1% Copyright 2014 by Roger S. Bivand, Virgilio Gómez-Rubio 2\encoding{latin1} 3\name{lee.mc} 4\alias{lee.mc} 5\title{Permutation test for Lee's L statistic} 6\description{ 7 A permutation test for Lee's L statistic calculated by using nsim random permutations of x and y for the given spatial weighting scheme, to establish the rank of the observed statistic in relation to the nsim simulated values. 8} 9\usage{ 10lee.mc(x, y, listw, nsim, zero.policy=NULL, alternative="greater", 11 na.action=na.fail, spChk=NULL, return_boot=FALSE) 12} 13\arguments{ 14 \item{x}{a numeric vector the same length as the neighbours list in listw} 15 \item{y}{a numeric vector the same length as the neighbours list in listw} 16 \item{listw}{a \code{listw} object created for example by \code{nb2listw}} 17 \item{nsim}{number of permutations} 18 \item{zero.policy}{default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA} 19 \item{alternative}{a character string specifying the alternative hypothesis, must be one of "greater" (default), or "less".} 20 \item{na.action}{a function (default \code{na.fail}), can also be \code{na.omit} or \code{na.exclude} - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to \code{nb2listw} may be subsetted. \code{na.pass} is not permitted because it is meaningless in a permutation test.} 21 \item{spChk}{should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use \code{get.spChkOption()}} 22 \item{return_boot}{return an object of class \code{boot} from the equivalent permutation bootstrap rather than an object of class \code{htest}} 23} 24 25\value{ 26A list with class \code{htest} and \code{mc.sim} containing the following components: 27 \item{statistic}{the value of the observed Lee's L.} 28 \item{parameter}{the rank of the observed Lee's L.} 29 \item{p.value}{the pseudo p-value of the test.} 30 \item{alternative}{a character string describing the alternative hypothesis.} 31 \item{method}{a character string giving the method used.} 32 \item{data.name}{a character string giving the name(s) of the data, and the number of simulations.} 33 \item{res}{nsim simulated values of statistic, final value is observed statistic} 34} 35\references{Lee (2001). Developing a bivariate spatial association measure: 36An integration of Pearson's r and Moran's I. J Geograph Syst 3: 369-385} 37 38\author{Roger Bivand, Virgilio Gómez-Rubio \email{Virgilio.Gomez@uclm.es} } 39 40\seealso{\code{\link{lee}}}%, \code{\link{moran.test}}} 41 42\examples{ 43data(boston, package="spData") 44lw<-nb2listw(boston.soi) 45 46x<-boston.c$CMEDV 47y<-boston.c$CRIM 48 49lee.mc(x, y, nsim=99, lw, zero.policy=TRUE, alternative="less") 50 51#Test with missing values 52x[1:5]<-NA 53y[3:7]<-NA 54 55lee.mc(x, y, nsim=99, lw, zero.policy=TRUE, alternative="less", 56 na.action=na.omit) 57 58} 59\keyword{spatial} 60