1 /*
2  * Copyright 2006-2007 Universiteit Leiden
3  * Copyright 2008-2009 Katholieke Universiteit Leuven
4  * Copyright 2010      INRIA Saclay
5  *
6  * Use of this software is governed by the MIT license
7  *
8  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11  * B-3001 Leuven, Belgium
12  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14  */
15 
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include <isl/set.h>
19 #include <isl_seq.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_vec_private.h>
26 #include <isl_bernstein.h>
27 
28 struct bernstein_data {
29 	enum isl_fold type;
30 	isl_qpolynomial *poly;
31 	int check_tight;
32 
33 	isl_cell *cell;
34 
35 	isl_qpolynomial_fold *fold;
36 	isl_qpolynomial_fold *fold_tight;
37 	isl_pw_qpolynomial_fold *pwf;
38 	isl_pw_qpolynomial_fold *pwf_tight;
39 };
40 
vertex_is_integral(__isl_keep isl_basic_set * vertex)41 static isl_bool vertex_is_integral(__isl_keep isl_basic_set *vertex)
42 {
43 	isl_size nvar;
44 	isl_size nparam;
45 	int i;
46 
47 	nvar = isl_basic_set_dim(vertex, isl_dim_set);
48 	nparam = isl_basic_set_dim(vertex, isl_dim_param);
49 	if (nvar < 0 || nparam < 0)
50 		return isl_bool_error;
51 	for (i = 0; i < nvar; ++i) {
52 		int r = nvar - 1 - i;
53 		if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
54 		    !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
55 			return isl_bool_false;
56 	}
57 
58 	return isl_bool_true;
59 }
60 
vertex_coordinate(__isl_keep isl_basic_set * vertex,int i,__isl_take isl_space * space)61 static __isl_give isl_qpolynomial *vertex_coordinate(
62 	__isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *space)
63 {
64 	isl_size nvar;
65 	isl_size nparam;
66 	isl_size total;
67 	int r;
68 	isl_int denom;
69 	isl_qpolynomial *v;
70 
71 	isl_int_init(denom);
72 
73 	nvar = isl_basic_set_dim(vertex, isl_dim_set);
74 	nparam = isl_basic_set_dim(vertex, isl_dim_param);
75 	total = isl_basic_set_dim(vertex, isl_dim_all);
76 	if (nvar < 0 || nparam < 0 || total < 0)
77 		goto error;
78 	r = nvar - 1 - i;
79 
80 	isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
81 	isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
82 
83 	if (isl_int_is_pos(denom))
84 		isl_seq_neg(vertex->eq[r], vertex->eq[r], 1 + total);
85 	else
86 		isl_int_neg(denom, denom);
87 
88 	v = isl_qpolynomial_from_affine(space, vertex->eq[r], denom);
89 	isl_int_clear(denom);
90 
91 	return v;
92 error:
93 	isl_space_free(space);
94 	isl_int_clear(denom);
95 	return NULL;
96 }
97 
98 /* Check whether the bound associated to the selection "k" is tight,
99  * which is the case if we select exactly one vertex (i.e., one of the
100  * exponents in "k" is exactly "d") and if that vertex
101  * is integral for all values of the parameters.
102  *
103  * If the degree "d" is zero, then there are no exponents.
104  * Since the polynomial is a constant expression in this case,
105  * the bound is necessarily tight.
106  */
is_tight(int * k,int n,int d,isl_cell * cell)107 static isl_bool is_tight(int *k, int n, int d, isl_cell *cell)
108 {
109 	int i;
110 
111 	if (d == 0)
112 		return isl_bool_true;
113 
114 	for (i = 0; i < n; ++i) {
115 		int v;
116 		if (!k[i])
117 			continue;
118 		if (k[i] != d)
119 			return isl_bool_false;
120 		v = cell->ids[n - 1 - i];
121 		return vertex_is_integral(cell->vertices->v[v].vertex);
122 	}
123 
124 	return isl_bool_false;
125 }
126 
add_fold(__isl_take isl_qpolynomial * b,__isl_keep isl_set * dom,int * k,int n,int d,struct bernstein_data * data)127 static isl_stat add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
128 	int *k, int n, int d, struct bernstein_data *data)
129 {
130 	isl_qpolynomial_fold *fold;
131 	isl_bool tight;
132 
133 	fold = isl_qpolynomial_fold_alloc(data->type, b);
134 
135 	tight = isl_bool_false;
136 	if (data->check_tight)
137 		tight = is_tight(k, n, d, data->cell);
138 	if (tight < 0)
139 		return isl_stat_error;
140 	if (tight)
141 		data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
142 							data->fold_tight, fold);
143 	else
144 		data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
145 							data->fold, fold);
146 	return isl_stat_ok;
147 }
148 
149 /* Extract the coefficients of the Bernstein base polynomials and store
150  * them in data->fold and data->fold_tight.
151  *
152  * In particular, the coefficient of each monomial
153  * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
154  * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
155  *
156  * c[i] contains the coefficient of the selected powers of the first i+1 vars.
157  * multinom[i] contains the partial multinomial coefficient.
158  */
extract_coefficients(isl_qpolynomial * poly,__isl_keep isl_set * dom,struct bernstein_data * data)159 static isl_stat extract_coefficients(isl_qpolynomial *poly,
160 	__isl_keep isl_set *dom, struct bernstein_data *data)
161 {
162 	int i;
163 	int d;
164 	isl_size n;
165 	isl_ctx *ctx;
166 	isl_qpolynomial **c = NULL;
167 	int *k = NULL;
168 	int *left = NULL;
169 	isl_vec *multinom = NULL;
170 
171 	n = isl_qpolynomial_dim(poly, isl_dim_in);
172 	if (n < 0)
173 		return isl_stat_error;
174 
175 	ctx = isl_qpolynomial_get_ctx(poly);
176 	d = isl_qpolynomial_degree(poly);
177 	isl_assert(ctx, n >= 2, return isl_stat_error);
178 
179 	c = isl_calloc_array(ctx, isl_qpolynomial *, n);
180 	k = isl_alloc_array(ctx, int, n);
181 	left = isl_alloc_array(ctx, int, n);
182 	multinom = isl_vec_alloc(ctx, n);
183 	if (!c || !k || !left || !multinom)
184 		goto error;
185 
186 	isl_int_set_si(multinom->el[0], 1);
187 	for (k[0] = d; k[0] >= 0; --k[0]) {
188 		int i = 1;
189 		isl_qpolynomial_free(c[0]);
190 		c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
191 		left[0] = d - k[0];
192 		k[1] = -1;
193 		isl_int_set(multinom->el[1], multinom->el[0]);
194 		while (i > 0) {
195 			if (i == n - 1) {
196 				int j;
197 				isl_space *space;
198 				isl_qpolynomial *b;
199 				isl_qpolynomial *f;
200 				for (j = 2; j <= left[i - 1]; ++j)
201 					isl_int_divexact_ui(multinom->el[i],
202 						multinom->el[i], j);
203 				b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
204 					n - 1 - i, left[i - 1]);
205 				b = isl_qpolynomial_project_domain_on_params(b);
206 				space = isl_qpolynomial_get_domain_space(b);
207 				f = isl_qpolynomial_rat_cst_on_domain(space,
208 					ctx->one, multinom->el[i]);
209 				b = isl_qpolynomial_mul(b, f);
210 				k[n - 1] = left[n - 2];
211 				if (add_fold(b, dom, k, n, d, data) < 0)
212 					goto error;
213 				--i;
214 				continue;
215 			}
216 			if (k[i] >= left[i - 1]) {
217 				--i;
218 				continue;
219 			}
220 			++k[i];
221 			if (k[i])
222 				isl_int_divexact_ui(multinom->el[i],
223 					multinom->el[i], k[i]);
224 			isl_qpolynomial_free(c[i]);
225 			c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
226 					n - 1 - i, k[i]);
227 			left[i] = left[i - 1] - k[i];
228 			k[i + 1] = -1;
229 			isl_int_set(multinom->el[i + 1], multinom->el[i]);
230 			++i;
231 		}
232 		isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
233 	}
234 
235 	for (i = 0; i < n; ++i)
236 		isl_qpolynomial_free(c[i]);
237 
238 	isl_vec_free(multinom);
239 	free(left);
240 	free(k);
241 	free(c);
242 	return isl_stat_ok;
243 error:
244 	isl_vec_free(multinom);
245 	free(left);
246 	free(k);
247 	if (c)
248 		for (i = 0; i < n; ++i)
249 			isl_qpolynomial_free(c[i]);
250 	free(c);
251 	return isl_stat_error;
252 }
253 
254 /* Perform bernstein expansion on the parametric vertices that are active
255  * on "cell".
256  *
257  * data->poly has been homogenized in the calling function.
258  *
259  * We plug in the barycentric coordinates for the set variables
260  *
261  *		\vec x = \sum_i \alpha_i v_i(\vec p)
262  *
263  * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
264  * Next, we extract the coefficients of the Bernstein base polynomials.
265  */
bernstein_coefficients_cell(__isl_take isl_cell * cell,void * user)266 static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell,
267 	void *user)
268 {
269 	int i, j;
270 	struct bernstein_data *data = (struct bernstein_data *)user;
271 	isl_space *space_param;
272 	isl_space *space_dst;
273 	isl_qpolynomial *poly = data->poly;
274 	isl_size n_in;
275 	unsigned nvar;
276 	int n_vertices;
277 	isl_qpolynomial **subs;
278 	isl_pw_qpolynomial_fold *pwf;
279 	isl_set *dom;
280 	isl_ctx *ctx;
281 
282 	n_in = isl_qpolynomial_dim(poly, isl_dim_in);
283 	if (n_in < 0)
284 		goto error;
285 
286 	nvar = n_in - 1;
287 	n_vertices = cell->n_vertices;
288 
289 	ctx = isl_qpolynomial_get_ctx(poly);
290 	if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
291 		return isl_cell_foreach_simplex(cell,
292 					    &bernstein_coefficients_cell, user);
293 
294 	subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
295 	if (!subs)
296 		goto error;
297 
298 	space_param = isl_basic_set_get_space(cell->dom);
299 	space_dst = isl_qpolynomial_get_domain_space(poly);
300 	space_dst = isl_space_add_dims(space_dst, isl_dim_set, n_vertices);
301 
302 	for (i = 0; i < 1 + nvar; ++i)
303 		subs[i] =
304 		    isl_qpolynomial_zero_on_domain(isl_space_copy(space_dst));
305 
306 	for (i = 0; i < n_vertices; ++i) {
307 		isl_qpolynomial *c;
308 		c = isl_qpolynomial_var_on_domain(isl_space_copy(space_dst),
309 					isl_dim_set, 1 + nvar + i);
310 		for (j = 0; j < nvar; ++j) {
311 			int k = cell->ids[i];
312 			isl_qpolynomial *v;
313 			v = vertex_coordinate(cell->vertices->v[k].vertex, j,
314 						isl_space_copy(space_param));
315 			v = isl_qpolynomial_add_dims(v, isl_dim_in,
316 							1 + nvar + n_vertices);
317 			v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
318 			subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
319 		}
320 		subs[0] = isl_qpolynomial_add(subs[0], c);
321 	}
322 	isl_space_free(space_dst);
323 
324 	poly = isl_qpolynomial_copy(poly);
325 
326 	poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
327 	poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
328 	poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
329 
330 	data->cell = cell;
331 	dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
332 	data->fold = isl_qpolynomial_fold_empty(data->type,
333 						isl_space_copy(space_param));
334 	data->fold_tight = isl_qpolynomial_fold_empty(data->type, space_param);
335 	if (extract_coefficients(poly, dom, data) < 0) {
336 		data->fold = isl_qpolynomial_fold_free(data->fold);
337 		data->fold_tight = isl_qpolynomial_fold_free(data->fold_tight);
338 	}
339 
340 	pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
341 					    data->fold);
342 	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
343 	pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
344 	data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
345 
346 	isl_qpolynomial_free(poly);
347 	isl_cell_free(cell);
348 	for (i = 0; i < 1 + nvar; ++i)
349 		isl_qpolynomial_free(subs[i]);
350 	free(subs);
351 	return isl_stat_ok;
352 error:
353 	isl_cell_free(cell);
354 	return isl_stat_error;
355 }
356 
357 /* Base case of applying bernstein expansion.
358  *
359  * We compute the chamber decomposition of the parametric polytope "bset"
360  * and then perform bernstein expansion on the parametric vertices
361  * that are active on each chamber.
362  *
363  * If the polynomial does not depend on the set variables
364  * (and in particular if the number of set variables is zero)
365  * then the bound is equal to the polynomial and
366  * no actual bernstein expansion needs to be performed.
367  */
bernstein_coefficients_base(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct bernstein_data * data,isl_bool * tight)368 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
369 	__isl_take isl_basic_set *bset,
370 	__isl_take isl_qpolynomial *poly, struct bernstein_data *data,
371 	isl_bool *tight)
372 {
373 	int degree;
374 	isl_size nvar;
375 	isl_space *space;
376 	isl_vertices *vertices;
377 	isl_bool covers;
378 
379 	nvar = isl_basic_set_dim(bset, isl_dim_set);
380 	if (nvar < 0)
381 		bset = isl_basic_set_free(bset);
382 	if (nvar == 0)
383 		return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
384 
385 	degree = isl_qpolynomial_degree(poly);
386 	if (degree < -1)
387 		bset = isl_basic_set_free(bset);
388 	if (degree <= 0)
389 		return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
390 
391 	space = isl_basic_set_get_space(bset);
392 	space = isl_space_params(space);
393 	space = isl_space_from_domain(space);
394 	space = isl_space_add_dims(space, isl_dim_set, 1);
395 	data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
396 						data->type);
397 	data->pwf_tight = isl_pw_qpolynomial_fold_zero(space, data->type);
398 	data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
399 	vertices = isl_basic_set_compute_vertices(bset);
400 	if (isl_vertices_foreach_disjoint_cell(vertices,
401 					&bernstein_coefficients_cell, data) < 0)
402 		data->pwf = isl_pw_qpolynomial_fold_free(data->pwf);
403 	isl_vertices_free(vertices);
404 	isl_qpolynomial_free(data->poly);
405 
406 	isl_basic_set_free(bset);
407 	isl_qpolynomial_free(poly);
408 
409 	covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
410 	if (covers < 0)
411 		goto error;
412 
413 	if (tight)
414 		*tight = covers;
415 
416 	if (covers) {
417 		isl_pw_qpolynomial_fold_free(data->pwf);
418 		return data->pwf_tight;
419 	}
420 
421 	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
422 
423 	return data->pwf;
424 error:
425 	isl_pw_qpolynomial_fold_free(data->pwf_tight);
426 	isl_pw_qpolynomial_fold_free(data->pwf);
427 	return NULL;
428 }
429 
430 /* Apply bernstein expansion recursively by working in on len[i]
431  * set variables at a time, with i ranging from n_group - 1 to 0.
432  */
bernstein_coefficients_recursive(__isl_take isl_pw_qpolynomial * pwqp,int n_group,int * len,struct bernstein_data * data,isl_bool * tight)433 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
434 	__isl_take isl_pw_qpolynomial *pwqp,
435 	int n_group, int *len, struct bernstein_data *data, isl_bool *tight)
436 {
437 	int i;
438 	isl_size nparam;
439 	isl_size nvar;
440 	isl_pw_qpolynomial_fold *pwf;
441 
442 	nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
443 	nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
444 	if (nparam < 0 || nvar < 0)
445 		goto error;
446 
447 	pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
448 					isl_dim_in, 0, nvar - len[n_group - 1]);
449 	pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
450 
451 	for (i = n_group - 2; i >= 0; --i) {
452 		nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
453 		if (nparam < 0)
454 			return isl_pw_qpolynomial_fold_free(pwf);
455 		pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
456 				isl_dim_param, nparam - len[i], len[i]);
457 		if (tight && !*tight)
458 			tight = NULL;
459 		pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
460 	}
461 
462 	return pwf;
463 error:
464 	isl_pw_qpolynomial_free(pwqp);
465 	return NULL;
466 }
467 
bernstein_coefficients_factors(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct bernstein_data * data,isl_bool * tight)468 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
469 	__isl_take isl_basic_set *bset,
470 	__isl_take isl_qpolynomial *poly, struct bernstein_data *data,
471 	isl_bool *tight)
472 {
473 	isl_factorizer *f;
474 	isl_set *set;
475 	isl_pw_qpolynomial *pwqp;
476 	isl_pw_qpolynomial_fold *pwf;
477 
478 	f = isl_basic_set_factorizer(bset);
479 	if (!f)
480 		goto error;
481 	if (f->n_group == 0) {
482 		isl_factorizer_free(f);
483 		return bernstein_coefficients_base(bset, poly, data, tight);
484 	}
485 
486 	set = isl_set_from_basic_set(bset);
487 	pwqp = isl_pw_qpolynomial_alloc(set, poly);
488 	pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
489 
490 	pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
491 						tight);
492 
493 	isl_factorizer_free(f);
494 
495 	return pwf;
496 error:
497 	isl_basic_set_free(bset);
498 	isl_qpolynomial_free(poly);
499 	return NULL;
500 }
501 
bernstein_coefficients_full_recursive(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct bernstein_data * data,isl_bool * tight)502 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
503 	__isl_take isl_basic_set *bset,
504 	__isl_take isl_qpolynomial *poly, struct bernstein_data *data,
505 	isl_bool *tight)
506 {
507 	int i;
508 	int *len;
509 	isl_size nvar;
510 	isl_pw_qpolynomial_fold *pwf;
511 	isl_set *set;
512 	isl_pw_qpolynomial *pwqp;
513 
514 	nvar = isl_basic_set_dim(bset, isl_dim_set);
515 	if (nvar < 0 || !poly)
516 		goto error;
517 
518 	len = isl_alloc_array(bset->ctx, int, nvar);
519 	if (nvar && !len)
520 		goto error;
521 
522 	for (i = 0; i < nvar; ++i)
523 		len[i] = 1;
524 
525 	set = isl_set_from_basic_set(bset);
526 	pwqp = isl_pw_qpolynomial_alloc(set, poly);
527 
528 	pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
529 
530 	free(len);
531 
532 	return pwf;
533 error:
534 	isl_basic_set_free(bset);
535 	isl_qpolynomial_free(poly);
536 	return NULL;
537 }
538 
539 /* Compute a bound on the polynomial defined over the parametric polytope
540  * using bernstein expansion and store the result
541  * in bound->pwf and bound->pwf_tight.
542  *
543  * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
544  * the polytope can be factorized and apply bernstein expansion recursively
545  * on the factors.
546  * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
547  * bernstein expansion recursively on each dimension.
548  * Otherwise, we apply bernstein expansion on the entire polytope.
549  */
isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct isl_bound * bound)550 isl_stat isl_qpolynomial_bound_on_domain_bernstein(
551 	__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
552 	struct isl_bound *bound)
553 {
554 	struct bernstein_data data;
555 	isl_pw_qpolynomial_fold *pwf;
556 	isl_size nvar;
557 	isl_bool tight = isl_bool_false;
558 	isl_bool *tp = bound->check_tight ? &tight : NULL;
559 
560 	nvar = isl_basic_set_dim(bset, isl_dim_set);
561 	if (nvar < 0 || !poly)
562 		goto error;
563 
564 	data.type = bound->type;
565 	data.check_tight = bound->check_tight;
566 
567 	if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
568 		pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
569 	else if (nvar > 1 &&
570 	    (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
571 		pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
572 	else
573 		pwf = bernstein_coefficients_base(bset, poly, &data, tp);
574 
575 	if (tight)
576 		return isl_bound_add_tight(bound, pwf);
577 	else
578 		return isl_bound_add(bound, pwf);
579 error:
580 	isl_basic_set_free(bset);
581 	isl_qpolynomial_free(poly);
582 	return isl_stat_error;
583 }
584