1 /** @file normal.cpp
2  *
3  *  This file implements several functions that work on univariate and
4  *  multivariate polynomials and rational functions.
5  *  These functions include polynomial quotient and remainder, GCD and LCM
6  *  computation, square-free factorization and rational function normalization. */
7 
8 /*
9  *  GiNaC Copyright (C) 1999-2022 Johannes Gutenberg University Mainz, Germany
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or
14  *  (at your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful,
17  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *  GNU General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License
22  *  along with this program; if not, write to the Free Software
23  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
24  */
25 
26 #include "normal.h"
27 #include "basic.h"
28 #include "ex.h"
29 #include "add.h"
30 #include "constant.h"
31 #include "expairseq.h"
32 #include "fail.h"
33 #include "inifcns.h"
34 #include "lst.h"
35 #include "mul.h"
36 #include "numeric.h"
37 #include "power.h"
38 #include "relational.h"
39 #include "operators.h"
40 #include "matrix.h"
41 #include "pseries.h"
42 #include "symbol.h"
43 #include "utils.h"
44 #include "polynomial/chinrem_gcd.h"
45 
46 #include <algorithm>
47 #include <map>
48 
49 namespace GiNaC {
50 
51 // If comparing expressions (ex::compare()) is fast, you can set this to 1.
52 // Some routines like quo(), rem() and gcd() will then return a quick answer
53 // when they are called with two identical arguments.
54 #define FAST_COMPARE 1
55 
56 // Set this if you want divide_in_z() to use remembering
57 #define USE_REMEMBER 0
58 
59 // Set this if you want divide_in_z() to use trial division followed by
60 // polynomial interpolation (always slower except for completely dense
61 // polynomials)
62 #define USE_TRIAL_DIVISION 0
63 
64 // Set this to enable some statistical output for the GCD routines
65 #define STATISTICS 0
66 
67 
68 #if STATISTICS
69 // Statistics variables
70 static int gcd_called = 0;
71 static int sr_gcd_called = 0;
72 static int heur_gcd_called = 0;
73 static int heur_gcd_failed = 0;
74 
75 // Print statistics at end of program
76 static struct _stat_print {
_stat_printGiNaC::_stat_print77 	_stat_print() {}
~_stat_printGiNaC::_stat_print78 	~_stat_print() {
79 		std::cout << "gcd() called " << gcd_called << " times\n";
80 		std::cout << "sr_gcd() called " << sr_gcd_called << " times\n";
81 		std::cout << "heur_gcd() called " << heur_gcd_called << " times\n";
82 		std::cout << "heur_gcd() failed " << heur_gcd_failed << " times\n";
83 	}
84 } stat_print;
85 #endif
86 
87 
88 /** Return pointer to first symbol found in expression.  Due to GiNaC's
89  *  internal ordering of terms, it may not be obvious which symbol this
90  *  function returns for a given expression.
91  *
92  *  @param e  expression to search
93  *  @param x  first symbol found (returned)
94  *  @return "false" if no symbol was found, "true" otherwise */
get_first_symbol(const ex & e,ex & x)95 static bool get_first_symbol(const ex &e, ex &x)
96 {
97 	if (is_a<symbol>(e)) {
98 		x = e;
99 		return true;
100 	} else if (is_exactly_a<add>(e) || is_exactly_a<mul>(e)) {
101 		for (size_t i=0; i<e.nops(); i++)
102 			if (get_first_symbol(e.op(i), x))
103 				return true;
104 	} else if (is_exactly_a<power>(e)) {
105 		if (get_first_symbol(e.op(0), x))
106 			return true;
107 	}
108 	return false;
109 }
110 
111 
112 /*
113  *  Statistical information about symbols in polynomials
114  */
115 
116 /** This structure holds information about the highest and lowest degrees
117  *  in which a symbol appears in two multivariate polynomials "a" and "b".
118  *  A vector of these structures with information about all symbols in
119  *  two polynomials can be created with the function get_symbol_stats().
120  *
121  *  @see get_symbol_stats */
122 struct sym_desc {
123 	/** Initialize symbol, leave other variables uninitialized */
sym_descGiNaC::sym_desc124 	sym_desc(const ex& s)
125 	  : sym(s), deg_a(0), deg_b(0), ldeg_a(0), ldeg_b(0), max_deg(0), max_lcnops(0)
126 	{ }
127 
128 	/** Reference to symbol */
129 	ex sym;
130 
131 	/** Highest degree of symbol in polynomial "a" */
132 	int deg_a;
133 
134 	/** Highest degree of symbol in polynomial "b" */
135 	int deg_b;
136 
137 	/** Lowest degree of symbol in polynomial "a" */
138 	int ldeg_a;
139 
140 	/** Lowest degree of symbol in polynomial "b" */
141 	int ldeg_b;
142 
143 	/** Maximum of deg_a and deg_b (Used for sorting) */
144 	int max_deg;
145 
146 	/** Maximum number of terms of leading coefficient of symbol in both polynomials */
147 	size_t max_lcnops;
148 
149 	/** Comparison operator for sorting */
operator <GiNaC::sym_desc150 	bool operator<(const sym_desc &x) const
151 	{
152 		if (max_deg == x.max_deg)
153 			return max_lcnops < x.max_lcnops;
154 		else
155 			return max_deg < x.max_deg;
156 	}
157 };
158 
159 // Vector of sym_desc structures
160 typedef std::vector<sym_desc> sym_desc_vec;
161 
162 // Add symbol the sym_desc_vec (used internally by get_symbol_stats())
add_symbol(const ex & s,sym_desc_vec & v)163 static void add_symbol(const ex &s, sym_desc_vec &v)
164 {
165 	for (auto & it : v)
166 		if (it.sym.is_equal(s))  // If it's already in there, don't add it a second time
167 			return;
168 
169 	v.push_back(sym_desc(s));
170 }
171 
172 // Collect all symbols of an expression (used internally by get_symbol_stats())
collect_symbols(const ex & e,sym_desc_vec & v)173 static void collect_symbols(const ex &e, sym_desc_vec &v)
174 {
175 	if (is_a<symbol>(e)) {
176 		add_symbol(e, v);
177 	} else if (is_exactly_a<add>(e) || is_exactly_a<mul>(e)) {
178 		for (size_t i=0; i<e.nops(); i++)
179 			collect_symbols(e.op(i), v);
180 	} else if (is_exactly_a<power>(e)) {
181 		collect_symbols(e.op(0), v);
182 	}
183 }
184 
185 /** Collect statistical information about symbols in polynomials.
186  *  This function fills in a vector of "sym_desc" structs which contain
187  *  information about the highest and lowest degrees of all symbols that
188  *  appear in two polynomials. The vector is then sorted by minimum
189  *  degree (lowest to highest). The information gathered by this
190  *  function is used by the GCD routines to identify trivial factors
191  *  and to determine which variable to choose as the main variable
192  *  for GCD computation.
193  *
194  *  @param a  first multivariate polynomial
195  *  @param b  second multivariate polynomial
196  *  @param v  vector of sym_desc structs (filled in) */
get_symbol_stats(const ex & a,const ex & b,sym_desc_vec & v)197 static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v)
198 {
199 	collect_symbols(a, v);
200 	collect_symbols(b, v);
201 	for (auto & it : v) {
202 		int deg_a = a.degree(it.sym);
203 		int deg_b = b.degree(it.sym);
204 		it.deg_a = deg_a;
205 		it.deg_b = deg_b;
206 		it.max_deg = std::max(deg_a, deg_b);
207 		it.max_lcnops = std::max(a.lcoeff(it.sym).nops(), b.lcoeff(it.sym).nops());
208 		it.ldeg_a = a.ldegree(it.sym);
209 		it.ldeg_b = b.ldegree(it.sym);
210 	}
211 	std::sort(v.begin(), v.end());
212 
213 #if 0
214 	std::clog << "Symbols:\n";
215 	auto it = v.begin(), itend = v.end();
216 	while (it != itend) {
217 		std::clog << " " << it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << ", max_lcnops=" << it->max_lcnops << std::endl;
218 		std::clog << "  lcoeff_a=" << a.lcoeff(it->sym) << ", lcoeff_b=" << b.lcoeff(it->sym) << std::endl;
219 		++it;
220 	}
221 #endif
222 }
223 
224 
225 /*
226  *  Computation of LCM of denominators of coefficients of a polynomial
227  */
228 
229 // Compute LCM of denominators of coefficients by going through the
230 // expression recursively (used internally by lcm_of_coefficients_denominators())
lcmcoeff(const ex & e,const numeric & l)231 static numeric lcmcoeff(const ex &e, const numeric &l)
232 {
233 	if (e.info(info_flags::rational))
234 		return lcm(ex_to<numeric>(e).denom(), l);
235 	else if (is_exactly_a<add>(e)) {
236 		numeric c = *_num1_p;
237 		for (size_t i=0; i<e.nops(); i++)
238 			c = lcmcoeff(e.op(i), c);
239 		return lcm(c, l);
240 	} else if (is_exactly_a<mul>(e)) {
241 		numeric c = *_num1_p;
242 		for (size_t i=0; i<e.nops(); i++)
243 			c *= lcmcoeff(e.op(i), *_num1_p);
244 		return lcm(c, l);
245 	} else if (is_exactly_a<power>(e)) {
246 		if (is_a<symbol>(e.op(0)))
247 			return l;
248 		else
249 			return pow(lcmcoeff(e.op(0), l), ex_to<numeric>(e.op(1)));
250 	}
251 	return l;
252 }
253 
254 /** Compute LCM of denominators of coefficients of a polynomial.
255  *  Given a polynomial with rational coefficients, this function computes
256  *  the LCM of the denominators of all coefficients. This can be used
257  *  to bring a polynomial from Q[X] to Z[X].
258  *
259  *  @param e  multivariate polynomial (need not be expanded)
260  *  @return LCM of denominators of coefficients */
lcm_of_coefficients_denominators(const ex & e)261 static numeric lcm_of_coefficients_denominators(const ex &e)
262 {
263 	return lcmcoeff(e, *_num1_p);
264 }
265 
266 /** Bring polynomial from Q[X] to Z[X] by multiplying in the previously
267  *  determined LCM of the coefficient's denominators.
268  *
269  *  @param e  multivariate polynomial (need not be expanded)
270  *  @param lcm  LCM to multiply in */
multiply_lcm(const ex & e,const numeric & lcm)271 static ex multiply_lcm(const ex &e, const numeric &lcm)
272 {
273 	if (lcm.is_equal(*_num1_p))
274 		// e * 1 -> e;
275 		return e;
276 
277 	if (is_exactly_a<mul>(e)) {
278 		// (a*b*...)*lcm -> (a*lcma)*(b*lcmb)*...*(lcm/(lcma*lcmb*...))
279 		size_t num = e.nops();
280 		exvector v;
281 		v.reserve(num + 1);
282 		numeric lcm_accum = *_num1_p;
283 		for (size_t i=0; i<num; i++) {
284 			numeric op_lcm = lcmcoeff(e.op(i), *_num1_p);
285 			v.push_back(multiply_lcm(e.op(i), op_lcm));
286 			lcm_accum *= op_lcm;
287 		}
288 		v.push_back(lcm / lcm_accum);
289 		return dynallocate<mul>(v);
290 	} else if (is_exactly_a<add>(e)) {
291 		// (a+b+...)*lcm -> a*lcm+b*lcm+...
292 		size_t num = e.nops();
293 		exvector v;
294 		v.reserve(num);
295 		for (size_t i=0; i<num; i++)
296 			v.push_back(multiply_lcm(e.op(i), lcm));
297 		return dynallocate<add>(v);
298 	} else if (is_exactly_a<power>(e)) {
299 		if (!is_a<symbol>(e.op(0))) {
300 			// (b^e)*lcm -> (b*lcm^(1/e))^e if lcm^(1/e) ∈ ℚ (i.e. not a float)
301 			// but not for symbolic b, as evaluation would undo this again
302 			numeric root_of_lcm = lcm.power(ex_to<numeric>(e.op(1)).inverse());
303 			if (root_of_lcm.is_rational())
304 				return pow(multiply_lcm(e.op(0), root_of_lcm), e.op(1));
305 		}
306 	}
307 	// can't recurse down into e
308 	return dynallocate<mul>(e, lcm);
309 }
310 
311 
312 /** Compute the integer content (= GCD of all numeric coefficients) of an
313  *  expanded polynomial. For a polynomial with rational coefficients, this
314  *  returns g/l where g is the GCD of the coefficients' numerators and l
315  *  is the LCM of the coefficients' denominators.
316  *
317  *  @return integer content */
integer_content() const318 numeric ex::integer_content() const
319 {
320 	return bp->integer_content();
321 }
322 
integer_content() const323 numeric basic::integer_content() const
324 {
325 	return *_num1_p;
326 }
327 
integer_content() const328 numeric numeric::integer_content() const
329 {
330 	return abs(*this);
331 }
332 
integer_content() const333 numeric add::integer_content() const
334 {
335 	numeric c = *_num0_p, l = *_num1_p;
336 	for (auto & it : seq) {
337 		GINAC_ASSERT(!is_exactly_a<numeric>(it.rest));
338 		GINAC_ASSERT(is_exactly_a<numeric>(it.coeff));
339 		c = gcd(ex_to<numeric>(it.coeff).numer(), c);
340 		l = lcm(ex_to<numeric>(it.coeff).denom(), l);
341 	}
342 	GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
343 	c = gcd(ex_to<numeric>(overall_coeff).numer(), c);
344 	l = lcm(ex_to<numeric>(overall_coeff).denom(), l);
345 	return c/l;
346 }
347 
integer_content() const348 numeric mul::integer_content() const
349 {
350 #ifdef DO_GINAC_ASSERT
351 	for (auto & it : seq) {
352 		GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(it)));
353 	}
354 #endif // def DO_GINAC_ASSERT
355 	GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
356 	return abs(ex_to<numeric>(overall_coeff));
357 }
358 
359 
360 /*
361  *  Polynomial quotients and remainders
362  */
363 
364 /** Quotient q(x) of polynomials a(x) and b(x) in Q[x].
365  *  It satisfies a(x)=b(x)*q(x)+r(x).
366  *
367  *  @param a  first polynomial in x (dividend)
368  *  @param b  second polynomial in x (divisor)
369  *  @param x  a and b are polynomials in x
370  *  @param check_args  check whether a and b are polynomials with rational
371  *         coefficients (defaults to "true")
372  *  @return quotient of a and b in Q[x] */
quo(const ex & a,const ex & b,const ex & x,bool check_args)373 ex quo(const ex &a, const ex &b, const ex &x, bool check_args)
374 {
375 	if (b.is_zero())
376 		throw(std::overflow_error("quo: division by zero"));
377 	if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b))
378 		return a / b;
379 #if FAST_COMPARE
380 	if (a.is_equal(b))
381 		return _ex1;
382 #endif
383 	if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
384 		throw(std::invalid_argument("quo: arguments must be polynomials over the rationals"));
385 
386 	// Polynomial long division
387 	ex r = a.expand();
388 	if (r.is_zero())
389 		return r;
390 	int bdeg = b.degree(x);
391 	int rdeg = r.degree(x);
392 	ex blcoeff = b.expand().coeff(x, bdeg);
393 	bool blcoeff_is_numeric = is_exactly_a<numeric>(blcoeff);
394 	exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0));
395 	while (rdeg >= bdeg) {
396 		ex term, rcoeff = r.coeff(x, rdeg);
397 		if (blcoeff_is_numeric)
398 			term = rcoeff / blcoeff;
399 		else {
400 			if (!divide(rcoeff, blcoeff, term, false))
401 				return dynallocate<fail>();
402 		}
403 		term *= pow(x, rdeg - bdeg);
404 		v.push_back(term);
405 		r -= (term * b).expand();
406 		if (r.is_zero())
407 			break;
408 		rdeg = r.degree(x);
409 	}
410 	return dynallocate<add>(v);
411 }
412 
413 
414 /** Remainder r(x) of polynomials a(x) and b(x) in Q[x].
415  *  It satisfies a(x)=b(x)*q(x)+r(x).
416  *
417  *  @param a  first polynomial in x (dividend)
418  *  @param b  second polynomial in x (divisor)
419  *  @param x  a and b are polynomials in x
420  *  @param check_args  check whether a and b are polynomials with rational
421  *         coefficients (defaults to "true")
422  *  @return remainder of a(x) and b(x) in Q[x] */
rem(const ex & a,const ex & b,const ex & x,bool check_args)423 ex rem(const ex &a, const ex &b, const ex &x, bool check_args)
424 {
425 	if (b.is_zero())
426 		throw(std::overflow_error("rem: division by zero"));
427 	if (is_exactly_a<numeric>(a)) {
428 		if  (is_exactly_a<numeric>(b))
429 			return _ex0;
430 		else
431 			return a;
432 	}
433 #if FAST_COMPARE
434 	if (a.is_equal(b))
435 		return _ex0;
436 #endif
437 	if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
438 		throw(std::invalid_argument("rem: arguments must be polynomials over the rationals"));
439 
440 	// Polynomial long division
441 	ex r = a.expand();
442 	if (r.is_zero())
443 		return r;
444 	int bdeg = b.degree(x);
445 	int rdeg = r.degree(x);
446 	ex blcoeff = b.expand().coeff(x, bdeg);
447 	bool blcoeff_is_numeric = is_exactly_a<numeric>(blcoeff);
448 	while (rdeg >= bdeg) {
449 		ex term, rcoeff = r.coeff(x, rdeg);
450 		if (blcoeff_is_numeric)
451 			term = rcoeff / blcoeff;
452 		else {
453 			if (!divide(rcoeff, blcoeff, term, false))
454 				return dynallocate<fail>();
455 		}
456 		term *= pow(x, rdeg - bdeg);
457 		r -= (term * b).expand();
458 		if (r.is_zero())
459 			break;
460 		rdeg = r.degree(x);
461 	}
462 	return r;
463 }
464 
465 
466 /** Decompose rational function a(x)=N(x)/D(x) into P(x)+n(x)/D(x)
467  *  with degree(n, x) < degree(D, x).
468  *
469  *  @param a rational function in x
470  *  @param x a is a function of x
471  *  @return decomposed function. */
decomp_rational(const ex & a,const ex & x)472 ex decomp_rational(const ex &a, const ex &x)
473 {
474 	ex nd = numer_denom(a);
475 	ex numer = nd.op(0), denom = nd.op(1);
476 	ex q = quo(numer, denom, x);
477 	if (is_exactly_a<fail>(q))
478 		return a;
479 	else
480 		return q + rem(numer, denom, x) / denom;
481 }
482 
483 
484 /** Pseudo-remainder of polynomials a(x) and b(x) in Q[x].
485  *
486  *  @param a  first polynomial in x (dividend)
487  *  @param b  second polynomial in x (divisor)
488  *  @param x  a and b are polynomials in x
489  *  @param check_args  check whether a and b are polynomials with rational
490  *         coefficients (defaults to "true")
491  *  @return pseudo-remainder of a(x) and b(x) in Q[x] */
prem(const ex & a,const ex & b,const ex & x,bool check_args)492 ex prem(const ex &a, const ex &b, const ex &x, bool check_args)
493 {
494 	if (b.is_zero())
495 		throw(std::overflow_error("prem: division by zero"));
496 	if (is_exactly_a<numeric>(a)) {
497 		if (is_exactly_a<numeric>(b))
498 			return _ex0;
499 		else
500 			return b;
501 	}
502 	if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
503 		throw(std::invalid_argument("prem: arguments must be polynomials over the rationals"));
504 
505 	// Polynomial long division
506 	ex r = a.expand();
507 	ex eb = b.expand();
508 	int rdeg = r.degree(x);
509 	int bdeg = eb.degree(x);
510 	ex blcoeff;
511 	if (bdeg <= rdeg) {
512 		blcoeff = eb.coeff(x, bdeg);
513 		if (bdeg == 0)
514 			eb = _ex0;
515 		else
516 			eb -= blcoeff * pow(x, bdeg);
517 	} else
518 		blcoeff = _ex1;
519 
520 	int delta = rdeg - bdeg + 1, i = 0;
521 	while (rdeg >= bdeg && !r.is_zero()) {
522 		ex rlcoeff = r.coeff(x, rdeg);
523 		ex term = (pow(x, rdeg - bdeg) * eb * rlcoeff).expand();
524 		if (rdeg == 0)
525 			r = _ex0;
526 		else
527 			r -= rlcoeff * pow(x, rdeg);
528 		r = (blcoeff * r).expand() - term;
529 		rdeg = r.degree(x);
530 		i++;
531 	}
532 	return pow(blcoeff, delta - i) * r;
533 }
534 
535 
536 /** Sparse pseudo-remainder of polynomials a(x) and b(x) in Q[x].
537  *
538  *  @param a  first polynomial in x (dividend)
539  *  @param b  second polynomial in x (divisor)
540  *  @param x  a and b are polynomials in x
541  *  @param check_args  check whether a and b are polynomials with rational
542  *         coefficients (defaults to "true")
543  *  @return sparse pseudo-remainder of a(x) and b(x) in Q[x] */
sprem(const ex & a,const ex & b,const ex & x,bool check_args)544 ex sprem(const ex &a, const ex &b, const ex &x, bool check_args)
545 {
546 	if (b.is_zero())
547 		throw(std::overflow_error("prem: division by zero"));
548 	if (is_exactly_a<numeric>(a)) {
549 		if (is_exactly_a<numeric>(b))
550 			return _ex0;
551 		else
552 			return b;
553 	}
554 	if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
555 		throw(std::invalid_argument("prem: arguments must be polynomials over the rationals"));
556 
557 	// Polynomial long division
558 	ex r = a.expand();
559 	ex eb = b.expand();
560 	int rdeg = r.degree(x);
561 	int bdeg = eb.degree(x);
562 	ex blcoeff;
563 	if (bdeg <= rdeg) {
564 		blcoeff = eb.coeff(x, bdeg);
565 		if (bdeg == 0)
566 			eb = _ex0;
567 		else
568 			eb -= blcoeff * pow(x, bdeg);
569 	} else
570 		blcoeff = _ex1;
571 
572 	while (rdeg >= bdeg && !r.is_zero()) {
573 		ex rlcoeff = r.coeff(x, rdeg);
574 		ex term = (pow(x, rdeg - bdeg) * eb * rlcoeff).expand();
575 		if (rdeg == 0)
576 			r = _ex0;
577 		else
578 			r -= rlcoeff * pow(x, rdeg);
579 		r = (blcoeff * r).expand() - term;
580 		rdeg = r.degree(x);
581 	}
582 	return r;
583 }
584 
585 
586 /** Exact polynomial division of a(X) by b(X) in Q[X].
587  *
588  *  @param a  first multivariate polynomial (dividend)
589  *  @param b  second multivariate polynomial (divisor)
590  *  @param q  quotient (returned)
591  *  @param check_args  check whether a and b are polynomials with rational
592  *         coefficients (defaults to "true")
593  *  @return "true" when exact division succeeds (quotient returned in q),
594  *          "false" otherwise (q left untouched) */
divide(const ex & a,const ex & b,ex & q,bool check_args)595 bool divide(const ex &a, const ex &b, ex &q, bool check_args)
596 {
597 	if (b.is_zero())
598 		throw(std::overflow_error("divide: division by zero"));
599 	if (a.is_zero()) {
600 		q = _ex0;
601 		return true;
602 	}
603 	if (is_exactly_a<numeric>(b)) {
604 		q = a / b;
605 		return true;
606 	} else if (is_exactly_a<numeric>(a))
607 		return false;
608 #if FAST_COMPARE
609 	if (a.is_equal(b)) {
610 		q = _ex1;
611 		return true;
612 	}
613 #endif
614 	if (check_args && (!a.info(info_flags::rational_polynomial) ||
615 	                   !b.info(info_flags::rational_polynomial)))
616 		throw(std::invalid_argument("divide: arguments must be polynomials over the rationals"));
617 
618 	// Find first symbol
619 	ex x;
620 	if (!get_first_symbol(a, x) && !get_first_symbol(b, x))
621 		throw(std::invalid_argument("invalid expression in divide()"));
622 
623 	// Try to avoid expanding partially factored expressions.
624 	if (is_exactly_a<mul>(b)) {
625 	// Divide sequentially by each term
626 		ex rem_new, rem_old = a;
627 		for (size_t i=0; i < b.nops(); i++) {
628 			if (! divide(rem_old, b.op(i), rem_new, false))
629 				return false;
630 			rem_old = rem_new;
631 		}
632 		q = rem_new;
633 		return true;
634 	} else if (is_exactly_a<power>(b)) {
635 		const ex& bb(b.op(0));
636 		int exp_b = ex_to<numeric>(b.op(1)).to_int();
637 		ex rem_new, rem_old = a;
638 		for (int i=exp_b; i>0; i--) {
639 			if (! divide(rem_old, bb, rem_new, false))
640 				return false;
641 			rem_old = rem_new;
642 		}
643 		q = rem_new;
644 		return true;
645 	}
646 
647 	if (is_exactly_a<mul>(a)) {
648 		// Divide sequentially each term. If some term in a is divisible
649 		// by b we are done... and if not, we can't really say anything.
650 		size_t i;
651 		ex rem_i;
652 		bool divisible_p = false;
653 		for (i=0; i < a.nops(); ++i) {
654 			if (divide(a.op(i), b, rem_i, false)) {
655 				divisible_p = true;
656 				break;
657 			}
658 		}
659 		if (divisible_p) {
660 			exvector resv;
661 			resv.reserve(a.nops());
662 			for (size_t j=0; j < a.nops(); j++) {
663 				if (j==i)
664 					resv.push_back(rem_i);
665 				else
666 					resv.push_back(a.op(j));
667 			}
668 			q = dynallocate<mul>(resv);
669 			return true;
670 		}
671 	} else if (is_exactly_a<power>(a)) {
672 		// The base itself might be divisible by b, in that case we don't
673 		// need to expand a
674 		const ex& ab(a.op(0));
675 		int a_exp = ex_to<numeric>(a.op(1)).to_int();
676 		ex rem_i;
677 		if (divide(ab, b, rem_i, false)) {
678 			q = rem_i * pow(ab, a_exp - 1);
679 			return true;
680 		}
681 // code below is commented-out because it leads to a significant slowdown
682 //		for (int i=2; i < a_exp; i++) {
683 //			if (divide(power(ab, i), b, rem_i, false)) {
684 //				q = rem_i*power(ab, a_exp - i);
685 //				return true;
686 //			}
687 //		} // ... so we *really* need to expand expression.
688 	}
689 
690 	// Polynomial long division (recursive)
691 	ex r = a.expand();
692 	if (r.is_zero()) {
693 		q = _ex0;
694 		return true;
695 	}
696 	int bdeg = b.degree(x);
697 	int rdeg = r.degree(x);
698 	ex blcoeff = b.expand().coeff(x, bdeg);
699 	bool blcoeff_is_numeric = is_exactly_a<numeric>(blcoeff);
700 	exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0));
701 	while (rdeg >= bdeg) {
702 		ex term, rcoeff = r.coeff(x, rdeg);
703 		if (blcoeff_is_numeric)
704 			term = rcoeff / blcoeff;
705 		else
706 			if (!divide(rcoeff, blcoeff, term, false))
707 				return false;
708 		term *= pow(x, rdeg - bdeg);
709 		v.push_back(term);
710 		r -= (term * b).expand();
711 		if (r.is_zero()) {
712 			q = dynallocate<add>(v);
713 			return true;
714 		}
715 		rdeg = r.degree(x);
716 	}
717 	return false;
718 }
719 
720 
721 #if USE_REMEMBER
722 /*
723  *  Remembering
724  */
725 
726 typedef std::pair<ex, ex> ex2;
727 typedef std::pair<ex, bool> exbool;
728 
729 struct ex2_less {
operator ()GiNaC::ex2_less730 	bool operator() (const ex2 &p, const ex2 &q) const
731 	{
732 		int cmp = p.first.compare(q.first);
733 		return ((cmp<0) || (!(cmp>0) && p.second.compare(q.second)<0));
734 	}
735 };
736 
737 typedef std::map<ex2, exbool, ex2_less> ex2_exbool_remember;
738 #endif
739 
740 
741 /** Exact polynomial division of a(X) by b(X) in Z[X].
742  *  This functions works like divide() but the input and output polynomials are
743  *  in Z[X] instead of Q[X] (i.e. they have integer coefficients). Unlike
744  *  divide(), it doesn't check whether the input polynomials really are integer
745  *  polynomials, so be careful of what you pass in. Also, you have to run
746  *  get_symbol_stats() over the input polynomials before calling this function
747  *  and pass an iterator to the first element of the sym_desc vector. This
748  *  function is used internally by the heur_gcd().
749  *
750  *  @param a  first multivariate polynomial (dividend)
751  *  @param b  second multivariate polynomial (divisor)
752  *  @param q  quotient (returned)
753  *  @param var  iterator to first element of vector of sym_desc structs
754  *  @return "true" when exact division succeeds (the quotient is returned in
755  *          q), "false" otherwise.
756  *  @see get_symbol_stats, heur_gcd */
divide_in_z(const ex & a,const ex & b,ex & q,sym_desc_vec::const_iterator var)757 static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_iterator var)
758 {
759 	q = _ex0;
760 	if (b.is_zero())
761 		throw(std::overflow_error("divide_in_z: division by zero"));
762 	if (b.is_equal(_ex1)) {
763 		q = a;
764 		return true;
765 	}
766 	if (is_exactly_a<numeric>(a)) {
767 		if (is_exactly_a<numeric>(b)) {
768 			q = a / b;
769 			return q.info(info_flags::integer);
770 		} else
771 			return false;
772 	}
773 #if FAST_COMPARE
774 	if (a.is_equal(b)) {
775 		q = _ex1;
776 		return true;
777 	}
778 #endif
779 
780 #if USE_REMEMBER
781 	// Remembering
782 	static ex2_exbool_remember dr_remember;
783 	ex2_exbool_remember::const_iterator remembered = dr_remember.find(ex2(a, b));
784 	if (remembered != dr_remember.end()) {
785 		q = remembered->second.first;
786 		return remembered->second.second;
787 	}
788 #endif
789 
790 	if (is_exactly_a<power>(b)) {
791 		const ex& bb(b.op(0));
792 		ex qbar = a;
793 		int exp_b = ex_to<numeric>(b.op(1)).to_int();
794 		for (int i=exp_b; i>0; i--) {
795 			if (!divide_in_z(qbar, bb, q, var))
796 				return false;
797 			qbar = q;
798 		}
799 		return true;
800 	}
801 
802 	if (is_exactly_a<mul>(b)) {
803 		ex qbar = a;
804 		for (const auto & it : b) {
805 			sym_desc_vec sym_stats;
806 			get_symbol_stats(a, it, sym_stats);
807 			if (!divide_in_z(qbar, it, q, sym_stats.begin()))
808 				return false;
809 
810 			qbar = q;
811 		}
812 		return true;
813 	}
814 
815 	// Main symbol
816 	const ex &x = var->sym;
817 
818 	// Compare degrees
819 	int adeg = a.degree(x), bdeg = b.degree(x);
820 	if (bdeg > adeg)
821 		return false;
822 
823 #if USE_TRIAL_DIVISION
824 
825 	// Trial division with polynomial interpolation
826 	int i, k;
827 
828 	// Compute values at evaluation points 0..adeg
829 	vector<numeric> alpha; alpha.reserve(adeg + 1);
830 	exvector u; u.reserve(adeg + 1);
831 	numeric point = *_num0_p;
832 	ex c;
833 	for (i=0; i<=adeg; i++) {
834 		ex bs = b.subs(x == point, subs_options::no_pattern);
835 		while (bs.is_zero()) {
836 			point += *_num1_p;
837 			bs = b.subs(x == point, subs_options::no_pattern);
838 		}
839 		if (!divide_in_z(a.subs(x == point, subs_options::no_pattern), bs, c, var+1))
840 			return false;
841 		alpha.push_back(point);
842 		u.push_back(c);
843 		point += *_num1_p;
844 	}
845 
846 	// Compute inverses
847 	vector<numeric> rcp; rcp.reserve(adeg + 1);
848 	rcp.push_back(*_num0_p);
849 	for (k=1; k<=adeg; k++) {
850 		numeric product = alpha[k] - alpha[0];
851 		for (i=1; i<k; i++)
852 			product *= alpha[k] - alpha[i];
853 		rcp.push_back(product.inverse());
854 	}
855 
856 	// Compute Newton coefficients
857 	exvector v; v.reserve(adeg + 1);
858 	v.push_back(u[0]);
859 	for (k=1; k<=adeg; k++) {
860 		ex temp = v[k - 1];
861 		for (i=k-2; i>=0; i--)
862 			temp = temp * (alpha[k] - alpha[i]) + v[i];
863 		v.push_back((u[k] - temp) * rcp[k]);
864 	}
865 
866 	// Convert from Newton form to standard form
867 	c = v[adeg];
868 	for (k=adeg-1; k>=0; k--)
869 		c = c * (x - alpha[k]) + v[k];
870 
871 	if (c.degree(x) == (adeg - bdeg)) {
872 		q = c.expand();
873 		return true;
874 	} else
875 		return false;
876 
877 #else
878 
879 	// Polynomial long division (recursive)
880 	ex r = a.expand();
881 	if (r.is_zero())
882 		return true;
883 	int rdeg = adeg;
884 	ex eb = b.expand();
885 	ex blcoeff = eb.coeff(x, bdeg);
886 	exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0));
887 	while (rdeg >= bdeg) {
888 		ex term, rcoeff = r.coeff(x, rdeg);
889 		if (!divide_in_z(rcoeff, blcoeff, term, var+1))
890 			break;
891 		term = (term * pow(x, rdeg - bdeg)).expand();
892 		v.push_back(term);
893 		r -= (term * eb).expand();
894 		if (r.is_zero()) {
895 			q = dynallocate<add>(v);
896 #if USE_REMEMBER
897 			dr_remember[ex2(a, b)] = exbool(q, true);
898 #endif
899 			return true;
900 		}
901 		rdeg = r.degree(x);
902 	}
903 #if USE_REMEMBER
904 	dr_remember[ex2(a, b)] = exbool(q, false);
905 #endif
906 	return false;
907 
908 #endif
909 }
910 
911 
912 /*
913  *  Separation of unit part, content part and primitive part of polynomials
914  */
915 
916 /** Compute unit part (= sign of leading coefficient) of a multivariate
917  *  polynomial in Q[x]. The product of unit part, content part, and primitive
918  *  part is the polynomial itself.
919  *
920  *  @param x  main variable
921  *  @return unit part
922  *  @see ex::content, ex::primpart, ex::unitcontprim */
unit(const ex & x) const923 ex ex::unit(const ex &x) const
924 {
925 	ex c = expand().lcoeff(x);
926 	if (is_exactly_a<numeric>(c))
927 		return c.info(info_flags::negative) ?_ex_1 : _ex1;
928 	else {
929 		ex y;
930 		if (get_first_symbol(c, y))
931 			return c.unit(y);
932 		else
933 			throw(std::invalid_argument("invalid expression in unit()"));
934 	}
935 }
936 
937 
938 /** Compute content part (= unit normal GCD of all coefficients) of a
939  *  multivariate polynomial in Q[x]. The product of unit part, content part,
940  *  and primitive part is the polynomial itself.
941  *
942  *  @param x  main variable
943  *  @return content part
944  *  @see ex::unit, ex::primpart, ex::unitcontprim */
content(const ex & x) const945 ex ex::content(const ex &x) const
946 {
947 	if (is_exactly_a<numeric>(*this))
948 		return info(info_flags::negative) ? -*this : *this;
949 
950 	ex e = expand();
951 	if (e.is_zero())
952 		return _ex0;
953 
954 	// First, divide out the integer content (which we can calculate very efficiently).
955 	// If the leading coefficient of the quotient is an integer, we are done.
956 	ex c = e.integer_content();
957 	ex r = e / c;
958 	int deg = r.degree(x);
959 	ex lcoeff = r.coeff(x, deg);
960 	if (lcoeff.info(info_flags::integer))
961 		return c;
962 
963 	// GCD of all coefficients
964 	int ldeg = r.ldegree(x);
965 	if (deg == ldeg)
966 		return lcoeff * c / lcoeff.unit(x);
967 	ex cont = _ex0;
968 	for (int i=ldeg; i<=deg; i++)
969 		cont = gcd(r.coeff(x, i), cont, nullptr, nullptr, false);
970 	return cont * c;
971 }
972 
973 
974 /** Compute primitive part of a multivariate polynomial in Q[x]. The result
975  *  will be a unit-normal polynomial with a content part of 1. The product
976  *  of unit part, content part, and primitive part is the polynomial itself.
977  *
978  *  @param x  main variable
979  *  @return primitive part
980  *  @see ex::unit, ex::content, ex::unitcontprim */
primpart(const ex & x) const981 ex ex::primpart(const ex &x) const
982 {
983 	// We need to compute the unit and content anyway, so call unitcontprim()
984 	ex u, c, p;
985 	unitcontprim(x, u, c, p);
986 	return p;
987 }
988 
989 
990 /** Compute primitive part of a multivariate polynomial in Q[x] when the
991  *  content part is already known. This function is faster in computing the
992  *  primitive part than the previous function.
993  *
994  *  @param x  main variable
995  *  @param c  previously computed content part
996  *  @return primitive part */
primpart(const ex & x,const ex & c) const997 ex ex::primpart(const ex &x, const ex &c) const
998 {
999 	if (is_zero() || c.is_zero())
1000 		return _ex0;
1001 	if (is_exactly_a<numeric>(*this))
1002 		return _ex1;
1003 
1004 	// Divide by unit and content to get primitive part
1005 	ex u = unit(x);
1006 	if (is_exactly_a<numeric>(c))
1007 		return *this / (c * u);
1008 	else
1009 		return quo(*this, c * u, x, false);
1010 }
1011 
1012 
1013 /** Compute unit part, content part, and primitive part of a multivariate
1014  *  polynomial in Q[x]. The product of the three parts is the polynomial
1015  *  itself.
1016  *
1017  *  @param x  main variable
1018  *  @param u  unit part (returned)
1019  *  @param c  content part (returned)
1020  *  @param p  primitive part (returned)
1021  *  @see ex::unit, ex::content, ex::primpart */
unitcontprim(const ex & x,ex & u,ex & c,ex & p) const1022 void ex::unitcontprim(const ex &x, ex &u, ex &c, ex &p) const
1023 {
1024 	// Quick check for zero (avoid expanding)
1025 	if (is_zero()) {
1026 		u = _ex1;
1027 		c = p = _ex0;
1028 		return;
1029 	}
1030 
1031 	// Special case: input is a number
1032 	if (is_exactly_a<numeric>(*this)) {
1033 		if (info(info_flags::negative)) {
1034 			u = _ex_1;
1035 			c = abs(ex_to<numeric>(*this));
1036 		} else {
1037 			u = _ex1;
1038 			c = *this;
1039 		}
1040 		p = _ex1;
1041 		return;
1042 	}
1043 
1044 	// Expand input polynomial
1045 	ex e = expand();
1046 	if (e.is_zero()) {
1047 		u = _ex1;
1048 		c = p = _ex0;
1049 		return;
1050 	}
1051 
1052 	// Compute unit and content
1053 	u = unit(x);
1054 	c = content(x);
1055 
1056 	// Divide by unit and content to get primitive part
1057 	if (c.is_zero()) {
1058 		p = _ex0;
1059 		return;
1060 	}
1061 	if (is_exactly_a<numeric>(c))
1062 		p = *this / (c * u);
1063 	else
1064 		p = quo(e, c * u, x, false);
1065 }
1066 
1067 
1068 /*
1069  *  GCD of multivariate polynomials
1070  */
1071 
1072 /** Compute GCD of multivariate polynomials using the subresultant PRS
1073  *  algorithm. This function is used internally by gcd().
1074  *
1075  *  @param a   first multivariate polynomial
1076  *  @param b   second multivariate polynomial
1077  *  @param var iterator to first element of vector of sym_desc structs
1078  *  @return the GCD as a new expression
1079  *  @see gcd */
1080 
sr_gcd(const ex & a,const ex & b,sym_desc_vec::const_iterator var)1081 static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var)
1082 {
1083 #if STATISTICS
1084 	sr_gcd_called++;
1085 #endif
1086 
1087 	// The first symbol is our main variable
1088 	const ex &x = var->sym;
1089 
1090 	// Sort c and d so that c has higher degree
1091 	ex c, d;
1092 	int adeg = a.degree(x), bdeg = b.degree(x);
1093 	int cdeg, ddeg;
1094 	if (adeg >= bdeg) {
1095 		c = a;
1096 		d = b;
1097 		cdeg = adeg;
1098 		ddeg = bdeg;
1099 	} else {
1100 		c = b;
1101 		d = a;
1102 		cdeg = bdeg;
1103 		ddeg = adeg;
1104 	}
1105 
1106 	// Remove content from c and d, to be attached to GCD later
1107 	ex cont_c = c.content(x);
1108 	ex cont_d = d.content(x);
1109 	ex gamma = gcd(cont_c, cont_d, nullptr, nullptr, false);
1110 	if (ddeg == 0)
1111 		return gamma;
1112 	c = c.primpart(x, cont_c);
1113 	d = d.primpart(x, cont_d);
1114 
1115 	// First element of subresultant sequence
1116 	ex r = _ex0, ri = _ex1, psi = _ex1;
1117 	int delta = cdeg - ddeg;
1118 
1119 	for (;;) {
1120 
1121 		// Calculate polynomial pseudo-remainder
1122 		r = prem(c, d, x, false);
1123 		if (r.is_zero())
1124 			return gamma * d.primpart(x);
1125 
1126 		c = d;
1127 		cdeg = ddeg;
1128 		if (!divide_in_z(r, ri * pow(psi, delta), d, var))
1129 			throw(std::runtime_error("invalid expression in sr_gcd(), division failed"));
1130 		ddeg = d.degree(x);
1131 		if (ddeg == 0) {
1132 			if (is_exactly_a<numeric>(r))
1133 				return gamma;
1134 			else
1135 				return gamma * r.primpart(x);
1136 		}
1137 
1138 		// Next element of subresultant sequence
1139 		ri = c.expand().lcoeff(x);
1140 		if (delta == 1)
1141 			psi = ri;
1142 		else if (delta)
1143 			divide_in_z(pow(ri, delta), pow(psi, delta-1), psi, var+1);
1144 		delta = cdeg - ddeg;
1145 	}
1146 }
1147 
1148 
1149 /** Return maximum (absolute value) coefficient of a polynomial.
1150  *  This function is used internally by heur_gcd().
1151  *
1152  *  @return maximum coefficient
1153  *  @see heur_gcd */
max_coefficient() const1154 numeric ex::max_coefficient() const
1155 {
1156 	return bp->max_coefficient();
1157 }
1158 
1159 /** Implementation ex::max_coefficient().
1160  *  @see heur_gcd */
max_coefficient() const1161 numeric basic::max_coefficient() const
1162 {
1163 	return *_num1_p;
1164 }
1165 
max_coefficient() const1166 numeric numeric::max_coefficient() const
1167 {
1168 	return abs(*this);
1169 }
1170 
max_coefficient() const1171 numeric add::max_coefficient() const
1172 {
1173 	GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
1174 	numeric cur_max = abs(ex_to<numeric>(overall_coeff));
1175 	for (auto & it : seq) {
1176 		numeric a;
1177 		GINAC_ASSERT(!is_exactly_a<numeric>(it.rest));
1178 		a = abs(ex_to<numeric>(it.coeff));
1179 		if (a > cur_max)
1180 			cur_max = a;
1181 	}
1182 	return cur_max;
1183 }
1184 
max_coefficient() const1185 numeric mul::max_coefficient() const
1186 {
1187 #ifdef DO_GINAC_ASSERT
1188 	for (auto & it : seq) {
1189 		GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(it)));
1190 	}
1191 #endif // def DO_GINAC_ASSERT
1192 	GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
1193 	return abs(ex_to<numeric>(overall_coeff));
1194 }
1195 
1196 
1197 /** Apply symmetric modular homomorphism to an expanded multivariate
1198  *  polynomial.  This function is usually used internally by heur_gcd().
1199  *
1200  *  @param xi  modulus
1201  *  @return mapped polynomial
1202  *  @see heur_gcd */
smod(const numeric & xi) const1203 ex basic::smod(const numeric &xi) const
1204 {
1205 	return *this;
1206 }
1207 
smod(const numeric & xi) const1208 ex numeric::smod(const numeric &xi) const
1209 {
1210 	return GiNaC::smod(*this, xi);
1211 }
1212 
smod(const numeric & xi) const1213 ex add::smod(const numeric &xi) const
1214 {
1215 	epvector newseq;
1216 	newseq.reserve(seq.size()+1);
1217 	for (auto & it : seq) {
1218 		GINAC_ASSERT(!is_exactly_a<numeric>(it.rest));
1219 		numeric coeff = GiNaC::smod(ex_to<numeric>(it.coeff), xi);
1220 		if (!coeff.is_zero())
1221 			newseq.push_back(expair(it.rest, coeff));
1222 	}
1223 	GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
1224 	numeric coeff = GiNaC::smod(ex_to<numeric>(overall_coeff), xi);
1225 	return dynallocate<add>(std::move(newseq), coeff);
1226 }
1227 
smod(const numeric & xi) const1228 ex mul::smod(const numeric &xi) const
1229 {
1230 #ifdef DO_GINAC_ASSERT
1231 	for (auto & it : seq) {
1232 		GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(it)));
1233 	}
1234 #endif // def DO_GINAC_ASSERT
1235 	mul & mulcopy = dynallocate<mul>(*this);
1236 	GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
1237 	mulcopy.overall_coeff = GiNaC::smod(ex_to<numeric>(overall_coeff),xi);
1238 	mulcopy.clearflag(status_flags::evaluated);
1239 	mulcopy.clearflag(status_flags::hash_calculated);
1240 	return mulcopy;
1241 }
1242 
1243 
1244 /** xi-adic polynomial interpolation */
interpolate(const ex & gamma,const numeric & xi,const ex & x,int degree_hint=1)1245 static ex interpolate(const ex &gamma, const numeric &xi, const ex &x, int degree_hint = 1)
1246 {
1247 	exvector g; g.reserve(degree_hint);
1248 	ex e = gamma;
1249 	numeric rxi = xi.inverse();
1250 	for (int i=0; !e.is_zero(); i++) {
1251 		ex gi = e.smod(xi);
1252 		g.push_back(gi * pow(x, i));
1253 		e = (e - gi) * rxi;
1254 	}
1255 	return dynallocate<add>(g);
1256 }
1257 
1258 /** Exception thrown by heur_gcd() to signal failure. */
1259 class gcdheu_failed {};
1260 
1261 /** Compute GCD of multivariate polynomials using the heuristic GCD algorithm.
1262  *  get_symbol_stats() must have been called previously with the input
1263  *  polynomials and an iterator to the first element of the sym_desc vector
1264  *  passed in. This function is used internally by gcd().
1265  *
1266  *  @param a  first integer multivariate polynomial (expanded)
1267  *  @param b  second integer multivariate polynomial (expanded)
1268  *  @param ca  cofactor of polynomial a (returned), nullptr to suppress
1269  *             calculation of cofactor
1270  *  @param cb  cofactor of polynomial b (returned), nullptr to suppress
1271  *             calculation of cofactor
1272  *  @param var iterator to first element of vector of sym_desc structs
1273  *  @param res the GCD (returned)
1274  *  @return true if GCD was computed, false otherwise.
1275  *  @see gcd
1276  *  @exception gcdheu_failed() */
heur_gcd_z(ex & res,const ex & a,const ex & b,ex * ca,ex * cb,sym_desc_vec::const_iterator var)1277 static bool heur_gcd_z(ex& res, const ex &a, const ex &b, ex *ca, ex *cb,
1278 	               sym_desc_vec::const_iterator var)
1279 {
1280 #if STATISTICS
1281 	heur_gcd_called++;
1282 #endif
1283 
1284 	// Algorithm only works for non-vanishing input polynomials
1285 	if (a.is_zero() || b.is_zero())
1286 		return false;
1287 
1288 	// GCD of two numeric values -> CLN
1289 	if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b)) {
1290 		numeric g = gcd(ex_to<numeric>(a), ex_to<numeric>(b));
1291 		if (ca)
1292 			*ca = ex_to<numeric>(a) / g;
1293 		if (cb)
1294 			*cb = ex_to<numeric>(b) / g;
1295 		res = g;
1296 		return true;
1297 	}
1298 
1299 	// The first symbol is our main variable
1300 	const ex &x = var->sym;
1301 
1302 	// Remove integer content
1303 	numeric gc = gcd(a.integer_content(), b.integer_content());
1304 	numeric rgc = gc.inverse();
1305 	ex p = a * rgc;
1306 	ex q = b * rgc;
1307 	int maxdeg =  std::max(p.degree(x), q.degree(x));
1308 
1309 	// Find evaluation point
1310 	numeric mp = p.max_coefficient();
1311 	numeric mq = q.max_coefficient();
1312 	numeric xi;
1313 	if (mp > mq)
1314 		xi = mq * (*_num2_p) + (*_num2_p);
1315 	else
1316 		xi = mp * (*_num2_p) + (*_num2_p);
1317 
1318 	// 6 tries maximum
1319 	for (int t=0; t<6; t++) {
1320 		if (xi.int_length() * maxdeg > 100000) {
1321 			throw gcdheu_failed();
1322 		}
1323 
1324 		// Apply evaluation homomorphism and calculate GCD
1325 		ex cp, cq;
1326 		ex gamma;
1327 		bool found = heur_gcd_z(gamma,
1328 			                p.subs(x == xi, subs_options::no_pattern),
1329 			                q.subs(x == xi, subs_options::no_pattern),
1330 				        &cp, &cq, var+1);
1331 		if (found) {
1332 			gamma = gamma.expand();
1333 			// Reconstruct polynomial from GCD of mapped polynomials
1334 			ex g = interpolate(gamma, xi, x, maxdeg);
1335 
1336 			// Remove integer content
1337 			g /= g.integer_content();
1338 
1339 			// If the calculated polynomial divides both p and q, this is the GCD
1340 			ex dummy;
1341 			if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) {
1342 				g *= gc;
1343 				res = g;
1344 				return true;
1345 			}
1346 		}
1347 
1348 		// Next evaluation point
1349 		xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011));
1350 	}
1351 	return false;
1352 }
1353 
1354 /** Compute GCD of multivariate polynomials using the heuristic GCD algorithm.
1355  *  get_symbol_stats() must have been called previously with the input
1356  *  polynomials and an iterator to the first element of the sym_desc vector
1357  *  passed in. This function is used internally by gcd().
1358  *
1359  *  @param a  first rational multivariate polynomial (expanded)
1360  *  @param b  second rational multivariate polynomial (expanded)
1361  *  @param ca  cofactor of polynomial a (returned), nullptr to suppress
1362  *             calculation of cofactor
1363  *  @param cb  cofactor of polynomial b (returned), nullptr to suppress
1364  *             calculation of cofactor
1365  *  @param var iterator to first element of vector of sym_desc structs
1366  *  @param res the GCD (returned)
1367  *  @return true if GCD was computed, false otherwise.
1368  *  @see heur_gcd_z
1369  *  @see gcd
1370  */
heur_gcd(ex & res,const ex & a,const ex & b,ex * ca,ex * cb,sym_desc_vec::const_iterator var)1371 static bool heur_gcd(ex& res, const ex& a, const ex& b, ex *ca, ex *cb,
1372 	             sym_desc_vec::const_iterator var)
1373 {
1374 	if (a.info(info_flags::integer_polynomial) &&
1375 	    b.info(info_flags::integer_polynomial)) {
1376 		try {
1377 			return heur_gcd_z(res, a, b, ca, cb, var);
1378 		} catch (gcdheu_failed) {
1379 			return false;
1380 		}
1381 	}
1382 
1383 	// convert polynomials to Z[X]
1384 	const numeric a_lcm = lcm_of_coefficients_denominators(a);
1385 	const numeric ab_lcm = lcmcoeff(b, a_lcm);
1386 
1387 	const ex ai = a*ab_lcm;
1388 	const ex bi = b*ab_lcm;
1389 	if (!ai.info(info_flags::integer_polynomial))
1390 		throw std::logic_error("heur_gcd: not an integer polynomial [1]");
1391 
1392 	if (!bi.info(info_flags::integer_polynomial))
1393 		throw std::logic_error("heur_gcd: not an integer polynomial [2]");
1394 
1395 	bool found = false;
1396 	try {
1397 		found = heur_gcd_z(res, ai, bi, ca, cb, var);
1398 	} catch (gcdheu_failed) {
1399 		return false;
1400 	}
1401 
1402 	// GCD is not unique, it's defined up to a unit (i.e. invertible
1403 	// element). If the coefficient ring is a field, every its element is
1404 	// invertible, so one can multiply the polynomial GCD with any element
1405 	// of the coefficient field. We use this ambiguity to make cofactors
1406 	// integer polynomials.
1407 	if (found)
1408 		res /= ab_lcm;
1409 	return found;
1410 }
1411 
1412 
1413 // gcd helper to handle partially factored polynomials (to avoid expanding
1414 // large expressions). At least one of the arguments should be a power.
1415 static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb);
1416 
1417 // gcd helper to handle partially factored polynomials (to avoid expanding
1418 // large expressions). At least one of the arguments should be a product.
1419 static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb);
1420 
1421 /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X)
1422  *  and b(X) in Z[X]. Optionally also compute the cofactors of a and b,
1423  *  defined by a = ca * gcd(a, b) and b = cb * gcd(a, b).
1424  *
1425  *  @param a  first multivariate polynomial
1426  *  @param b  second multivariate polynomial
1427  *  @param ca pointer to expression that will receive the cofactor of a, or nullptr
1428  *  @param cb pointer to expression that will receive the cofactor of b, or nullptr
1429  *  @param check_args  check whether a and b are polynomials with rational
1430  *         coefficients (defaults to "true")
1431  *  @return the GCD as a new expression */
gcd(const ex & a,const ex & b,ex * ca,ex * cb,bool check_args,unsigned options)1432 ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned options)
1433 {
1434 #if STATISTICS
1435 	gcd_called++;
1436 #endif
1437 
1438 	// GCD of numerics -> CLN
1439 	if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b)) {
1440 		numeric g = gcd(ex_to<numeric>(a), ex_to<numeric>(b));
1441 		if (ca || cb) {
1442 			if (g.is_zero()) {
1443 				if (ca)
1444 					*ca = _ex0;
1445 				if (cb)
1446 					*cb = _ex0;
1447 			} else {
1448 				if (ca)
1449 					*ca = ex_to<numeric>(a) / g;
1450 				if (cb)
1451 					*cb = ex_to<numeric>(b) / g;
1452 			}
1453 		}
1454 		return g;
1455 	}
1456 
1457 	// Check arguments
1458 	if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) {
1459 		throw(std::invalid_argument("gcd: arguments must be polynomials over the rationals"));
1460 	}
1461 
1462 	// Partially factored cases (to avoid expanding large expressions)
1463 	if (!(options & gcd_options::no_part_factored)) {
1464 		if (is_exactly_a<mul>(a) || is_exactly_a<mul>(b))
1465 			return gcd_pf_mul(a, b, ca, cb);
1466 #if FAST_COMPARE
1467 		if (is_exactly_a<power>(a) || is_exactly_a<power>(b))
1468 			return gcd_pf_pow(a, b, ca, cb);
1469 #endif
1470 	}
1471 
1472 	// Some trivial cases
1473 	ex aex = a.expand();
1474 	if (aex.is_zero()) {
1475 		if (ca)
1476 			*ca = _ex0;
1477 		if (cb)
1478 			*cb = _ex1;
1479 		return b;
1480 	}
1481 	ex bex = b.expand();
1482 	if (bex.is_zero()) {
1483 		if (ca)
1484 			*ca = _ex1;
1485 		if (cb)
1486 			*cb = _ex0;
1487 		return a;
1488 	}
1489 	if (aex.is_equal(_ex1) || bex.is_equal(_ex1)) {
1490 		if (ca)
1491 			*ca = a;
1492 		if (cb)
1493 			*cb = b;
1494 		return _ex1;
1495 	}
1496 #if FAST_COMPARE
1497 	if (a.is_equal(b)) {
1498 		if (ca)
1499 			*ca = _ex1;
1500 		if (cb)
1501 			*cb = _ex1;
1502 		return a;
1503 	}
1504 #endif
1505 
1506 	if (is_a<symbol>(aex)) {
1507 		if (! bex.subs(aex==_ex0, subs_options::no_pattern).is_zero()) {
1508 			if (ca)
1509 				*ca = a;
1510 			if (cb)
1511 				*cb = b;
1512 			return _ex1;
1513 		}
1514 	}
1515 
1516 	if (is_a<symbol>(bex)) {
1517 		if (! aex.subs(bex==_ex0, subs_options::no_pattern).is_zero()) {
1518 			if (ca)
1519 				*ca = a;
1520 			if (cb)
1521 				*cb = b;
1522 			return _ex1;
1523 		}
1524 	}
1525 
1526 	if (is_exactly_a<numeric>(aex)) {
1527 		numeric bcont = bex.integer_content();
1528 		numeric g = gcd(ex_to<numeric>(aex), bcont);
1529 		if (ca)
1530 			*ca = ex_to<numeric>(aex)/g;
1531 		if (cb)
1532 			*cb = bex/g;
1533 		return g;
1534 	}
1535 
1536 	if (is_exactly_a<numeric>(bex)) {
1537 		numeric acont = aex.integer_content();
1538 		numeric g = gcd(ex_to<numeric>(bex), acont);
1539 		if (ca)
1540 			*ca = aex/g;
1541 		if (cb)
1542 			*cb = ex_to<numeric>(bex)/g;
1543 		return g;
1544 	}
1545 
1546 	// Gather symbol statistics
1547 	sym_desc_vec sym_stats;
1548 	get_symbol_stats(a, b, sym_stats);
1549 
1550 	// The symbol with least degree which is contained in both polynomials
1551 	// is our main variable
1552 	auto vari = sym_stats.begin();
1553 	while ((vari != sym_stats.end()) &&
1554 	       (((vari->ldeg_b == 0) && (vari->deg_b == 0)) ||
1555 	        ((vari->ldeg_a == 0) && (vari->deg_a == 0))))
1556 		vari++;
1557 
1558 	// No common symbols at all, just return 1:
1559 	if (vari == sym_stats.end()) {
1560 		// N.B: keep cofactors factored
1561 		if (ca)
1562 			*ca = a;
1563 		if (cb)
1564 			*cb = b;
1565 		return _ex1;
1566 	}
1567 	// move symbol contained only in one of the polynomials to the end:
1568 	rotate(sym_stats.begin(), vari, sym_stats.end());
1569 
1570 	sym_desc_vec::const_iterator var = sym_stats.begin();
1571 	const ex &x = var->sym;
1572 
1573 	// Cancel trivial common factor
1574 	int ldeg_a = var->ldeg_a;
1575 	int ldeg_b = var->ldeg_b;
1576 	int min_ldeg = std::min(ldeg_a,ldeg_b);
1577 	if (min_ldeg > 0) {
1578 		ex common = pow(x, min_ldeg);
1579 		return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common;
1580 	}
1581 
1582 	// Try to eliminate variables
1583 	if (var->deg_a == 0 && var->deg_b != 0 ) {
1584 		ex bex_u, bex_c, bex_p;
1585 		bex.unitcontprim(x, bex_u, bex_c, bex_p);
1586 		ex g = gcd(aex, bex_c, ca, cb, false);
1587 		if (cb)
1588 			*cb *= bex_u * bex_p;
1589 		return g;
1590 	} else if (var->deg_b == 0 && var->deg_a != 0) {
1591 		ex aex_u, aex_c, aex_p;
1592 		aex.unitcontprim(x, aex_u, aex_c, aex_p);
1593 		ex g = gcd(aex_c, bex, ca, cb, false);
1594 		if (ca)
1595 			*ca *= aex_u * aex_p;
1596 		return g;
1597 	}
1598 
1599 	// Try heuristic algorithm first, fall back to PRS if that failed
1600 	ex g;
1601 	if (!(options & gcd_options::no_heur_gcd)) {
1602 		bool found = heur_gcd(g, aex, bex, ca, cb, var);
1603 		if (found) {
1604 			// heur_gcd have already computed cofactors...
1605 			if (g.is_equal(_ex1)) {
1606 				// ... but we want to keep them factored if possible.
1607 				if (ca)
1608 					*ca = a;
1609 				if (cb)
1610 					*cb = b;
1611 			}
1612 			return g;
1613 		}
1614 #if STATISTICS
1615 		else {
1616 			heur_gcd_failed++;
1617 		}
1618 #endif
1619 	}
1620 	if (options & gcd_options::use_sr_gcd) {
1621 		g = sr_gcd(aex, bex, var);
1622 	} else {
1623 		exvector vars;
1624 		for (std::size_t n = sym_stats.size(); n-- != 0; )
1625 			vars.push_back(sym_stats[n].sym);
1626 		g = chinrem_gcd(aex, bex, vars);
1627 	}
1628 
1629 	if (g.is_equal(_ex1)) {
1630 		// Keep cofactors factored if possible
1631 		if (ca)
1632 			*ca = a;
1633 		if (cb)
1634 			*cb = b;
1635 	} else {
1636 		if (ca)
1637 			divide(aex, g, *ca, false);
1638 		if (cb)
1639 			divide(bex, g, *cb, false);
1640 	}
1641 	return g;
1642 }
1643 
1644 // gcd helper to handle partially factored polynomials (to avoid expanding
1645 // large expressions). Both arguments should be powers.
gcd_pf_pow_pow(const ex & a,const ex & b,ex * ca,ex * cb)1646 static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
1647 {
1648 	ex p = a.op(0);
1649 	const ex& exp_a = a.op(1);
1650 	ex pb = b.op(0);
1651 	const ex& exp_b = b.op(1);
1652 
1653 	// a = p^n, b = p^m, gcd = p^min(n, m)
1654 	if (p.is_equal(pb)) {
1655 		if (exp_a < exp_b) {
1656 			if (ca)
1657 				*ca = _ex1;
1658 			if (cb)
1659 				*cb = pow(p, exp_b - exp_a);
1660 			return pow(p, exp_a);
1661 		} else {
1662 			if (ca)
1663 				*ca = pow(p, exp_a - exp_b);
1664 			if (cb)
1665 				*cb = _ex1;
1666 			return pow(p, exp_b);
1667 		}
1668 	}
1669 
1670 	ex p_co, pb_co;
1671 	ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
1672 	// a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> gcd(a,b) = 1
1673 	if (p_gcd.is_equal(_ex1)) {
1674 			if (ca)
1675 				*ca = a;
1676 			if (cb)
1677 				*cb = b;
1678 			return _ex1;
1679 	}
1680 
1681 	// there are common factors:
1682 	// a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
1683 	// gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
1684 	if (exp_a < exp_b) {
1685 		ex pg =  gcd(pow(p_co, exp_a), pow(p_gcd, exp_b-exp_a)*pow(pb_co, exp_b), ca, cb, false);
1686 		return pow(p_gcd, exp_a)*pg;
1687 	} else {
1688 		ex pg = gcd(pow(p_gcd, exp_a - exp_b)*pow(p_co, exp_a), pow(pb_co, exp_b), ca, cb, false);
1689 		return pow(p_gcd, exp_b)*pg;
1690 	}
1691 }
1692 
gcd_pf_pow(const ex & a,const ex & b,ex * ca,ex * cb)1693 static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
1694 {
1695 	if (is_exactly_a<power>(a) && is_exactly_a<power>(b))
1696 		return gcd_pf_pow_pow(a, b, ca, cb);
1697 
1698 	if (is_exactly_a<power>(b) && (! is_exactly_a<power>(a)))
1699 		return gcd_pf_pow(b, a, cb, ca);
1700 
1701 	GINAC_ASSERT(is_exactly_a<power>(a));
1702 
1703 	ex p = a.op(0);
1704 	const ex& exp_a = a.op(1);
1705 	if (p.is_equal(b)) {
1706 		// a = p^n, b = p, gcd = p
1707 		if (ca)
1708 			*ca = pow(p, exp_a - 1);
1709 		if (cb)
1710 			*cb = _ex1;
1711 		return p;
1712 	}
1713 	if (is_a<symbol>(p)) {
1714 		// Cancel trivial common factor
1715 		int ldeg_a = ex_to<numeric>(exp_a).to_int();
1716 		int ldeg_b = b.ldegree(p);
1717 		int min_ldeg = std::min(ldeg_a, ldeg_b);
1718 		if (min_ldeg > 0) {
1719 			ex common = pow(p, min_ldeg);
1720 			return gcd(pow(p, ldeg_a - min_ldeg), (b / common).expand(), ca, cb, false) * common;
1721 		}
1722 	}
1723 
1724 	ex p_co, bpart_co;
1725 	ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
1726 
1727 	if (p_gcd.is_equal(_ex1)) {
1728 		// a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
1729 		if (ca)
1730 			*ca = a;
1731 		if (cb)
1732 			*cb = b;
1733 		return _ex1;
1734 	}
1735 	// a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
1736 	ex rg = gcd(pow(p_gcd, exp_a-1)*pow(p_co, exp_a), bpart_co, ca, cb, false);
1737 	return p_gcd*rg;
1738 }
1739 
gcd_pf_mul(const ex & a,const ex & b,ex * ca,ex * cb)1740 static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb)
1741 {
1742 	if (is_exactly_a<mul>(a) && is_exactly_a<mul>(b)
1743 		                 && (b.nops() >  a.nops()))
1744 		return gcd_pf_mul(b, a, cb, ca);
1745 
1746 	if (is_exactly_a<mul>(b) && (!is_exactly_a<mul>(a)))
1747 		return gcd_pf_mul(b, a, cb, ca);
1748 
1749 	GINAC_ASSERT(is_exactly_a<mul>(a));
1750 	size_t num = a.nops();
1751 	exvector g; g.reserve(num);
1752 	exvector acc_ca; acc_ca.reserve(num);
1753 	ex part_b = b;
1754 	for (size_t i=0; i<num; i++) {
1755 		ex part_ca, part_cb;
1756 		g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, false));
1757 		acc_ca.push_back(part_ca);
1758 		part_b = part_cb;
1759 	}
1760 	if (ca)
1761 		*ca = dynallocate<mul>(acc_ca);
1762 	if (cb)
1763 		*cb = part_b;
1764 	return dynallocate<mul>(g);
1765 }
1766 
1767 /** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X].
1768  *
1769  *  @param a  first multivariate polynomial
1770  *  @param b  second multivariate polynomial
1771  *  @param check_args  check whether a and b are polynomials with rational
1772  *         coefficients (defaults to "true")
1773  *  @return the LCM as a new expression */
lcm(const ex & a,const ex & b,bool check_args)1774 ex lcm(const ex &a, const ex &b, bool check_args)
1775 {
1776 	if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b))
1777 		return lcm(ex_to<numeric>(a), ex_to<numeric>(b));
1778 	if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
1779 		throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals"));
1780 
1781 	ex ca, cb;
1782 	ex g = gcd(a, b, &ca, &cb, false);
1783 	return ca * cb * g;
1784 }
1785 
1786 
1787 /*
1788  *  Square-free factorization
1789  */
1790 
1791 /** Compute square-free factorization of multivariate polynomial a(x) using
1792  *  Yun's algorithm.  Used internally by sqrfree().
1793  *
1794  *  @param a  multivariate polynomial over Z[X], treated here as univariate
1795  *            polynomial in x (needs not be expanded).
1796  *  @param x  variable to factor in
1797  *  @return   vector of expairs (factor, exponent), sorted by exponents */
sqrfree_yun(const ex & a,const symbol & x)1798 static epvector sqrfree_yun(const ex &a, const symbol &x)
1799 {
1800 	ex w = a;
1801 	ex z = w.diff(x);
1802 	ex g = gcd(w, z);
1803 	if (g.is_zero()) {
1804 		// manifest zero or hidden zero
1805 		return {};
1806 	}
1807 	if (g.is_equal(_ex1)) {
1808 		// w(x) and w'(x) share no factors: w(x) is square-free
1809 		return {expair(a, _ex1)};
1810 	}
1811 
1812 	epvector factors;
1813 	ex i = 0;  // exponent
1814 	do {
1815 		w = quo(w, g, x);
1816 		if (w.is_zero()) {
1817 			// hidden zero
1818 			break;
1819 		}
1820 		z = quo(z, g, x) - w.diff(x);
1821 		i += 1;
1822 		if (w.is_equal(x)) {
1823 			// shortcut for x^n with n ∈ ℕ
1824 			i += quo(z, w.diff(x), x);
1825 			factors.push_back(expair(w, i));
1826 			break;
1827 		}
1828 		g = gcd(w, z);
1829 		if (!g.is_equal(_ex1)) {
1830 			factors.push_back(expair(g, i));
1831 		}
1832 	} while (!z.is_zero());
1833 
1834 	// correct for lost factor
1835 	// (being based on GCDs, Yun's algorithm only finds factors up to a unit)
1836 	const ex lost_factor = quo(a, mul{factors}, x);
1837 	if (lost_factor.is_equal(_ex1)) {
1838 		// trivial lost factor
1839 		return factors;
1840 	}
1841 	if (!factors.empty() && factors[0].coeff.is_equal(1)) {
1842 		// multiply factor^1 with lost_factor
1843 		factors[0].rest *= lost_factor;
1844 		return factors;
1845 	}
1846 	// no factor^1: prepend lost_factor^1 to the results
1847 	epvector results = {expair(lost_factor, 1)};
1848 	std::move(factors.begin(), factors.end(), std::back_inserter(results));
1849 	return results;
1850 }
1851 
1852 
1853 /** Compute a square-free factorization of a multivariate polynomial in Q[X].
1854  *
1855  *  @param a  multivariate polynomial over Q[X] (needs not be expanded)
1856  *  @param l  lst of variables to factor in, may be left empty for autodetection
1857  *  @return   a square-free factorization of \p a.
1858  *
1859  * \note
1860  * A polynomial \f$p(X) \in C[X]\f$ is said <EM>square-free</EM>
1861  * if, whenever any two polynomials \f$q(X)\f$ and \f$r(X)\f$
1862  * are such that
1863  * \f[
1864  *     p(X) = q(X)^2 r(X),
1865  * \f]
1866  * we have \f$q(X) \in C\f$.
1867  * This means that \f$p(X)\f$ has no repeated factors, apart
1868  * eventually from constants.
1869  * Given a polynomial \f$p(X) \in C[X]\f$, we say that the
1870  * decomposition
1871  * \f[
1872  *   p(X) = b \cdot p_1(X)^{a_1} \cdot p_2(X)^{a_2} \cdots p_r(X)^{a_r}
1873  * \f]
1874  * is a <EM>square-free factorization</EM> of \f$p(X)\f$ if the
1875  * following conditions hold:
1876  * -#  \f$b \in C\f$ and \f$b \neq 0\f$;
1877  * -#  \f$a_i\f$ is a positive integer for \f$i = 1, \ldots, r\f$;
1878  * -#  the degree of the polynomial \f$p_i\f$ is strictly positive
1879  *     for \f$i = 1, \ldots, r\f$;
1880  * -#  the polynomial \f$\Pi_{i=1}^r p_i(X)\f$ is square-free.
1881  *
1882  * Square-free factorizations need not be unique.  For example, if
1883  * \f$a_i\f$ is even, we could change the polynomial \f$p_i(X)\f$
1884  * into \f$-p_i(X)\f$.
1885  * Observe also that the factors \f$p_i(X)\f$ need not be irreducible
1886  * polynomials.
1887  */
sqrfree(const ex & a,const lst & l)1888 ex sqrfree(const ex &a, const lst &l)
1889 {
1890 	if (is_exactly_a<numeric>(a) ||
1891 	    is_a<symbol>(a))        // shortcuts
1892 		return a;
1893 
1894 	// If no lst of variables to factorize in was specified we have to
1895 	// invent one now.  Maybe one can optimize here by reversing the order
1896 	// or so, I don't know.
1897 	lst args;
1898 	if (l.nops()==0) {
1899 		sym_desc_vec sdv;
1900 		get_symbol_stats(a, _ex0, sdv);
1901 		for (auto & it : sdv)
1902 			args.append(it.sym);
1903 	} else {
1904 		args = l;
1905 	}
1906 
1907 	// Find the symbol to factor in at this stage
1908 	if (!is_a<symbol>(args.op(0)))
1909 		throw (std::runtime_error("sqrfree(): invalid factorization variable"));
1910 	const symbol &x = ex_to<symbol>(args.op(0));
1911 
1912 	// convert the argument from something in Q[X] to something in Z[X]
1913 	const numeric lcm = lcm_of_coefficients_denominators(a);
1914 	const ex tmp = multiply_lcm(a, lcm);
1915 
1916 	// find the factors
1917 	epvector factors = sqrfree_yun(tmp, x);
1918 	if (factors.empty()) {
1919 		// the polynomial was a hidden zero
1920 		return _ex0;
1921 	}
1922 
1923 	// remove symbol x and proceed recursively with the remaining symbols
1924 	args.remove_first();
1925 
1926 	// recurse down the factors in remaining variables
1927 	if (args.nops()>0) {
1928 		for (auto & it : factors)
1929 			it.rest = sqrfree(it.rest, args);
1930 	}
1931 
1932 	// Done with recursion, now construct the final result
1933 	ex result = mul(factors);
1934 
1935 	// Put in the rational overall factor again and return
1936 	return result * lcm.inverse();
1937 }
1938 
1939 
1940 /** Compute square-free partial fraction decomposition of rational function
1941  *  a(x).
1942  *
1943  *  @param a rational function over Z[x], treated as univariate polynomial
1944  *           in x
1945  *  @param x variable to factor in
1946  *  @return decomposed rational function */
sqrfree_parfrac(const ex & a,const symbol & x)1947 ex sqrfree_parfrac(const ex & a, const symbol & x)
1948 {
1949 	// Find numerator and denominator
1950 	ex nd = numer_denom(a);
1951 	ex numer = nd.op(0), denom = nd.op(1);
1952 //std::clog << "numer = " << numer << ", denom = " << denom << std::endl;
1953 
1954 	// Convert N(x)/D(x) -> Q(x) + R(x)/D(x), so degree(R) < degree(D)
1955 	ex red_poly = quo(numer, denom, x), red_numer = rem(numer, denom, x).expand();
1956 //std::clog << "red_poly = " << red_poly << ", red_numer = " << red_numer << std::endl;
1957 
1958 	// Factorize denominator and compute cofactors
1959 	epvector yun = sqrfree_yun(denom, x);
1960 	size_t yun_max_exponent = yun.empty() ? 0 : ex_to<numeric>(yun.back().coeff).to_int();
1961 	exvector factor, cofac;
1962 	for (size_t i=0; i<yun.size(); i++) {
1963 		numeric i_exponent = ex_to<numeric>(yun[i].coeff);
1964 		for (size_t j=0; j<i_exponent; j++) {
1965 			factor.push_back(pow(yun[i].rest, j+1));
1966 			ex prod = _ex1;
1967 			for (size_t k=0; k<yun.size(); k++) {
1968 				if (yun[k].coeff == i_exponent)
1969 					prod *= pow(yun[k].rest, i_exponent-1-j);
1970 				else
1971 					prod *= pow(yun[k].rest, yun[k].coeff);
1972 			}
1973 			cofac.push_back(prod.expand());
1974 		}
1975 	}
1976 	size_t num_factors = factor.size();
1977 //std::clog << "factors  : " << exprseq(factor) << std::endl;
1978 //std::clog << "cofactors: " << exprseq(cofac) << std::endl;
1979 
1980 	// Construct coefficient matrix for decomposition
1981 	int max_denom_deg = denom.degree(x);
1982 	matrix sys(max_denom_deg + 1, num_factors);
1983 	matrix rhs(max_denom_deg + 1, 1);
1984 	for (int i=0; i<=max_denom_deg; i++) {
1985 		for (size_t j=0; j<num_factors; j++)
1986 			sys(i, j) = cofac[j].coeff(x, i);
1987 		rhs(i, 0) = red_numer.coeff(x, i);
1988 	}
1989 //std::clog << "coeffs: " << sys << std::endl;
1990 //std::clog << "rhs   : " << rhs << std::endl;
1991 
1992 	// Solve resulting linear system
1993 	matrix vars(num_factors, 1);
1994 	for (size_t i=0; i<num_factors; i++)
1995 		vars(i, 0) = symbol();
1996 	matrix sol = sys.solve(vars, rhs);
1997 
1998 	// Sum up decomposed fractions
1999 	ex sum = 0;
2000 	for (size_t i=0; i<num_factors; i++)
2001 		sum += sol(i, 0) / factor[i];
2002 
2003 	return red_poly + sum;
2004 }
2005 
2006 
2007 /*
2008  *  Normal form of rational functions
2009  */
2010 
2011 /*
2012  *  Note: The internal normal() functions (= basic::normal() and overloaded
2013  *  functions) all return lists of the form {numerator, denominator}. This
2014  *  is to get around mul::eval()'s automatic expansion of numeric coefficients.
2015  *  E.g. (a+b)/3 is automatically converted to a/3+b/3 but we want to keep
2016  *  the information that (a+b) is the numerator and 3 is the denominator.
2017  */
2018 
2019 
2020 /** Create a symbol for replacing the expression "e" (or return a previously
2021  *  assigned symbol). The symbol and expression are appended to repl, for
2022  *  a later application of subs().
2023  *  An entry in the replacement table repl can be changed in some cases.
2024  *  If it was altered, we need to provide the modifier for the previously build expressions.
2025  *  The modifier is an (ordered) list, because those substitutions need to be done in the
2026  *  incremental order.
2027  *  As an example let us consider a rationalisation of the expression
2028  *      e = exp(2*x)*cos(exp(2*x)+1)*exp(x)
2029  *  The first factor GiNaC denotes by something like symbol1 and will record:
2030  *      e =symbol1*cos(symbol1 + 1)*exp(x)
2031  *      repl = {symbol1 : exp(2*x)}
2032  *  Similarly, the second factor would be denoted as symbol2 and we will have
2033  *      e =symbol1*symbol2*exp(x)
2034  *      repl = {symbol1 : exp(2*x), symbol2 : cos(symbol1 + 1)}
2035  *  Denoting the third term as symbol3 GiNaC is willing to re-think exp(2*x) as
2036  *  symbol3^2 rather than just symbol1. Here are two issues:
2037  *  1) The replacement "symbol1 -> symbol3^2" in the previous part of the expression
2038  *      needs to be done outside of the present routine;
2039  *  2) The pair "symbol1 : exp(2*x)" shall be deleted from the replacement table repl.
2040  *      However, this will create illegal substitution "symbol2 : cos(symbol1 + 1)" with
2041  *      undefined symbol1.
2042  *  These both problems are mitigated through the additions of the record
2043  *  "symbol1==symbol3^2" to the list modifier. Changed length of the modifier signals
2044  *  to the calling code that the previous portion of the expression needs to be
2045  *  altered (it solves 1). Thus GiNaC can record now
2046  *      e =symbol3^2*symbol2*symbol3
2047  *      repl = {symbol2 : cos(symbol1 + 1), symbol3 : exp(x)}
2048  *      modifier = {symbol1==symbol3^2}
2049  *  Then, doing the backward substitutions the list modifier will be used to restore
2050  *  such iterative substitutions in the right way (this solves 2).
2051  *  @see ex::normal */
replace_with_symbol(const ex & e,exmap & repl,exmap & rev_lookup,lst & modifier)2052 static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup, lst & modifier)
2053 {
2054 	// Since the repl contains replaced expressions we should search for them
2055 	ex e_replaced = e.subs(repl, subs_options::no_pattern);
2056 
2057 	// Expression already replaced? Then return the assigned symbol
2058 	auto it = rev_lookup.find(e_replaced);
2059 	if (it != rev_lookup.end())
2060 		return it->second;
2061 
2062 	// The expression can be the base of substituted power, which requires a more careful search
2063 	if (! is_a<numeric>(e_replaced))
2064 		for (auto & it : repl)
2065 			if (is_a<power>(it.second) && e_replaced.is_equal(it.second.op(0))) {
2066 				ex degree = pow(it.second.op(1), _ex_1);
2067 				if (is_a<numeric>(degree) && ex_to<numeric>(degree).is_integer())
2068 					return pow(it.first, degree);
2069 			}
2070 
2071 	// We treat powers and the exponent functions differently because
2072 	// they can be rationalised more efficiently
2073 	if (is_a<function>(e_replaced) && is_ex_the_function(e_replaced, exp)) {
2074 		for (auto & it : repl) {
2075 			if (is_a<function>(it.second) && is_ex_the_function(it.second, exp)) {
2076 				ex ratio = normal(e_replaced.op(0) / it.second.op(0));
2077 				if (is_a<numeric>(ratio) && ex_to<numeric>(ratio).is_rational()) {
2078 					// Different exponents can be treated as powers of the same basic equation
2079 					if (ex_to<numeric>(ratio).is_integer()) {
2080 						// If ratio is an integer then this is simply the power of the existing symbol.
2081 						// std::clog << e_replaced << " is a " << ratio << " power of " << it.first << std::endl;
2082 						return dynallocate<power>(it.first, ratio);
2083 					} else {
2084 						// otherwise we need to give the replacement pattern to change
2085 						// the previous expression...
2086 						ex es = dynallocate<symbol>();
2087 						ex Num = numer(ratio);
2088 						modifier.append(it.first == power(es, denom(ratio)));
2089 						// std::clog << e_replaced << " is power " << Num << " and "
2090 						//		  << it.first << " is power " << denom(ratio) << " of the common base "
2091 						//		  << exp(e_replaced.op(0)/Num) << std::endl;
2092 						// ... and  modify the replacement tables
2093 						rev_lookup.erase(it.second);
2094 						rev_lookup.insert({exp(e_replaced.op(0)/Num), es});
2095 						repl.erase(it.first);
2096 						repl.insert({es, exp(e_replaced.op(0)/Num)});
2097 						return dynallocate<power>(es, Num);
2098 					}
2099 				}
2100 			}
2101 		}
2102 	} else if (is_a<power>(e_replaced) && !is_a<numeric>(e_replaced.op(0)) // We do not replace simple monomials like x^3 or sqrt(2)
2103 	           && ! (is_a<symbol>(e_replaced.op(0))
2104 	               && is_a<numeric>(e_replaced.op(1)) && ex_to<numeric>(e_replaced.op(1)).is_integer())) {
2105 		for (auto & it : repl) {
2106 			if (e_replaced.op(0).is_equal(it.second) // The base is an allocated symbol or base of power
2107 			    || (is_a<power>(it.second) && e_replaced.op(0).is_equal(it.second.op(0)))) {
2108 				ex ratio; // We bind together two above cases
2109 				if (is_a<power>(it.second))
2110 					ratio = normal(e_replaced.op(1) / it.second.op(1));
2111 				else
2112 					ratio = e_replaced.op(1);
2113 				if (is_a<numeric>(ratio) && ex_to<numeric>(ratio).is_rational())  {
2114 					// Different powers can be treated as powers of the same basic equation
2115 					if (ex_to<numeric>(ratio).is_integer()) {
2116 						// If ratio is an integer then this is simply the power of the existing symbol.
2117 						//std::clog << e_replaced << " is a " << ratio << " power of " << it.first << std::endl;
2118 						return dynallocate<power>(it.first, ratio);
2119 					} else {
2120 						// otherwise we need to give the replacement pattern to change
2121 						// the previous expression...
2122 						ex es = dynallocate<symbol>();
2123 						ex Num = numer(ratio);
2124 						modifier.append(it.first == power(es, denom(ratio)));
2125 						//std::clog << e_replaced << " is power " << Num << " and "
2126 						//		  << it.first << " is power " << denom(ratio) << " of the common base "
2127 						//		  << pow(e_replaced.op(0), e_replaced.op(1)/Num) << std::endl;
2128 						// ... and  modify the replacement tables
2129 						rev_lookup.erase(it.second);
2130 						rev_lookup.insert({pow(e_replaced.op(0), e_replaced.op(1)/Num), es});
2131 						repl.erase(it.first);
2132 						repl.insert({es, pow(e_replaced.op(0), e_replaced.op(1)/Num)});
2133 						return dynallocate<power>(es, Num);
2134 					}
2135 				}
2136 			}
2137 		}
2138 		// There is no existing substitution, thus we are creating a new one.
2139 		// This needs to be done separately to treat possible occurrences of
2140 		// b = e_replaced.op(0) elsewhere in the expression as pow(b, 1).
2141 		ex degree = pow(e_replaced.op(1), _ex_1);
2142 		if (is_a<numeric>(degree) && ex_to<numeric>(degree).is_integer()) {
2143 			ex es = dynallocate<symbol>();
2144 			modifier.append(e_replaced.op(0) == power(es, degree));
2145 			repl.insert({es, e_replaced});
2146 			rev_lookup.insert({e_replaced, es});
2147 			return es;
2148 		}
2149 	}
2150 
2151 	// Otherwise create new symbol and add to list, taking care that the
2152 	// replacement expression doesn't itself contain symbols from repl,
2153 	// because subs() is not recursive
2154 	ex es = dynallocate<symbol>();
2155 	repl.insert(std::make_pair(es, e_replaced));
2156 	rev_lookup.insert(std::make_pair(e_replaced, es));
2157 	return es;
2158 }
2159 
2160 /** Create a symbol for replacing the expression "e" (or return a previously
2161  *  assigned symbol). The symbol and expression are appended to repl, and the
2162  *  symbol is returned.
2163  *  @see basic::to_rational
2164  *  @see basic::to_polynomial */
replace_with_symbol(const ex & e,exmap & repl)2165 static ex replace_with_symbol(const ex & e, exmap & repl)
2166 {
2167 	// Since the repl contains replaced expressions we should search for them
2168 	ex e_replaced = e.subs(repl, subs_options::no_pattern);
2169 
2170 	// Expression already replaced? Then return the assigned symbol
2171 	for (auto & it : repl)
2172 		if (it.second.is_equal(e_replaced))
2173 			return it.first;
2174 
2175 	// Otherwise create new symbol and add to list, taking care that the
2176 	// replacement expression doesn't itself contain symbols from repl,
2177 	// because subs() is not recursive
2178 	ex es = dynallocate<symbol>();
2179 	repl.insert(std::make_pair(es, e_replaced));
2180 	return es;
2181 }
2182 
2183 
2184 /** Function object to be applied by basic::normal(). */
2185 struct normal_map_function : public map_function {
operator ()GiNaC::normal_map_function2186 	ex operator()(const ex & e) override { return normal(e); }
2187 };
2188 
2189 /** Default implementation of ex::normal(). It normalizes the children and
2190  *  replaces the object with a temporary symbol.
2191  *  @see ex::normal */
normal(exmap & repl,exmap & rev_lookup,lst & modifier) const2192 ex basic::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
2193 {
2194 	if (nops() == 0)
2195 		return dynallocate<lst>({replace_with_symbol(*this, repl, rev_lookup, modifier), _ex1});
2196 
2197 	normal_map_function map_normal;
2198 	int nmod = modifier.nops(); // To watch new modifiers to the replacement list
2199 	ex result = replace_with_symbol(map(map_normal), repl, rev_lookup, modifier);
2200 	for (int imod = nmod; imod < modifier.nops(); ++imod) {
2201 		exmap this_repl;
2202 		this_repl.insert(std::make_pair(modifier.op(imod).op(0), modifier.op(imod).op(1)));
2203 		result = result.subs(this_repl, subs_options::no_pattern);
2204 	}
2205 
2206 	// Sometimes we may obtain negative powers, they need to be placed to denominator
2207 	if (is_a<power>(result) && result.op(1).info(info_flags::negative))
2208 		return dynallocate<lst>({_ex1, power(result.op(0), -result.op(1))});
2209 	else
2210 		return dynallocate<lst>({result, _ex1});
2211 }
2212 
2213 
2214 /** Implementation of ex::normal() for symbols. This returns the unmodified symbol.
2215  *  @see ex::normal */
normal(exmap & repl,exmap & rev_lookup,lst & modifier) const2216 ex symbol::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
2217 {
2218 	return dynallocate<lst>({*this, _ex1});
2219 }
2220 
2221 
2222 /** Implementation of ex::normal() for a numeric. It splits complex numbers
2223  *  into re+I*im and replaces I and non-rational real numbers with a temporary
2224  *  symbol.
2225  *  @see ex::normal */
normal(exmap & repl,exmap & rev_lookup,lst & modifier) const2226 ex numeric::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
2227 {
2228 	numeric num = numer();
2229 	ex numex = num;
2230 
2231 	if (num.is_real()) {
2232 		if (!num.is_integer())
2233 			numex = replace_with_symbol(numex, repl, rev_lookup, modifier);
2234 	} else { // complex
2235 		numeric re = num.real(), im = num.imag();
2236 		ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl, rev_lookup, modifier);
2237 		ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl, rev_lookup, modifier);
2238 		numex = re_ex + im_ex * replace_with_symbol(I, repl, rev_lookup, modifier);
2239 	}
2240 
2241 	// Denominator is always a real integer (see numeric::denom())
2242 	return dynallocate<lst>({numex, denom()});
2243 }
2244 
2245 
2246 /** Fraction cancellation.
2247  *  @param n  numerator
2248  *  @param d  denominator
2249  *  @return cancelled fraction {n, d} as a list */
frac_cancel(const ex & n,const ex & d)2250 static ex frac_cancel(const ex &n, const ex &d)
2251 {
2252 	ex num = n;
2253 	ex den = d;
2254 	numeric pre_factor = *_num1_p;
2255 
2256 //std::clog << "frac_cancel num = " << num << ", den = " << den << std::endl;
2257 
2258 	// Handle trivial case where denominator is 1
2259 	if (den.is_equal(_ex1))
2260 		return dynallocate<lst>({num, den});
2261 
2262 	// Handle special cases where numerator or denominator is 0
2263 	if (num.is_zero())
2264 		return dynallocate<lst>({num, _ex1});
2265 	if (den.expand().is_zero())
2266 		throw(std::overflow_error("frac_cancel: division by zero in frac_cancel"));
2267 
2268 	// Bring numerator and denominator to Z[X] by multiplying with
2269 	// LCM of all coefficients' denominators
2270 	numeric num_lcm = lcm_of_coefficients_denominators(num);
2271 	numeric den_lcm = lcm_of_coefficients_denominators(den);
2272 	num = multiply_lcm(num, num_lcm);
2273 	den = multiply_lcm(den, den_lcm);
2274 	pre_factor = den_lcm / num_lcm;
2275 
2276 	// Cancel GCD from numerator and denominator
2277 	ex cnum, cden;
2278 	if (gcd(num, den, &cnum, &cden, false) != _ex1) {
2279 		num = cnum;
2280 		den = cden;
2281 	}
2282 
2283 	// Make denominator unit normal (i.e. coefficient of first symbol
2284 	// as defined by get_first_symbol() is made positive)
2285 	if (is_exactly_a<numeric>(den)) {
2286 		if (ex_to<numeric>(den).is_negative()) {
2287 			num *= _ex_1;
2288 			den *= _ex_1;
2289 		}
2290 	} else {
2291 		ex x;
2292 		if (get_first_symbol(den, x)) {
2293 			GINAC_ASSERT(is_exactly_a<numeric>(den.unit(x)));
2294 			if (ex_to<numeric>(den.unit(x)).is_negative()) {
2295 				num *= _ex_1;
2296 				den *= _ex_1;
2297 			}
2298 		}
2299 	}
2300 
2301 	// Return result as list
2302 //std::clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << std::endl;
2303 	return dynallocate<lst>({num * pre_factor.numer(), den * pre_factor.denom()});
2304 }
2305 
2306 
2307 /** Implementation of ex::normal() for a sum. It expands terms and performs
2308  *  fractional addition.
2309  *  @see ex::normal */
normal(exmap & repl,exmap & rev_lookup,lst & modifier) const2310 ex add::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
2311 {
2312 	// Normalize children and split each one into numerator and denominator
2313 	exvector nums, dens;
2314 	nums.reserve(seq.size()+1);
2315 	dens.reserve(seq.size()+1);
2316 	int nmod = modifier.nops(); // To watch new modifiers to the replacement list
2317 	for (auto & it : seq) {
2318 		ex n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup, modifier);
2319 		nums.push_back(n.op(0));
2320 		dens.push_back(n.op(1));
2321 	}
2322 	ex n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup, modifier);
2323 	nums.push_back(n.op(0));
2324 	dens.push_back(n.op(1));
2325 	GINAC_ASSERT(nums.size() == dens.size());
2326 
2327 	// Now, nums is a vector of all numerators and dens is a vector of
2328 	// all denominators
2329 //std::clog << "add::normal uses " << nums.size() << " summands:\n";
2330 
2331 	// Add fractions sequentially
2332 	auto num_it = nums.begin(), num_itend = nums.end();
2333 	auto den_it = dens.begin(), den_itend = dens.end();
2334 //std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl;
2335 	for (int imod = nmod; imod < modifier.nops(); ++imod) {
2336 		while (num_it != num_itend) {
2337 			*num_it = num_it->subs(modifier.op(imod), subs_options::no_pattern);
2338 			++num_it;
2339 			*den_it = den_it->subs(modifier.op(imod), subs_options::no_pattern);
2340 			++den_it;
2341 		}
2342 		// Reset iterators for the next round
2343 		num_it = nums.begin();
2344 		den_it = dens.begin();
2345 	}
2346 
2347 	ex num = *num_it++, den = *den_it++;
2348 	while (num_it != num_itend) {
2349 //std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl;
2350 		ex next_num = *num_it++, next_den = *den_it++;
2351 
2352 		// Trivially add sequences of fractions with identical denominators
2353 		while ((den_it != den_itend) && next_den.is_equal(*den_it)) {
2354 			next_num += *num_it;
2355 			num_it++; den_it++;
2356 		}
2357 
2358 		// Addition of two fractions, taking advantage of the fact that
2359 		// the heuristic GCD algorithm computes the cofactors at no extra cost
2360 		ex co_den1, co_den2;
2361 		ex g = gcd(den, next_den, &co_den1, &co_den2, false);
2362 		num = ((num * co_den2) + (next_num * co_den1)).expand();
2363 		den *= co_den2;		// this is the lcm(den, next_den)
2364 	}
2365 //std::clog << " common denominator = " << den << std::endl;
2366 
2367 	// Cancel common factors from num/den
2368 	return frac_cancel(num, den);
2369 }
2370 
2371 
2372 /** Implementation of ex::normal() for a product. It cancels common factors
2373  *  from fractions.
2374  *  @see ex::normal() */
normal(exmap & repl,exmap & rev_lookup,lst & modifier) const2375 ex mul::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
2376 {
2377 	// Normalize children, separate into numerator and denominator
2378 	exvector num; num.reserve(seq.size());
2379 	exvector den; den.reserve(seq.size());
2380 	ex n;
2381 	int nmod = modifier.nops(); // To watch new modifiers to the replacement list
2382 	for (auto & it : seq) {
2383 		n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup, modifier);
2384 		num.push_back(n.op(0));
2385 		den.push_back(n.op(1));
2386 	}
2387 	n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup, modifier);
2388 	num.push_back(n.op(0));
2389 	den.push_back(n.op(1));
2390 	auto num_it = num.begin(), num_itend = num.end();
2391 	auto den_it = den.begin(), den_itend = den.end();
2392 	for (int imod = nmod; imod < modifier.nops(); ++imod) {
2393 		while (num_it != num_itend) {
2394 			*num_it = num_it->subs(modifier.op(imod), subs_options::no_pattern);
2395 			++num_it;
2396 			*den_it = den_it->subs(modifier.op(imod), subs_options::no_pattern);
2397 			++den_it;
2398 		}
2399 		num_it = num.begin();
2400 		den_it = den.begin();
2401 	}
2402 
2403 	// Perform fraction cancellation
2404 	return frac_cancel(dynallocate<mul>(num), dynallocate<mul>(den));
2405 }
2406 
2407 
2408 /** Implementation of ex::normal() for powers. It normalizes the basis,
2409  *  distributes integer exponents to numerator and denominator, and replaces
2410  *  non-integer powers by temporary symbols.
2411  *  @see ex::normal */
normal(exmap & repl,exmap & rev_lookup,lst & modifier) const2412 ex power::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
2413 {
2414 	// Normalize basis and exponent (exponent gets reassembled)
2415 	int nmod = modifier.nops(); // To watch new modifiers to the replacement list
2416 	ex n_basis = ex_to<basic>(basis).normal(repl, rev_lookup, modifier);
2417 	for (int imod = nmod; imod < modifier.nops(); ++imod)
2418 		n_basis = n_basis.subs(modifier.op(imod), subs_options::no_pattern);
2419 
2420 	nmod = modifier.nops();
2421 	ex n_exponent = ex_to<basic>(exponent).normal(repl, rev_lookup, modifier);
2422 	for (int imod = nmod; imod < modifier.nops(); ++imod)
2423 		n_exponent = n_exponent.subs(modifier.op(imod), subs_options::no_pattern);
2424 	n_exponent = n_exponent.op(0) / n_exponent.op(1);
2425 
2426 	if (n_exponent.info(info_flags::integer)) {
2427 
2428 		if (n_exponent.info(info_flags::positive)) {
2429 
2430 			// (a/b)^n -> {a^n, b^n}
2431 			return dynallocate<lst>({pow(n_basis.op(0), n_exponent), pow(n_basis.op(1), n_exponent)});
2432 
2433 		} else if (n_exponent.info(info_flags::negative)) {
2434 
2435 			// (a/b)^-n -> {b^n, a^n}
2436 			return dynallocate<lst>({pow(n_basis.op(1), -n_exponent), pow(n_basis.op(0), -n_exponent)});
2437 		}
2438 
2439 	} else {
2440 
2441 		if (n_exponent.info(info_flags::positive)) {
2442 
2443 			// (a/b)^x -> {sym((a/b)^x), 1}
2444 			return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup, modifier), _ex1});
2445 
2446 		} else if (n_exponent.info(info_flags::negative)) {
2447 
2448 			if (n_basis.op(1).is_equal(_ex1)) {
2449 
2450 				// a^-x -> {1, sym(a^x)}
2451 				return dynallocate<lst>({_ex1, replace_with_symbol(pow(n_basis.op(0), -n_exponent), repl, rev_lookup, modifier)});
2452 
2453 			} else {
2454 
2455 				// (a/b)^-x -> {sym((b/a)^x), 1}
2456 				return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(1) / n_basis.op(0), -n_exponent), repl, rev_lookup, modifier), _ex1});
2457 			}
2458 		}
2459 	}
2460 
2461 	// (a/b)^x -> {sym((a/b)^x, 1}
2462 	return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup, modifier), _ex1});
2463 }
2464 
2465 
2466 /** Implementation of ex::normal() for pseries. It normalizes each coefficient
2467  *  and replaces the series by a temporary symbol.
2468  *  @see ex::normal */
normal(exmap & repl,exmap & rev_lookup,lst & modifier) const2469 ex pseries::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
2470 {
2471 	epvector newseq;
2472 	for (auto & it : seq) {
2473 		ex restexp = it.rest.normal();
2474 		if (!restexp.is_zero())
2475 			newseq.push_back(expair(restexp, it.coeff));
2476 	}
2477 	ex n = pseries(relational(var,point), std::move(newseq));
2478 	return dynallocate<lst>({replace_with_symbol(n, repl, rev_lookup, modifier), _ex1});
2479 }
2480 
2481 
2482 /** Normalization of rational functions.
2483  *  This function converts an expression to its normal form
2484  *  "numerator/denominator", where numerator and denominator are (relatively
2485  *  prime) polynomials. Any subexpressions which are not rational functions
2486  *  (like non-rational numbers, non-integer powers or functions like sin(),
2487  *  cos() etc.) are replaced by temporary symbols which are re-substituted by
2488  *  the (normalized) subexpressions before normal() returns (this way, any
2489  *  expression can be treated as a rational function). normal() is applied
2490  *  recursively to arguments of functions etc.
2491  *
2492  *  @return normalized expression */
normal() const2493 ex ex::normal() const
2494 {
2495 	exmap repl, rev_lookup;
2496 	lst modifier;
2497 
2498 	ex e = bp->normal(repl, rev_lookup, modifier);
2499 	GINAC_ASSERT(is_a<lst>(e));
2500 
2501 	// Re-insert replaced symbols
2502 	if (!repl.empty()) {
2503 		for(int i=0; i < modifier.nops(); ++i)
2504 			e = e.subs(modifier.op(i), subs_options::no_pattern);
2505 		e = e.subs(repl, subs_options::no_pattern);
2506 	}
2507 
2508 	// Convert {numerator, denominator} form back to fraction
2509 	return e.op(0) / e.op(1);
2510 }
2511 
2512 /** Get numerator of an expression. If the expression is not of the normal
2513  *  form "numerator/denominator", it is first converted to this form and
2514  *  then the numerator is returned.
2515  *
2516  *  @see ex::normal
2517  *  @return numerator */
numer() const2518 ex ex::numer() const
2519 {
2520 	exmap repl, rev_lookup;
2521 	lst modifier;
2522 
2523 	ex e = bp->normal(repl, rev_lookup, modifier);
2524 	GINAC_ASSERT(is_a<lst>(e));
2525 
2526 	// Re-insert replaced symbols
2527 	if (repl.empty())
2528 		return e.op(0);
2529 	else {
2530 		for(int i=0; i < modifier.nops(); ++i)
2531 			e = e.subs(modifier.op(i), subs_options::no_pattern);
2532 
2533 		return e.op(0).subs(repl, subs_options::no_pattern);
2534 	}
2535 }
2536 
2537 /** Get denominator of an expression. If the expression is not of the normal
2538  *  form "numerator/denominator", it is first converted to this form and
2539  *  then the denominator is returned.
2540  *
2541  *  @see ex::normal
2542  *  @return denominator */
denom() const2543 ex ex::denom() const
2544 {
2545 	exmap repl, rev_lookup;
2546 	lst modifier;
2547 
2548 	ex e = bp->normal(repl, rev_lookup, modifier);
2549 	GINAC_ASSERT(is_a<lst>(e));
2550 
2551 	// Re-insert replaced symbols
2552 	if (repl.empty())
2553 		return e.op(1);
2554 	else {
2555 		for(int i=0; i < modifier.nops(); ++i)
2556 			e = e.subs(modifier.op(i), subs_options::no_pattern);
2557 
2558 		return e.op(1).subs(repl, subs_options::no_pattern);
2559 	}
2560 }
2561 
2562 /** Get numerator and denominator of an expression. If the expression is not
2563  *  of the normal form "numerator/denominator", it is first converted to this
2564  *  form and then a list [numerator, denominator] is returned.
2565  *
2566  *  @see ex::normal
2567  *  @return a list [numerator, denominator] */
numer_denom() const2568 ex ex::numer_denom() const
2569 {
2570 	exmap repl, rev_lookup;
2571 	lst modifier;
2572 
2573 	ex e = bp->normal(repl, rev_lookup, modifier);
2574 	GINAC_ASSERT(is_a<lst>(e));
2575 
2576 	// Re-insert replaced symbols
2577 	if (repl.empty())
2578 		return e;
2579 	else {
2580 		for(int i=0; i < modifier.nops(); ++i)
2581 			e = e.subs(modifier.op(i), subs_options::no_pattern);
2582 
2583 		return e.subs(repl, subs_options::no_pattern);
2584 	}
2585 }
2586 
2587 
2588 /** Rationalization of non-rational functions.
2589  *  This function converts a general expression to a rational function
2590  *  by replacing all non-rational subexpressions (like non-rational numbers,
2591  *  non-integer powers or functions like sin(), cos() etc.) to temporary
2592  *  symbols. This makes it possible to use functions like gcd() and divide()
2593  *  on non-rational functions by applying to_rational() on the arguments,
2594  *  calling the desired function and re-substituting the temporary symbols
2595  *  in the result. To make the last step possible, all temporary symbols and
2596  *  their associated expressions are collected in the map specified by the
2597  *  repl parameter, ready to be passed as an argument to ex::subs().
2598  *
2599  *  @param repl collects all temporary symbols and their replacements
2600  *  @return rationalized expression */
to_rational(exmap & repl) const2601 ex ex::to_rational(exmap & repl) const
2602 {
2603 	return bp->to_rational(repl);
2604 }
2605 
to_polynomial(exmap & repl) const2606 ex ex::to_polynomial(exmap & repl) const
2607 {
2608 	return bp->to_polynomial(repl);
2609 }
2610 
2611 /** Default implementation of ex::to_rational(). This replaces the object with
2612  *  a temporary symbol. */
to_rational(exmap & repl) const2613 ex basic::to_rational(exmap & repl) const
2614 {
2615 	return replace_with_symbol(*this, repl);
2616 }
2617 
to_polynomial(exmap & repl) const2618 ex basic::to_polynomial(exmap & repl) const
2619 {
2620 	return replace_with_symbol(*this, repl);
2621 }
2622 
2623 
2624 /** Implementation of ex::to_rational() for symbols. This returns the
2625  *  unmodified symbol. */
to_rational(exmap & repl) const2626 ex symbol::to_rational(exmap & repl) const
2627 {
2628 	return *this;
2629 }
2630 
2631 /** Implementation of ex::to_polynomial() for symbols. This returns the
2632  *  unmodified symbol. */
to_polynomial(exmap & repl) const2633 ex symbol::to_polynomial(exmap & repl) const
2634 {
2635 	return *this;
2636 }
2637 
2638 
2639 /** Implementation of ex::to_rational() for a numeric. It splits complex
2640  *  numbers into re+I*im and replaces I and non-rational real numbers with a
2641  *  temporary symbol. */
to_rational(exmap & repl) const2642 ex numeric::to_rational(exmap & repl) const
2643 {
2644 	if (is_real()) {
2645 		if (!is_rational())
2646 			return replace_with_symbol(*this, repl);
2647 	} else { // complex
2648 		numeric re = real();
2649 		numeric im = imag();
2650 		ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl);
2651 		ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl);
2652 		return re_ex + im_ex * replace_with_symbol(I, repl);
2653 	}
2654 	return *this;
2655 }
2656 
2657 /** Implementation of ex::to_polynomial() for a numeric. It splits complex
2658  *  numbers into re+I*im and replaces I and non-integer real numbers with a
2659  *  temporary symbol. */
to_polynomial(exmap & repl) const2660 ex numeric::to_polynomial(exmap & repl) const
2661 {
2662 	if (is_real()) {
2663 		if (!is_integer())
2664 			return replace_with_symbol(*this, repl);
2665 	} else { // complex
2666 		numeric re = real();
2667 		numeric im = imag();
2668 		ex re_ex = re.is_integer() ? re : replace_with_symbol(re, repl);
2669 		ex im_ex = im.is_integer() ? im : replace_with_symbol(im, repl);
2670 		return re_ex + im_ex * replace_with_symbol(I, repl);
2671 	}
2672 	return *this;
2673 }
2674 
2675 
2676 /** Implementation of ex::to_rational() for powers. It replaces non-integer
2677  *  powers by temporary symbols. */
to_rational(exmap & repl) const2678 ex power::to_rational(exmap & repl) const
2679 {
2680 	if (exponent.info(info_flags::integer))
2681 		return pow(basis.to_rational(repl), exponent);
2682 	else
2683 		return replace_with_symbol(*this, repl);
2684 }
2685 
2686 /** Implementation of ex::to_polynomial() for powers. It replaces non-posint
2687  *  powers by temporary symbols. */
to_polynomial(exmap & repl) const2688 ex power::to_polynomial(exmap & repl) const
2689 {
2690 	if (exponent.info(info_flags::posint))
2691 		return pow(basis.to_rational(repl), exponent);
2692 	else if (exponent.info(info_flags::negint))
2693 	{
2694 		ex basis_pref = collect_common_factors(basis);
2695 		if (is_exactly_a<mul>(basis_pref) || is_exactly_a<power>(basis_pref)) {
2696 			// (A*B)^n will be automagically transformed to A^n*B^n
2697 			ex t = pow(basis_pref, exponent);
2698 			return t.to_polynomial(repl);
2699 		}
2700 		else
2701 			return pow(replace_with_symbol(pow(basis, _ex_1), repl), -exponent);
2702 	}
2703 	else
2704 		return replace_with_symbol(*this, repl);
2705 }
2706 
2707 
2708 /** Implementation of ex::to_rational() for expairseqs. */
to_rational(exmap & repl) const2709 ex expairseq::to_rational(exmap & repl) const
2710 {
2711 	epvector s;
2712 	s.reserve(seq.size());
2713 	for (auto & it : seq)
2714 		s.push_back(split_ex_to_pair(recombine_pair_to_ex(it).to_rational(repl)));
2715 
2716 	ex oc = overall_coeff.to_rational(repl);
2717 	if (oc.info(info_flags::numeric))
2718 		return thisexpairseq(std::move(s), overall_coeff);
2719 	else
2720 		s.push_back(expair(oc, _ex1));
2721 	return thisexpairseq(std::move(s), default_overall_coeff());
2722 }
2723 
2724 /** Implementation of ex::to_polynomial() for expairseqs. */
to_polynomial(exmap & repl) const2725 ex expairseq::to_polynomial(exmap & repl) const
2726 {
2727 	epvector s;
2728 	s.reserve(seq.size());
2729 	for (auto & it : seq)
2730 		s.push_back(split_ex_to_pair(recombine_pair_to_ex(it).to_polynomial(repl)));
2731 
2732 	ex oc = overall_coeff.to_polynomial(repl);
2733 	if (oc.info(info_flags::numeric))
2734 		return thisexpairseq(std::move(s), overall_coeff);
2735 	else
2736 		s.push_back(expair(oc, _ex1));
2737 	return thisexpairseq(std::move(s), default_overall_coeff());
2738 }
2739 
2740 
2741 /** Remove the common factor in the terms of a sum 'e' by calculating the GCD,
2742  *  and multiply it into the expression 'factor' (which needs to be initialized
2743  *  to 1, unless you're accumulating factors). */
find_common_factor(const ex & e,ex & factor,exmap & repl)2744 static ex find_common_factor(const ex & e, ex & factor, exmap & repl)
2745 {
2746 	if (is_exactly_a<add>(e)) {
2747 
2748 		size_t num = e.nops();
2749 		exvector terms; terms.reserve(num);
2750 		ex gc;
2751 
2752 		// Find the common GCD
2753 		for (size_t i=0; i<num; i++) {
2754 			ex x = e.op(i).to_polynomial(repl);
2755 
2756 			if (is_exactly_a<add>(x) || is_exactly_a<mul>(x) || is_a<power>(x)) {
2757 				ex f = 1;
2758 				x = find_common_factor(x, f, repl);
2759 				x *= f;
2760 			}
2761 
2762 			if (gc.is_zero())
2763 				gc = x;
2764 			else
2765 				gc = gcd(gc, x);
2766 
2767 			terms.push_back(x);
2768 		}
2769 
2770 		if (gc.is_equal(_ex1))
2771 			return e;
2772 
2773 		if (gc.is_zero())
2774 			return _ex0;
2775 
2776 		// The GCD is the factor we pull out
2777 		factor *= gc;
2778 
2779 		// Now divide all terms by the GCD
2780 		for (size_t i=0; i<num; i++) {
2781 			ex x;
2782 
2783 			// Try to avoid divide() because it expands the polynomial
2784 			ex &t = terms[i];
2785 			if (is_exactly_a<mul>(t)) {
2786 				for (size_t j=0; j<t.nops(); j++) {
2787 					if (t.op(j).is_equal(gc)) {
2788 						exvector v; v.reserve(t.nops());
2789 						for (size_t k=0; k<t.nops(); k++) {
2790 							if (k == j)
2791 								v.push_back(_ex1);
2792 							else
2793 								v.push_back(t.op(k));
2794 						}
2795 						t = dynallocate<mul>(v);
2796 						goto term_done;
2797 					}
2798 				}
2799 			}
2800 
2801 			divide(t, gc, x);
2802 			t = x;
2803 term_done:	;
2804 		}
2805 		return dynallocate<add>(terms);
2806 
2807 	} else if (is_exactly_a<mul>(e)) {
2808 
2809 		size_t num = e.nops();
2810 		exvector v; v.reserve(num);
2811 
2812 		for (size_t i=0; i<num; i++)
2813 			v.push_back(find_common_factor(e.op(i), factor, repl));
2814 
2815 		return dynallocate<mul>(v);
2816 
2817 	} else if (is_exactly_a<power>(e)) {
2818 		const ex e_exp(e.op(1));
2819 		if (e_exp.info(info_flags::integer)) {
2820 			ex eb = e.op(0).to_polynomial(repl);
2821 			ex factor_local(_ex1);
2822 			ex pre_res = find_common_factor(eb, factor_local, repl);
2823 			factor *= pow(factor_local, e_exp);
2824 			return pow(pre_res, e_exp);
2825 
2826 		} else
2827 			return e.to_polynomial(repl);
2828 
2829 	} else
2830 		return e;
2831 }
2832 
2833 
2834 /** Collect common factors in sums. This converts expressions like
2835  *  'a*(b*x+b*y)' to 'a*b*(x+y)'. */
collect_common_factors(const ex & e)2836 ex collect_common_factors(const ex & e)
2837 {
2838 	if (is_exactly_a<add>(e) || is_exactly_a<mul>(e) || is_exactly_a<power>(e)) {
2839 
2840 		exmap repl;
2841 		ex factor = 1;
2842 		ex r = find_common_factor(e, factor, repl);
2843 		return factor.subs(repl, subs_options::no_pattern) * r.subs(repl, subs_options::no_pattern);
2844 
2845 	} else
2846 		return e;
2847 }
2848 
2849 
2850 /** Resultant of two expressions e1,e2 with respect to symbol s.
2851  *  Method: Compute determinant of Sylvester matrix of e1,e2,s.  */
resultant(const ex & e1,const ex & e2,const ex & s)2852 ex resultant(const ex & e1, const ex & e2, const ex & s)
2853 {
2854 	const ex ee1 = e1.expand();
2855 	const ex ee2 = e2.expand();
2856 	if (!ee1.info(info_flags::polynomial) ||
2857 	    !ee2.info(info_flags::polynomial))
2858 		throw(std::runtime_error("resultant(): arguments must be polynomials"));
2859 
2860 	const int h1 = ee1.degree(s);
2861 	const int l1 = ee1.ldegree(s);
2862 	const int h2 = ee2.degree(s);
2863 	const int l2 = ee2.ldegree(s);
2864 
2865 	const int msize = h1 + h2;
2866 	matrix m(msize, msize);
2867 
2868 	for (int l = h1; l >= l1; --l) {
2869 		const ex e = ee1.coeff(s, l);
2870 		for (int k = 0; k < h2; ++k)
2871 			m(k, k+h1-l) = e;
2872 	}
2873 	for (int l = h2; l >= l2; --l) {
2874 		const ex e = ee2.coeff(s, l);
2875 		for (int k = 0; k < h1; ++k)
2876 			m(k+h2, k+h2-l) = e;
2877 	}
2878 
2879 	return m.determinant();
2880 }
2881 
2882 
2883 } // namespace GiNaC
2884