {
204 		return ex_to<numeric>(arg).imag();
205 	}
206 	return imag_part_function(arg).hold();
207 }
208 
imag_part_eval(const ex & arg)209 static ex imag_part_eval(const ex & arg)
210 {
211 	return arg.imag_part();
212 }
213 
imag_part_print_latex(const ex & arg,const print_context & c)214 static void imag_part_print_latex(const ex & arg, const print_context & c)
215 {
216 	c.s << "\\Im"; arg.print(c); c.s << "";
217 }
218 
imag_part_conjugate(const ex & arg)219 static ex imag_part_conjugate(const ex & arg)
220 {
221 	return imag_part_function(arg).hold();
222 }
223 
imag_part_real_part(const ex & arg)224 static ex imag_part_real_part(const ex & arg)
225 {
226 	return imag_part_function(arg).hold();
227 }
228 
imag_part_imag_part(const ex & arg)229 static ex imag_part_imag_part(const ex & arg)
230 {
231 	return 0;
232 }
233 
234 // If x is real then Im(e).diff(x) is equal to Im(e.diff(x))
imag_part_expl_derivative(const ex & arg,const symbol & s)235 static ex imag_part_expl_derivative(const ex & arg, const symbol & s)
236 {
237 	if (s.info(info_flags::real))
238 		return imag_part_function(arg.diff(s));
239 	else {
240 		exvector vec_arg;
241 		vec_arg.push_back(arg);
242 		return fderivative(ex_to<function>(imag_part(arg)).get_serial(),0,vec_arg).hold()*arg.diff(s);
243 	}
244 }
245 
246 REGISTER_FUNCTION(imag_part_function, eval_func(imag_part_eval).
247                                       evalf_func(imag_part_evalf).
248                                       expl_derivative_func(imag_part_expl_derivative).
249                                       print_func<print_latex>(imag_part_print_latex).
250                                       conjugate_func(imag_part_conjugate).
251                                       real_part_func(imag_part_real_part).
252                                       imag_part_func(imag_part_imag_part).
253                                       set_name("imag_part","imag_part"));
254 
255 //////////
256 // absolute value
257 //////////
258 
abs_evalf(const ex & arg)259 static ex abs_evalf(const ex & arg)
260 {
261 	if (is_exactly_a<numeric>(arg))
262 		return abs(ex_to<numeric>(arg));
263 
264 	return abs(arg).hold();
265 }
266 
abs_eval(const ex & arg)267 static ex abs_eval(const ex & arg)
268 {
269 	if (is_exactly_a<numeric>(arg))
270 		return abs(ex_to<numeric>(arg));
271 
272 	if (arg.info(info_flags::nonnegative))
273 		return arg;
274 
275 	if (arg.info(info_flags::negative) || (-arg).info(info_flags::nonnegative))
276 		return -arg;
277 
278 	if (is_ex_the_function(arg, abs))
279 		return arg;
280 
281 	if (is_ex_the_function(arg, exp))
282 		return exp(arg.op(0).real_part());
283 
284 	if (is_exactly_a<power>(arg)) {
285 		const ex& base = arg.op(0);
286 		const ex& exponent = arg.op(1);
287 		if (base.info(info_flags::positive) || exponent.info(info_flags::real))
288 			return pow(abs(base), exponent.real_part());
289 	}
290 
291 	if (is_ex_the_function(arg, conjugate_function))
292 		return abs(arg.op(0));
293 
294 	if (is_ex_the_function(arg, step))
295 		return arg;
296 
297 	return abs(arg).hold();
298 }
299 
abs_expand(const ex & arg,unsigned options)300 static ex abs_expand(const ex & arg, unsigned options)
301 {
302 	if ((options & expand_options::expand_transcendental)
303 		&& is_exactly_a<mul>(arg)) {
304 		exvector prodseq;
305 		prodseq.reserve(arg.nops());
306 		for (const_iterator i = arg.begin(); i != arg.end(); ++i) {
307 			if (options & expand_options::expand_function_args)
308 				prodseq.push_back(abs(i->expand(options)));
309 			else
310 				prodseq.push_back(abs(*i));
311 		}
312 		return dynallocate<mul>(prodseq).setflag(status_flags::expanded);
313 	}
314 
315 	if (options & expand_options::expand_function_args)
316 		return abs(arg.expand(options)).hold();
317 	else
318 		return abs(arg).hold();
319 }
320 
abs_expl_derivative(const ex & arg,const symbol & s)321 static ex abs_expl_derivative(const ex & arg, const symbol & s)
322 {
323 	ex diff_arg = arg.diff(s);
324 	return (diff_arg*arg.conjugate()+arg*diff_arg.conjugate())/2/abs(arg);
325 }
326 
abs_print_latex(const ex & arg,const print_context & c)327 static void abs_print_latex(const ex & arg, const print_context & c)
328 {
329 	c.s << "{|"; arg.print(c); c.s << "|}";
330 }
331 
abs_print_csrc_float(const ex & arg,const print_context & c)332 static void abs_print_csrc_float(const ex & arg, const print_context & c)
333 {
334 	c.s << "fabs("; arg.print(c); c.s << ")";
335 }
336 
abs_conjugate(const ex & arg)337 static ex abs_conjugate(const ex & arg)
338 {
339 	return abs(arg).hold();
340 }
341 
abs_real_part(const ex & arg)342 static ex abs_real_part(const ex & arg)
343 {
344 	return abs(arg).hold();
345 }
346 
abs_imag_part(const ex & arg)347 static ex abs_imag_part(const ex& arg)
348 {
349 	return 0;
350 }
351 
abs_power(const ex & arg,const ex & exp)352 static ex abs_power(const ex & arg, const ex & exp)
353 {
354 	if ((is_a<numeric>(exp) && ex_to<numeric>(exp).is_even()) || exp.info(info_flags::even)) {
355 		if (arg.info(info_flags::real) || arg.is_equal(arg.conjugate()))
356 			return pow(arg, exp);
357 		else
358 			return pow(arg, exp/2) * pow(arg.conjugate(), exp/2);
359 	} else
360 		return power(abs(arg), exp).hold();
361 }
362 
abs_info(const ex & arg,unsigned inf)363 bool abs_info(const ex & arg, unsigned inf)
364 {
365 	switch (inf) {
366 		case info_flags::integer:
367 		case info_flags::even:
368 		case info_flags::odd:
369 		case info_flags::prime:
370 			return arg.info(inf);
371 		case info_flags::nonnegint:
372 			return arg.info(info_flags::integer);
373 		case info_flags::nonnegative:
374 		case info_flags::real:
375 			return true;
376 		case info_flags::negative:
377 			return false;
378 		case info_flags::positive:
379 			return arg.info(info_flags::positive) || arg.info(info_flags::negative);
380 		case info_flags::has_indices: {
381 			if (arg.info(info_flags::has_indices))
382 				return true;
383 			else
384 				return false;
385 		}
386 	}
387 	return false;
388 }
389 
390 REGISTER_FUNCTION(abs, eval_func(abs_eval).
391                        evalf_func(abs_evalf).
392                        expand_func(abs_expand).
393                        expl_derivative_func(abs_expl_derivative).
394                        info_func(abs_info).
395                        print_func<print_latex>(abs_print_latex).
396                        print_func<print_csrc_float>(abs_print_csrc_float).
397                        print_func<print_csrc_double>(abs_print_csrc_float).
398                        conjugate_func(abs_conjugate).
399                        real_part_func(abs_real_part).
400                        imag_part_func(abs_imag_part).
401                        power_func(abs_power));
402 
403 //////////
404 // Step function
405 //////////
406 
step_evalf(const ex & arg)407 static ex step_evalf(const ex & arg)
408 {
409 	if (is_exactly_a<numeric>(arg))
410 		return step(ex_to<numeric>(arg));
411 
412 	return step(arg).hold();
413 }
414 
step_eval(const ex & arg)415 static ex step_eval(const ex & arg)
416 {
417 	if (is_exactly_a<numeric>(arg))
418 		return step(ex_to<numeric>(arg));
419 
420 	else if (is_exactly_a<mul>(arg) &&
421 	         is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
422 		numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
423 		if (oc.is_real()) {
424 			if (oc > 0)
425 				// step(42*x) -> step(x)
426 				return step(arg/oc).hold();
427 			else
428 				// step(-42*x) -> step(-x)
429 				return step(-arg/oc).hold();
430 		}
431 		if (oc.real().is_zero()) {
432 			if (oc.imag() > 0)
433 				// step(42*I*x) -> step(I*x)
434 				return step(I*arg/oc).hold();
435 			else
436 				// step(-42*I*x) -> step(-I*x)
437 				return step(-I*arg/oc).hold();
438 		}
439 	}
440 
441 	return step(arg).hold();
442 }
443 
step_series(const ex & arg,const relational & rel,int order,unsigned options)444 static ex step_series(const ex & arg,
445                       const relational & rel,
446                       int order,
447                       unsigned options)
448 {
449 	const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
450 	if (arg_pt.info(info_flags::numeric)
451 	    && ex_to<numeric>(arg_pt).real().is_zero()
452 	    && !(options & series_options::suppress_branchcut))
453 		throw (std::domain_error("step_series(): on imaginary axis"));
454 
455 	epvector seq { expair(step(arg_pt), _ex0) };
456 	return pseries(rel, std::move(seq));
457 }
458 
step_conjugate(const ex & arg)459 static ex step_conjugate(const ex& arg)
460 {
461 	return step(arg).hold();
462 }
463 
step_real_part(const ex & arg)464 static ex step_real_part(const ex& arg)
465 {
466 	return step(arg).hold();
467 }
468 
step_imag_part(const ex & arg)469 static ex step_imag_part(const ex& arg)
470 {
471 	return 0;
472 }
473 
474 REGISTER_FUNCTION(step, eval_func(step_eval).
475                         evalf_func(step_evalf).
476                         series_func(step_series).
477                         conjugate_func(step_conjugate).
478                         real_part_func(step_real_part).
479                         imag_part_func(step_imag_part));
480 
481 //////////
482 // Complex sign
483 //////////
484 
csgn_evalf(const ex & arg)485 static ex csgn_evalf(const ex & arg)
486 {
487 	if (is_exactly_a<numeric>(arg))
488 		return csgn(ex_to<numeric>(arg));
489 
490 	return csgn(arg).hold();
491 }
492 
csgn_eval(const ex & arg)493 static ex csgn_eval(const ex & arg)
494 {
495 	if (is_exactly_a<numeric>(arg))
496 		return csgn(ex_to<numeric>(arg));
497 
498 	else if (is_exactly_a<mul>(arg) &&
499 	         is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
500 		numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
501 		if (oc.is_real()) {
502 			if (oc > 0)
503 				// csgn(42*x) -> csgn(x)
504 				return csgn(arg/oc).hold();
505 			else
506 				// csgn(-42*x) -> -csgn(x)
507 				return -csgn(arg/oc).hold();
508 		}
509 		if (oc.real().is_zero()) {
510 			if (oc.imag() > 0)
511 				// csgn(42*I*x) -> csgn(I*x)
512 				return csgn(I*arg/oc).hold();
513 			else
514 				// csgn(-42*I*x) -> -csgn(I*x)
515 				return -csgn(I*arg/oc).hold();
516 		}
517 	}
518 
519 	return csgn(arg).hold();
520 }
521 
csgn_series(const ex & arg,const relational & rel,int order,unsigned options)522 static ex csgn_series(const ex & arg,
523                       const relational & rel,
524                       int order,
525                       unsigned options)
526 {
527 	const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
528 	if (arg_pt.info(info_flags::numeric)
529 	    && ex_to<numeric>(arg_pt).real().is_zero()
530 	    && !(options & series_options::suppress_branchcut))
531 		throw (std::domain_error("csgn_series(): on imaginary axis"));
532 
533 	epvector seq { expair(csgn(arg_pt), _ex0) };
534 	return pseries(rel, std::move(seq));
535 }
536 
csgn_conjugate(const ex & arg)537 static ex csgn_conjugate(const ex& arg)
538 {
539 	return csgn(arg).hold();
540 }
541 
csgn_real_part(const ex & arg)542 static ex csgn_real_part(const ex& arg)
543 {
544 	return csgn(arg).hold();
545 }
546 
csgn_imag_part(const ex & arg)547 static ex csgn_imag_part(const ex& arg)
548 {
549 	return 0;
550 }
551 
csgn_power(const ex & arg,const ex & exp)552 static ex csgn_power(const ex & arg, const ex & exp)
553 {
554 	if (is_a<numeric>(exp) && exp.info(info_flags::positive) && ex_to<numeric>(exp).is_integer()) {
555 		if (ex_to<numeric>(exp).is_odd())
556 			return csgn(arg).hold();
557 		else
558 			return power(csgn(arg), _ex2).hold();
559 	} else
560 		return power(csgn(arg), exp).hold();
561 }
562 
563 
564 REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
565                         evalf_func(csgn_evalf).
566                         series_func(csgn_series).
567                         conjugate_func(csgn_conjugate).
568                         real_part_func(csgn_real_part).
569                         imag_part_func(csgn_imag_part).
570                         power_func(csgn_power));
571 
572 
573 //////////
574 // Eta function: eta(x,y) == log(x*y) - log(x) - log(y).
575 // This function is closely related to the unwinding number K, sometimes found
576 // in modern literature: K(z) == (z-log(exp(z)))/(2*Pi*I).
577 //////////
578 
eta_evalf(const ex & x,const ex & y)579 static ex eta_evalf(const ex &x, const ex &y)
580 {
581 	// It seems like we basically have to replicate the eval function here,
582 	// since the expression might not be fully evaluated yet.
583 	if (x.info(info_flags::positive) || y.info(info_flags::positive))
584 		return _ex0;
585 
586 	if (x.info(info_flags::numeric) &&	y.info(info_flags::numeric)) {
587 		const numeric nx = ex_to<numeric>(x);
588 		const numeric ny = ex_to<numeric>(y);
589 		const numeric nxy = ex_to<numeric>(x*y);
590 		int cut = 0;
591 		if (nx.is_real() && nx.is_negative())
592 			cut -= 4;
593 		if (ny.is_real() && ny.is_negative())
594 			cut -= 4;
595 		if (nxy.is_real() && nxy.is_negative())
596 			cut += 4;
597 		return evalf(I/4*Pi)*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
598 		                      (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
599 	}
600 
601 	return eta(x,y).hold();
602 }
603 
eta_eval(const ex & x,const ex & y)604 static ex eta_eval(const ex &x, const ex &y)
605 {
606 	// trivial:  eta(x,c) -> 0  if c is real and positive
607 	if (x.info(info_flags::positive) || y.info(info_flags::positive))
608 		return _ex0;
609 
610 	if (x.info(info_flags::numeric) &&	y.info(info_flags::numeric)) {
611 		// don't call eta_evalf here because it would call Pi.evalf()!
612 		const numeric nx = ex_to<numeric>(x);
613 		const numeric ny = ex_to<numeric>(y);
614 		const numeric nxy = ex_to<numeric>(x*y);
615 		int cut = 0;
616 		if (nx.is_real() && nx.is_negative())
617 			cut -= 4;
618 		if (ny.is_real() && ny.is_negative())
619 			cut -= 4;
620 		if (nxy.is_real() && nxy.is_negative())
621 			cut += 4;
622 		return (I/4)*Pi*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
623 		                 (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
624 	}
625 
626 	return eta(x,y).hold();
627 }
628 
eta_series(const ex & x,const ex & y,const relational & rel,int order,unsigned options)629 static ex eta_series(const ex & x, const ex & y,
630                      const relational & rel,
631                      int order,
632                      unsigned options)
633 {
634 	const ex x_pt = x.subs(rel, subs_options::no_pattern);
635 	const ex y_pt = y.subs(rel, subs_options::no_pattern);
636 	if ((x_pt.info(info_flags::numeric) && x_pt.info(info_flags::negative)) ||
637 	    (y_pt.info(info_flags::numeric) && y_pt.info(info_flags::negative)) ||
638 	    ((x_pt*y_pt).info(info_flags::numeric) && (x_pt*y_pt).info(info_flags::negative)))
639 			throw (std::domain_error("eta_series(): on discontinuity"));
640 	epvector seq { expair(eta(x_pt,y_pt), _ex0) };
641 	return pseries(rel, std::move(seq));
642 }
643 
eta_conjugate(const ex & x,const ex & y)644 static ex eta_conjugate(const ex & x, const ex & y)
645 {
646 	return -eta(x, y).hold();
647 }
648 
eta_real_part(const ex & x,const ex & y)649 static ex eta_real_part(const ex & x, const ex & y)
650 {
651 	return 0;
652 }
653 
eta_imag_part(const ex & x,const ex & y)654 static ex eta_imag_part(const ex & x, const ex & y)
655 {
656 	return -I*eta(x, y).hold();
657 }
658 
659 REGISTER_FUNCTION(eta, eval_func(eta_eval).
660                        evalf_func(eta_evalf).
661                        series_func(eta_series).
662                        latex_name("\\eta").
663                        set_symmetry(sy_symm(0, 1)).
664                        conjugate_func(eta_conjugate).
665                        real_part_func(eta_real_part).
666                        imag_part_func(eta_imag_part));
667 
668 
669 //////////
670 // dilogarithm
671 //////////
672 
Li2_evalf(const ex & x)673 static ex Li2_evalf(const ex & x)
674 {
675 	if (is_exactly_a<numeric>(x))
676 		return Li2(ex_to<numeric>(x));
677 
678 	return Li2(x).hold();
679 }
680 
Li2_eval(const ex & x)681 static ex Li2_eval(const ex & x)
682 {
683 	if (x.info(info_flags::numeric)) {
684 		// Li2(0) -> 0
685 		if (x.is_zero())
686 			return _ex0;
687 		// Li2(1) -> Pi^2/6
688 		if (x.is_equal(_ex1))
689 			return power(Pi,_ex2)/_ex6;
690 		// Li2(1/2) -> Pi^2/12 - log(2)^2/2
691 		if (x.is_equal(_ex1_2))
692 			return power(Pi,_ex2)/_ex12 + power(log(_ex2),_ex2)*_ex_1_2;
693 		// Li2(-1) -> -Pi^2/12
694 		if (x.is_equal(_ex_1))
695 			return -power(Pi,_ex2)/_ex12;
696 		// Li2(I) -> -Pi^2/48+Catalan*I
697 		if (x.is_equal(I))
698 			return power(Pi,_ex2)/_ex_48 + Catalan*I;
699 		// Li2(-I) -> -Pi^2/48-Catalan*I
700 		if (x.is_equal(-I))
701 			return power(Pi,_ex2)/_ex_48 - Catalan*I;
702 		// Li2(float)
703 		if (!x.info(info_flags::crational))
704 			return Li2(ex_to<numeric>(x));
705 	}
706 
707 	return Li2(x).hold();
708 }
709 
Li2_deriv(const ex & x,unsigned deriv_param)710 static ex Li2_deriv(const ex & x, unsigned deriv_param)
711 {
712 	GINAC_ASSERT(deriv_param==0);
713 
714 	// d/dx Li2(x) -> -log(1-x)/x
715 	return -log(_ex1-x)/x;
716 }
717 
Li2_series(const ex & x,const relational & rel,int order,unsigned options)718 static ex Li2_series(const ex &x, const relational &rel, int order, unsigned options)
719 {
720 	const ex x_pt = x.subs(rel, subs_options::no_pattern);
721 	if (x_pt.info(info_flags::numeric)) {
722 		// First special case: x==0 (derivatives have poles)
723 		if (x_pt.is_zero()) {
724 			// method:
725 			// The problem is that in d/dx Li2(x==0) == -log(1-x)/x we cannot
726 			// simply substitute x==0.  The limit, however, exists: it is 1.
727 			// We also know all higher derivatives' limits:
728 			// (d/dx)^n Li2(x) == n!/n^2.
729 			// So the primitive series expansion is
730 			// Li2(x==0) == x + x^2/4 + x^3/9 + ...
731 			// and so on.
732 			// We first construct such a primitive series expansion manually in
733 			// a dummy symbol s and then insert the argument's series expansion
734 			// for s.  Reexpanding the resulting series returns the desired
735 			// result.
736 			const symbol s;
737 			ex ser;
738 			// manually construct the primitive expansion
739 			for (int i=1; i<order; ++i)
740 				ser += pow(s,i) / pow(numeric(i), *_num2_p);
741 			// substitute the argument's series expansion
742 			ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
743 			// maybe that was terminating, so add a proper order term
744 			epvector nseq { expair(Order(_ex1), order) };
745 			ser += pseries(rel, std::move(nseq));
746 			// reexpanding it will collapse the series again
747 			return ser.series(rel, order);
748 			// NB: Of course, this still does not allow us to compute anything
749 			// like sin(Li2(x)).series(x==0,2), since then this code here is
750 			// not reached and the derivative of sin(Li2(x)) doesn't allow the
751 			// substitution x==0.  Probably limits *are* needed for the general
752 			// cases.  In case L'Hospital's rule is implemented for limits and
753 			// basic::series() takes care of this, this whole block is probably
754 			// obsolete!
755 		}
756 		// second special case: x==1 (branch point)
757 		if (x_pt.is_equal(_ex1)) {
758 			// method:
759 			// construct series manually in a dummy symbol s
760 			const symbol s;
761 			ex ser = zeta(_ex2);
762 			// manually construct the primitive expansion
763 			for (int i=1; i<order; ++i)
764 				ser += pow(1-s,i) * (numeric(1,i)*(I*Pi+log(s-1)) - numeric(1,i*i));
765 			// substitute the argument's series expansion
766 			ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
767 			// maybe that was terminating, so add a proper order term
768 			epvector nseq { expair(Order(_ex1), order) };
769 			ser += pseries(rel, std::move(nseq));
770 			// reexpanding it will collapse the series again
771 			return ser.series(rel, order);
772 		}
773 		// third special case: x real, >=1 (branch cut)
774 		if (!(options & series_options::suppress_branchcut) &&
775 			ex_to<numeric>(x_pt).is_real() && ex_to<numeric>(x_pt)>1) {
776 			// method:
777 			// This is the branch cut: assemble the primitive series manually
778 			// and then add the corresponding complex step function.
779 			const symbol &s = ex_to<symbol>(rel.lhs());
780 			const ex point = rel.rhs();
781 			const symbol foo;
782 			epvector seq;
783 			// zeroth order term:
784 			seq.push_back(expair(Li2(x_pt), _ex0));
785 			// compute the intermediate terms:
786 			ex replarg = series(Li2(x), s==foo, order);
787 			for (size_t i=1; i<replarg.nops()-1; ++i)
788 				seq.push_back(expair((replarg.op(i)/power(s-foo,i)).series(foo==point,1,options).op(0).subs(foo==s, subs_options::no_pattern),i));
789 			// append an order term:
790 			seq.push_back(expair(Order(_ex1), replarg.nops()-1));
791 			return pseries(rel, std::move(seq));
792 		}
793 	}
794 	// all other cases should be safe, by now:
795 	throw do_taylor();  // caught by function::series()
796 }
797 
Li2_conjugate(const ex & x)798 static ex Li2_conjugate(const ex & x)
799 {
800 	// conjugate(Li2(x))==Li2(conjugate(x)) unless on the branch cuts which
801 	// run along the positive real axis beginning at 1.
802 	if (x.info(info_flags::negative)) {
803 		return Li2(x).hold();
804 	}
805 	if (is_exactly_a<numeric>(x) &&
806 	    (!x.imag_part().is_zero() || x < *_num1_p)) {
807 		return Li2(x.conjugate());
808 	}
809 	return conjugate_function(Li2(x)).hold();
810 }
811 
812 REGISTER_FUNCTION(Li2, eval_func(Li2_eval).
813                        evalf_func(Li2_evalf).
814                        derivative_func(Li2_deriv).
815                        series_func(Li2_series).
816                        conjugate_func(Li2_conjugate).
817                        latex_name("\\mathrm{Li}_2"));
818 
819 //////////
820 // trilogarithm
821 //////////
822 
Li3_eval(const ex & x)823 static ex Li3_eval(const ex & x)
824 {
825 	if (x.is_zero())
826 		return x;
827 	return Li3(x).hold();
828 }
829 
830 REGISTER_FUNCTION(Li3, eval_func(Li3_eval).
831                        latex_name("\\mathrm{Li}_3"));
832 
833 //////////
834 // Derivatives of Riemann's Zeta-function  zetaderiv(0,x)==zeta(x)
835 //////////
836 
zetaderiv_eval(const ex & n,const ex & x)837 static ex zetaderiv_eval(const ex & n, const ex & x)
838 {
839 	if (n.info(info_flags::numeric)) {
840 		// zetaderiv(0,x) -> zeta(x)
841 		if (n.is_zero())
842 			return zeta(x).hold();
843 	}
844 
845 	return zetaderiv(n, x).hold();
846 }
847 
zetaderiv_deriv(const ex & n,const ex & x,unsigned deriv_param)848 static ex zetaderiv_deriv(const ex & n, const ex & x, unsigned deriv_param)
849 {
850 	GINAC_ASSERT(deriv_param<2);
851 
852 	if (deriv_param==0) {
853 		// d/dn zeta(n,x)
854 		throw(std::logic_error("cannot diff zetaderiv(n,x) with respect to n"));
855 	}
856 	// d/dx psi(n,x)
857 	return zetaderiv(n+1,x);
858 }
859 
860 REGISTER_FUNCTION(zetaderiv, eval_func(zetaderiv_eval).
861 	                       	 derivative_func(zetaderiv_deriv).
862   	                         latex_name("\\zeta^\\prime"));
863 
864 //////////
865 // factorial
866 //////////
867 
factorial_evalf(const ex & x)868 static ex factorial_evalf(const ex & x)
869 {
870 	return factorial(x).hold();
871 }
872 
factorial_eval(const ex & x)873 static ex factorial_eval(const ex & x)
874 {
875 	if (is_exactly_a<numeric>(x))
876 		return factorial(ex_to<numeric>(x));
877 	else
878 		return factorial(x).hold();
879 }
880 
factorial_print_dflt_latex(const ex & x,const print_context & c)881 static void factorial_print_dflt_latex(const ex & x, const print_context & c)
882 {
883 	if (is_exactly_a<symbol>(x) ||
884 	    is_exactly_a<constant>(x) ||
885 		is_exactly_a<function>(x)) {
886 		x.print(c); c.s << "!";
887 	} else {
888 		c.s << "("; x.print(c); c.s << ")!";
889 	}
890 }
891 
factorial_conjugate(const ex & x)892 static ex factorial_conjugate(const ex & x)
893 {
894 	return factorial(x).hold();
895 }
896 
factorial_real_part(const ex & x)897 static ex factorial_real_part(const ex & x)
898 {
899 	return factorial(x).hold();
900 }
901 
factorial_imag_part(const ex & x)902 static ex factorial_imag_part(const ex & x)
903 {
904 	return 0;
905 }
906 
907 REGISTER_FUNCTION(factorial, eval_func(factorial_eval).
908                              evalf_func(factorial_evalf).
909                              print_func<print_dflt>(factorial_print_dflt_latex).
910                              print_func<print_latex>(factorial_print_dflt_latex).
911                              conjugate_func(factorial_conjugate).
912                              real_part_func(factorial_real_part).
913                              imag_part_func(factorial_imag_part));
914 
915 //////////
916 // binomial
917 //////////
918 
binomial_evalf(const ex & x,const ex & y)919 static ex binomial_evalf(const ex & x, const ex & y)
920 {
921 	return binomial(x, y).hold();
922 }
923 
binomial_sym(const ex & x,const numeric & y)924 static ex binomial_sym(const ex & x, const numeric & y)
925 {
926 	if (y.is_integer()) {
927 		if (y.is_nonneg_integer()) {
928 			const unsigned N = y.to_int();
929 			if (N == 0) return _ex1;
930 			if (N == 1) return x;
931 			ex t = x.expand();
932 			for (unsigned i = 2; i <= N; ++i)
933 				t = (t * (x + i - y - 1)).expand() / i;
934 			return t;
935 		} else
936 			return _ex0;
937 	}
938 
939 	return binomial(x, y).hold();
940 }
941 
binomial_eval(const ex & x,const ex & y)942 static ex binomial_eval(const ex & x, const ex &y)
943 {
944 	if (is_exactly_a<numeric>(y)) {
945 		if (is_exactly_a<numeric>(x) && ex_to<numeric>(x).is_integer())
946 			return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
947 		else
948 			return binomial_sym(x, ex_to<numeric>(y));
949 	} else
950 		return binomial(x, y).hold();
951 }
952 
953 // At the moment the numeric evaluation of a binomial function always
954 // gives a real number, but if this would be implemented using the gamma
955 // function, also complex conjugation should be changed (or rather, deleted).
binomial_conjugate(const ex & x,const ex & y)956 static ex binomial_conjugate(const ex & x, const ex & y)
957 {
958 	return binomial(x,y).hold();
959 }
960 
binomial_real_part(const ex & x,const ex & y)961 static ex binomial_real_part(const ex & x, const ex & y)
962 {
963 	return binomial(x,y).hold();
964 }
965 
binomial_imag_part(const ex & x,const ex & y)966 static ex binomial_imag_part(const ex & x, const ex & y)
967 {
968 	return 0;
969 }
970 
971 REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
972                             evalf_func(binomial_evalf).
973                             conjugate_func(binomial_conjugate).
974                             real_part_func(binomial_real_part).
975                             imag_part_func(binomial_imag_part));
976 
977 //////////
978 // Order term function (for truncated power series)
979 //////////
980 
Order_eval(const ex & x)981 static ex Order_eval(const ex & x)
982 {
983 	if (is_exactly_a<numeric>(x)) {
984 		// O(c) -> O(1) or 0
985 		if (!x.is_zero())
986 			return Order(_ex1).hold();
987 		else
988 			return _ex0;
989 	} else if (is_exactly_a<mul>(x)) {
990 		const mul &m = ex_to<mul>(x);
991 		// O(c*expr) -> O(expr)
992 		if (is_exactly_a<numeric>(m.op(m.nops() - 1)))
993 			return Order(x / m.op(m.nops() - 1)).hold();
994 	}
995 	return Order(x).hold();
996 }
997 
Order_series(const ex & x,const relational & r,int order,unsigned options)998 static ex Order_series(const ex & x, const relational & r, int order, unsigned options)
999 {
1000 	// Just wrap the function into a pseries object
1001 	GINAC_ASSERT(is_a<symbol>(r.lhs()));
1002 	const symbol &s = ex_to<symbol>(r.lhs());
1003 	epvector new_seq { expair(Order(_ex1), numeric(std::min(x.ldegree(s), order))) };
1004 	return pseries(r, std::move(new_seq));
1005 }
1006 
Order_conjugate(const ex & x)1007 static ex Order_conjugate(const ex & x)
1008 {
1009 	return Order(x).hold();
1010 }
1011 
Order_real_part(const ex & x)1012 static ex Order_real_part(const ex & x)
1013 {
1014 	return Order(x).hold();
1015 }
1016 
Order_imag_part(const ex & x)1017 static ex Order_imag_part(const ex & x)
1018 {
1019 	if(x.info(info_flags::real))
1020 		return 0;
1021 	return Order(x).hold();
1022 }
1023 
Order_expl_derivative(const ex & arg,const symbol & s)1024 static ex Order_expl_derivative(const ex & arg, const symbol & s)
1025 {
1026 	return Order(arg.diff(s));
1027 }
1028 
1029 REGISTER_FUNCTION(Order, eval_func(Order_eval).
1030                          series_func(Order_series).
1031                          latex_name("\\mathcal{O}").
1032                          expl_derivative_func(Order_expl_derivative).
1033                          conjugate_func(Order_conjugate).
1034                          real_part_func(Order_real_part).
1035                          imag_part_func(Order_imag_part));
1036 
1037 //////////
1038 // Solve linear system
1039 //////////
1040 
1041 class symbolset {
1042 	exset s;
insert_symbols(const ex & e)1043 	void insert_symbols(const ex &e)
1044 	{
1045 		if (is_a<symbol>(e)) {
1046 			s.insert(e);
1047 		} else {
1048 			for (const ex &sube : e) {
1049 				insert_symbols(sube);
1050 			}
1051 		}
1052 	}
1053 public:
symbolset(const ex & e)1054 	explicit symbolset(const ex &e)
1055 	{
1056 		insert_symbols(e);
1057 	}
has(const ex & e) const1058 	bool has(const ex &e) const
1059 	{
1060 		return s.find(e) != s.end();
1061 	}
1062 };
1063 
lsolve(const ex & eqns,const ex & symbols,unsigned options)1064 ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
1065 {
1066 	// solve a system of linear equations
1067 	if (eqns.info(info_flags::relation_equal)) {
1068 		if (!symbols.info(info_flags::symbol))
1069 			throw(std::invalid_argument("lsolve(): 2nd argument must be a symbol"));
1070 		const ex sol = lsolve(lst{eqns}, lst{symbols});
1071 
1072 		GINAC_ASSERT(sol.nops()==1);
1073 		GINAC_ASSERT(is_exactly_a<relational>(sol.op(0)));
1074 
1075 		return sol.op(0).op(1); // return rhs of first solution
1076 	}
1077 
1078 	// syntax checks
1079 	if (!(eqns.info(info_flags::list) || eqns.info(info_flags::exprseq))) {
1080 		throw(std::invalid_argument("lsolve(): 1st argument must be a list, a sequence, or an equation"));
1081 	}
1082 	for (size_t i=0; i<eqns.nops(); i++) {
1083 		if (!eqns.op(i).info(info_flags::relation_equal)) {
1084 			throw(std::invalid_argument("lsolve(): 1st argument must be a list of equations"));
1085 		}
1086 	}
1087 	if (!(symbols.info(info_flags::list) || symbols.info(info_flags::exprseq))) {
1088 		throw(std::invalid_argument("lsolve(): 2nd argument must be a list, a sequence, or a symbol"));
1089 	}
1090 	for (size_t i=0; i<symbols.nops(); i++) {
1091 		if (!symbols.op(i).info(info_flags::symbol)) {
1092 			throw(std::invalid_argument("lsolve(): 2nd argument must be a list or a sequence of symbols"));
1093 		}
1094 	}
1095 
1096 	// build matrix from equation system
1097 	matrix sys(eqns.nops(),symbols.nops());
1098 	matrix rhs(eqns.nops(),1);
1099 	matrix vars(symbols.nops(),1);
1100 
1101 	for (size_t r=0; r<eqns.nops(); r++) {
1102 		const ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
1103 		const symbolset syms(eq);
1104 		ex linpart = eq;
1105 		for (size_t c=0; c<symbols.nops(); c++) {
1106 			if (!syms.has(symbols.op(c)))
1107 				continue;
1108 			const ex co = eq.coeff(ex_to<symbol>(symbols.op(c)),1);
1109 			linpart -= co*symbols.op(c);
1110 			sys(r,c) = co;
1111 		}
1112 		linpart = linpart.expand();
1113 		rhs(r,0) = -linpart;
1114 	}
1115 
1116 	// test if system is linear and fill vars matrix
1117 	const symbolset sys_syms(sys);
1118 	const symbolset rhs_syms(rhs);
1119 	for (size_t i=0; i<symbols.nops(); i++) {
1120 		vars(i,0) = symbols.op(i);
1121 		if (sys_syms.has(symbols.op(i)))
1122 			throw(std::logic_error("lsolve: system is not linear"));
1123 		if (rhs_syms.has(symbols.op(i)))
1124 			throw(std::logic_error("lsolve: system is not linear"));
1125 	}
1126 
1127 	matrix solution;
1128 	try {
1129 		solution = sys.solve(vars,rhs,options);
1130 	} catch (const std::runtime_error & e) {
1131 		// Probably singular matrix or otherwise overdetermined system:
1132 		// It is consistent to return an empty list
1133 		return lst{};
1134 	}
1135 	GINAC_ASSERT(solution.cols()==1);
1136 	GINAC_ASSERT(solution.rows()==symbols.nops());
1137 
1138 	// return list of equations of the form lst{var1==sol1,var2==sol2,...}
1139 	lst sollist;
1140 	for (size_t i=0; i<symbols.nops(); i++)
1141 		sollist.append(symbols.op(i)==solution(i,0));
1142 
1143 	return sollist;
1144 }
1145 
1146 //////////
1147 // Find real root of f(x) numerically
1148 //////////
1149 
1150 const numeric
fsolve(const ex & f_in,const symbol & x,const numeric & x1,const numeric & x2)1151 fsolve(const ex& f_in, const symbol& x, const numeric& x1, const numeric& x2)
1152 {
1153 	if (!x1.is_real() || !x2.is_real()) {
1154 		throw std::runtime_error("fsolve(): interval not bounded by real numbers");
1155 	}
1156 	if (x1==x2) {
1157 		throw std::runtime_error("fsolve(): vanishing interval");
1158 	}
1159 	// xx[0] == left interval limit, xx[1] == right interval limit.
1160 	// fx[0] == f(xx[0]), fx[1] == f(xx[1]).
1161 	// We keep the root bracketed: xx[0]<xx[1] and fx[0]*fx[1]<0.
1162 	numeric xx[2] = { x1<x2 ? x1 : x2,
1163 	                  x1<x2 ? x2 : x1 };
1164 	ex f;
1165 	if (is_a<relational>(f_in)) {
1166 		f = f_in.lhs()-f_in.rhs();
1167 	} else {
1168 		f = f_in;
1169 	}
1170 	const ex fx_[2] = { f.subs(x==xx[0]).evalf(),
1171 	                    f.subs(x==xx[1]).evalf() };
1172 	if (!is_a<numeric>(fx_[0]) || !is_a<numeric>(fx_[1])) {
1173 		throw std::runtime_error("fsolve(): function does not evaluate numerically");
1174 	}
1175 	numeric fx[2] = { ex_to<numeric>(fx_[0]),
1176 	                  ex_to<numeric>(fx_[1]) };
1177 	if (!fx[0].is_real() || !fx[1].is_real()) {
1178 		throw std::runtime_error("fsolve(): function evaluates to complex values at interval boundaries");
1179 	}
1180 	if (fx[0]*fx[1]>=0) {
1181 		throw std::runtime_error("fsolve(): function does not change sign at interval boundaries");
1182 	}
1183 
1184 	// The Newton-Raphson method has quadratic convergence!  Simply put, it
1185 	// replaces x with x-f(x)/f'(x) at each step.  -f/f' is the delta:
1186 	const ex ff = normal(-f/f.diff(x));
1187 	int side = 0;  // Start at left interval limit.
1188 	numeric xxprev;
1189 	numeric fxprev;
1190 	do {
1191 		xxprev = xx[side];
1192 		fxprev = fx[side];
1193 		ex dx_ = ff.subs(x == xx[side]).evalf();
1194 		if (!is_a<numeric>(dx_))
1195 			throw std::runtime_error("fsolve(): function derivative does not evaluate numerically");
1196 		xx[side] += ex_to<numeric>(dx_);
1197 		// Now check if Newton-Raphson method shot out of the interval
1198 		bool bad_shot = (side == 0 && xx[0] < xxprev) ||
1199 				(side == 1 && xx[1] > xxprev) || xx[0] > xx[1];
1200 		if (!bad_shot) {
1201 			// Compute f(x) only if new x is inside the interval.
1202 			// The function might be difficult to compute numerically
1203 			// or even ill defined outside the interval. Also it's
1204 			// a small optimization.
1205 			ex f_x = f.subs(x == xx[side]).evalf();
1206 			if (!is_a<numeric>(f_x))
1207 				throw std::runtime_error("fsolve(): function does not evaluate numerically");
1208 			fx[side] = ex_to<numeric>(f_x);
1209 		}
1210 		if (bad_shot) {
1211 			// Oops, Newton-Raphson method shot out of the interval.
1212 			// Restore, and try again with the other side instead!
1213 			xx[side] = xxprev;
1214 			fx[side] = fxprev;
1215 			side = !side;
1216 			xxprev = xx[side];
1217 			fxprev = fx[side];
1218 
1219 			ex dx_ = ff.subs(x == xx[side]).evalf();
1220 			if (!is_a<numeric>(dx_))
1221 				throw std::runtime_error("fsolve(): function derivative does not evaluate numerically [2]");
1222 			xx[side] += ex_to<numeric>(dx_);
1223 
1224 			ex f_x = f.subs(x==xx[side]).evalf();
1225 			if (!is_a<numeric>(f_x))
1226 				throw std::runtime_error("fsolve(): function does not evaluate numerically [2]");
1227 			fx[side] = ex_to<numeric>(f_x);
1228 		}
1229 		if ((fx[side]<0 && fx[!side]<0) || (fx[side]>0 && fx[!side]>0)) {
1230 			// Oops, the root isn't bracketed any more.
1231 			// Restore, and perform a bisection!
1232 			xx[side] = xxprev;
1233 			fx[side] = fxprev;
1234 
1235 			// Ah, the bisection! Bisections converge linearly. Unfortunately,
1236 			// they occur pretty often when Newton-Raphson arrives at an x too
1237 			// close to the result on one side of the interval and
1238 			// f(x-f(x)/f'(x)) turns out to have the same sign as f(x) due to
1239 			// precision errors! Recall that this function does not have a
1240 			// precision goal as one of its arguments but instead relies on
1241 			// x converging to a fixed point. We speed up the (safe but slow)
1242 			// bisection method by mixing in a dash of the (unsafer but faster)
1243 			// secant method: Instead of splitting the interval at the
1244 			// arithmetic mean (bisection), we split it nearer to the root as
1245 			// determined by the secant between the values xx[0] and xx[1].
1246 			// Don't set the secant_weight to one because that could disturb
1247 			// the convergence in some corner cases!
1248 			constexpr double secant_weight = 0.984375;  // == 63/64 < 1
1249 			numeric xxmid = (1-secant_weight)*0.5*(xx[0]+xx[1])
1250 			    + secant_weight*(xx[0]+fx[0]*(xx[0]-xx[1])/(fx[1]-fx[0]));
1251 			ex fxmid_ = f.subs(x == xxmid).evalf();
1252 			if (!is_a<numeric>(fxmid_))
1253 				throw std::runtime_error("fsolve(): function does not evaluate numerically [3]");
1254 			numeric fxmid = ex_to<numeric>(fxmid_);
1255 			if (fxmid.is_zero()) {
1256 				// Luck strikes...
1257 				return xxmid;
1258 			}
1259 			if ((fxmid<0 && fx[side]>0) || (fxmid>0 && fx[side]<0)) {
1260 				side = !side;
1261 			}
1262 			xxprev = xx[side];
1263 			fxprev = fx[side];
1264 			xx[side] = xxmid;
1265 			fx[side] = fxmid;
1266 		}
1267 	} while (xxprev!=xx[side]);
1268 	return xxprev;
1269 }
1270 
1271 
1272 /* Force inclusion of functions from inifcns_gamma and inifcns_zeta
1273  * for static lib (so ginsh will see them). */
1274 unsigned force_include_tgamma = tgamma_SERIAL::serial;
1275 unsigned force_include_zeta1 = zeta1_SERIAL::serial;
1276 
1277 } // namespace GiNaC
1278