1% Generated by roxygen2: do not edit by hand 2% Please edit documentation in R/fastica.R 3\docType{class} 4\name{FastICA-class} 5\alias{FastICA-class} 6\alias{FastICA} 7\title{Independent Component Analysis} 8\description{ 9An S4 Class implementing the FastICA algorithm for Indepentend 10Component Analysis. 11} 12\details{ 13ICA is used for blind signal separation of different sources. It is 14a linear Projection. 15} 16\section{Slots}{ 17 18\describe{ 19\item{\code{fun}}{A function that does the embedding and returns a 20dimRedResult object.} 21 22\item{\code{stdpars}}{The standard parameters for the function.} 23}} 24 25\section{General usage}{ 26 27Dimensionality reduction methods are S4 Classes that either be used 28directly, in which case they have to be initialized and a full 29list with parameters has to be handed to the \code{@fun()} 30slot, or the method name be passed to the embed function and 31parameters can be given to the \code{...}, in which case 32missing parameters will be replaced by the ones in the 33\code{@stdpars}. 34} 35 36\section{Parameters}{ 37 38FastICA can take the following parameters: 39\describe{ 40 \item{ndim}{The number of output dimensions. Defaults to \code{2}} 41} 42} 43 44\section{Implementation}{ 45 46Wraps around \code{\link[fastICA]{fastICA}}. FastICA uses a very 47fast approximation for negentropy to estimate statistical 48independences between signals. Because it is a simple 49rotation/projection, forward and backward functions can be given. 50} 51 52\examples{ 53dat <- loadDataSet("3D S Curve") 54emb <- embed(dat, "FastICA", ndim = 2) 55plot(getData(getDimRedData(emb))) 56 57} 58\references{ 59Hyvarinen, A., 1999. Fast and robust fixed-point algorithms for independent 60component analysis. IEEE Transactions on Neural Networks 10, 626-634. 61https://doi.org/10.1109/72.761722 62} 63\seealso{ 64Other dimensionality reduction methods: 65\code{\link{AutoEncoder-class}}, 66\code{\link{DRR-class}}, 67\code{\link{DiffusionMaps-class}}, 68\code{\link{DrL-class}}, 69\code{\link{FruchtermanReingold-class}}, 70\code{\link{HLLE-class}}, 71\code{\link{Isomap-class}}, 72\code{\link{KamadaKawai-class}}, 73\code{\link{LLE-class}}, 74\code{\link{MDS-class}}, 75\code{\link{NNMF-class}}, 76\code{\link{PCA-class}}, 77\code{\link{PCA_L1-class}}, 78\code{\link{UMAP-class}}, 79\code{\link{dimRedMethod-class}}, 80\code{\link{dimRedMethodList}()}, 81\code{\link{kPCA-class}}, 82\code{\link{nMDS-class}}, 83\code{\link{tSNE-class}} 84} 85\concept{dimensionality reduction methods} 86