1*> \brief <b> CGBSVXX computes the solution to system of linear equations A * X = B for GB matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGBSVXX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbsvxx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbsvxx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbsvxx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
22*                           LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
23*                           RCOND, RPVGRW, BERR, N_ERR_BNDS,
24*                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
25*                           WORK, RWORK, INFO )
26*
27*       .. Scalar Arguments ..
28*       CHARACTER          EQUED, FACT, TRANS
29*       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
30*      $                   N_ERR_BNDS
31*       REAL               RCOND, RPVGRW
32*       ..
33*       .. Array Arguments ..
34*       INTEGER            IPIV( * )
35*       COMPLEX            AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
36*      $                   X( LDX , * ),WORK( * )
37*       REAL               R( * ), C( * ), PARAMS( * ), BERR( * ),
38*      $                   ERR_BNDS_NORM( NRHS, * ),
39*      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
40*       ..
41*
42*
43*> \par Purpose:
44*  =============
45*>
46*> \verbatim
47*>
48*>    CGBSVXX uses the LU factorization to compute the solution to a
49*>    complex system of linear equations  A * X = B,  where A is an
50*>    N-by-N matrix and X and B are N-by-NRHS matrices.
51*>
52*>    If requested, both normwise and maximum componentwise error bounds
53*>    are returned. CGBSVXX will return a solution with a tiny
54*>    guaranteed error (O(eps) where eps is the working machine
55*>    precision) unless the matrix is very ill-conditioned, in which
56*>    case a warning is returned. Relevant condition numbers also are
57*>    calculated and returned.
58*>
59*>    CGBSVXX accepts user-provided factorizations and equilibration
60*>    factors; see the definitions of the FACT and EQUED options.
61*>    Solving with refinement and using a factorization from a previous
62*>    CGBSVXX call will also produce a solution with either O(eps)
63*>    errors or warnings, but we cannot make that claim for general
64*>    user-provided factorizations and equilibration factors if they
65*>    differ from what CGBSVXX would itself produce.
66*> \endverbatim
67*
68*> \par Description:
69*  =================
70*>
71*> \verbatim
72*>
73*>    The following steps are performed:
74*>
75*>    1. If FACT = 'E', real scaling factors are computed to equilibrate
76*>    the system:
77*>
78*>      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
79*>      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
80*>      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
81*>
82*>    Whether or not the system will be equilibrated depends on the
83*>    scaling of the matrix A, but if equilibration is used, A is
84*>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
85*>    or diag(C)*B (if TRANS = 'T' or 'C').
86*>
87*>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
88*>    the matrix A (after equilibration if FACT = 'E') as
89*>
90*>      A = P * L * U,
91*>
92*>    where P is a permutation matrix, L is a unit lower triangular
93*>    matrix, and U is upper triangular.
94*>
95*>    3. If some U(i,i)=0, so that U is exactly singular, then the
96*>    routine returns with INFO = i. Otherwise, the factored form of A
97*>    is used to estimate the condition number of the matrix A (see
98*>    argument RCOND). If the reciprocal of the condition number is less
99*>    than machine precision, the routine still goes on to solve for X
100*>    and compute error bounds as described below.
101*>
102*>    4. The system of equations is solved for X using the factored form
103*>    of A.
104*>
105*>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
106*>    the routine will use iterative refinement to try to get a small
107*>    error and error bounds.  Refinement calculates the residual to at
108*>    least twice the working precision.
109*>
110*>    6. If equilibration was used, the matrix X is premultiplied by
111*>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
112*>    that it solves the original system before equilibration.
113*> \endverbatim
114*
115*  Arguments:
116*  ==========
117*
118*> \verbatim
119*>     Some optional parameters are bundled in the PARAMS array.  These
120*>     settings determine how refinement is performed, but often the
121*>     defaults are acceptable.  If the defaults are acceptable, users
122*>     can pass NPARAMS = 0 which prevents the source code from accessing
123*>     the PARAMS argument.
124*> \endverbatim
125*>
126*> \param[in] FACT
127*> \verbatim
128*>          FACT is CHARACTER*1
129*>     Specifies whether or not the factored form of the matrix A is
130*>     supplied on entry, and if not, whether the matrix A should be
131*>     equilibrated before it is factored.
132*>       = 'F':  On entry, AF and IPIV contain the factored form of A.
133*>               If EQUED is not 'N', the matrix A has been
134*>               equilibrated with scaling factors given by R and C.
135*>               A, AF, and IPIV are not modified.
136*>       = 'N':  The matrix A will be copied to AF and factored.
137*>       = 'E':  The matrix A will be equilibrated if necessary, then
138*>               copied to AF and factored.
139*> \endverbatim
140*>
141*> \param[in] TRANS
142*> \verbatim
143*>          TRANS is CHARACTER*1
144*>     Specifies the form of the system of equations:
145*>       = 'N':  A * X = B     (No transpose)
146*>       = 'T':  A**T * X = B  (Transpose)
147*>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
148*> \endverbatim
149*>
150*> \param[in] N
151*> \verbatim
152*>          N is INTEGER
153*>     The number of linear equations, i.e., the order of the
154*>     matrix A.  N >= 0.
155*> \endverbatim
156*>
157*> \param[in] KL
158*> \verbatim
159*>          KL is INTEGER
160*>     The number of subdiagonals within the band of A.  KL >= 0.
161*> \endverbatim
162*>
163*> \param[in] KU
164*> \verbatim
165*>          KU is INTEGER
166*>     The number of superdiagonals within the band of A.  KU >= 0.
167*> \endverbatim
168*>
169*> \param[in] NRHS
170*> \verbatim
171*>          NRHS is INTEGER
172*>     The number of right hand sides, i.e., the number of columns
173*>     of the matrices B and X.  NRHS >= 0.
174*> \endverbatim
175*>
176*> \param[in,out] AB
177*> \verbatim
178*>          AB is COMPLEX array, dimension (LDAB,N)
179*>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
180*>     The j-th column of A is stored in the j-th column of the
181*>     array AB as follows:
182*>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
183*>
184*>     If FACT = 'F' and EQUED is not 'N', then AB must have been
185*>     equilibrated by the scaling factors in R and/or C.  AB is not
186*>     modified if FACT = 'F' or 'N', or if FACT = 'E' and
187*>     EQUED = 'N' on exit.
188*>
189*>     On exit, if EQUED .ne. 'N', A is scaled as follows:
190*>     EQUED = 'R':  A := diag(R) * A
191*>     EQUED = 'C':  A := A * diag(C)
192*>     EQUED = 'B':  A := diag(R) * A * diag(C).
193*> \endverbatim
194*>
195*> \param[in] LDAB
196*> \verbatim
197*>          LDAB is INTEGER
198*>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
199*> \endverbatim
200*>
201*> \param[in,out] AFB
202*> \verbatim
203*>          AFB is COMPLEX array, dimension (LDAFB,N)
204*>     If FACT = 'F', then AFB is an input argument and on entry
205*>     contains details of the LU factorization of the band matrix
206*>     A, as computed by CGBTRF.  U is stored as an upper triangular
207*>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
208*>     and the multipliers used during the factorization are stored
209*>     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
210*>     the factored form of the equilibrated matrix A.
211*>
212*>     If FACT = 'N', then AF is an output argument and on exit
213*>     returns the factors L and U from the factorization A = P*L*U
214*>     of the original matrix A.
215*>
216*>     If FACT = 'E', then AF is an output argument and on exit
217*>     returns the factors L and U from the factorization A = P*L*U
218*>     of the equilibrated matrix A (see the description of A for
219*>     the form of the equilibrated matrix).
220*> \endverbatim
221*>
222*> \param[in] LDAFB
223*> \verbatim
224*>          LDAFB is INTEGER
225*>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
226*> \endverbatim
227*>
228*> \param[in,out] IPIV
229*> \verbatim
230*>          IPIV is INTEGER array, dimension (N)
231*>     If FACT = 'F', then IPIV is an input argument and on entry
232*>     contains the pivot indices from the factorization A = P*L*U
233*>     as computed by CGETRF; row i of the matrix was interchanged
234*>     with row IPIV(i).
235*>
236*>     If FACT = 'N', then IPIV is an output argument and on exit
237*>     contains the pivot indices from the factorization A = P*L*U
238*>     of the original matrix A.
239*>
240*>     If FACT = 'E', then IPIV is an output argument and on exit
241*>     contains the pivot indices from the factorization A = P*L*U
242*>     of the equilibrated matrix A.
243*> \endverbatim
244*>
245*> \param[in,out] EQUED
246*> \verbatim
247*>          EQUED is CHARACTER*1
248*>     Specifies the form of equilibration that was done.
249*>       = 'N':  No equilibration (always true if FACT = 'N').
250*>       = 'R':  Row equilibration, i.e., A has been premultiplied by
251*>               diag(R).
252*>       = 'C':  Column equilibration, i.e., A has been postmultiplied
253*>               by diag(C).
254*>       = 'B':  Both row and column equilibration, i.e., A has been
255*>               replaced by diag(R) * A * diag(C).
256*>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
257*>     output argument.
258*> \endverbatim
259*>
260*> \param[in,out] R
261*> \verbatim
262*>          R is REAL array, dimension (N)
263*>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
264*>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
265*>     is not accessed.  R is an input argument if FACT = 'F';
266*>     otherwise, R is an output argument.  If FACT = 'F' and
267*>     EQUED = 'R' or 'B', each element of R must be positive.
268*>     If R is output, each element of R is a power of the radix.
269*>     If R is input, each element of R should be a power of the radix
270*>     to ensure a reliable solution and error estimates. Scaling by
271*>     powers of the radix does not cause rounding errors unless the
272*>     result underflows or overflows. Rounding errors during scaling
273*>     lead to refining with a matrix that is not equivalent to the
274*>     input matrix, producing error estimates that may not be
275*>     reliable.
276*> \endverbatim
277*>
278*> \param[in,out] C
279*> \verbatim
280*>          C is REAL array, dimension (N)
281*>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
282*>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
283*>     is not accessed.  C is an input argument if FACT = 'F';
284*>     otherwise, C is an output argument.  If FACT = 'F' and
285*>     EQUED = 'C' or 'B', each element of C must be positive.
286*>     If C is output, each element of C is a power of the radix.
287*>     If C is input, each element of C should be a power of the radix
288*>     to ensure a reliable solution and error estimates. Scaling by
289*>     powers of the radix does not cause rounding errors unless the
290*>     result underflows or overflows. Rounding errors during scaling
291*>     lead to refining with a matrix that is not equivalent to the
292*>     input matrix, producing error estimates that may not be
293*>     reliable.
294*> \endverbatim
295*>
296*> \param[in,out] B
297*> \verbatim
298*>          B is COMPLEX array, dimension (LDB,NRHS)
299*>     On entry, the N-by-NRHS right hand side matrix B.
300*>     On exit,
301*>     if EQUED = 'N', B is not modified;
302*>     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
303*>        diag(R)*B;
304*>     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
305*>        overwritten by diag(C)*B.
306*> \endverbatim
307*>
308*> \param[in] LDB
309*> \verbatim
310*>          LDB is INTEGER
311*>     The leading dimension of the array B.  LDB >= max(1,N).
312*> \endverbatim
313*>
314*> \param[out] X
315*> \verbatim
316*>          X is COMPLEX array, dimension (LDX,NRHS)
317*>     If INFO = 0, the N-by-NRHS solution matrix X to the original
318*>     system of equations.  Note that A and B are modified on exit
319*>     if EQUED .ne. 'N', and the solution to the equilibrated system is
320*>     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
321*>     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
322*> \endverbatim
323*>
324*> \param[in] LDX
325*> \verbatim
326*>          LDX is INTEGER
327*>     The leading dimension of the array X.  LDX >= max(1,N).
328*> \endverbatim
329*>
330*> \param[out] RCOND
331*> \verbatim
332*>          RCOND is REAL
333*>     Reciprocal scaled condition number.  This is an estimate of the
334*>     reciprocal Skeel condition number of the matrix A after
335*>     equilibration (if done).  If this is less than the machine
336*>     precision (in particular, if it is zero), the matrix is singular
337*>     to working precision.  Note that the error may still be small even
338*>     if this number is very small and the matrix appears ill-
339*>     conditioned.
340*> \endverbatim
341*>
342*> \param[out] RPVGRW
343*> \verbatim
344*>          RPVGRW is REAL
345*>     Reciprocal pivot growth.  On exit, this contains the reciprocal
346*>     pivot growth factor norm(A)/norm(U). The "max absolute element"
347*>     norm is used.  If this is much less than 1, then the stability of
348*>     the LU factorization of the (equilibrated) matrix A could be poor.
349*>     This also means that the solution X, estimated condition numbers,
350*>     and error bounds could be unreliable. If factorization fails with
351*>     0<INFO<=N, then this contains the reciprocal pivot growth factor
352*>     for the leading INFO columns of A.  In CGESVX, this quantity is
353*>     returned in RWORK(1).
354*> \endverbatim
355*>
356*> \param[out] BERR
357*> \verbatim
358*>          BERR is REAL array, dimension (NRHS)
359*>     Componentwise relative backward error.  This is the
360*>     componentwise relative backward error of each solution vector X(j)
361*>     (i.e., the smallest relative change in any element of A or B that
362*>     makes X(j) an exact solution).
363*> \endverbatim
364*>
365*> \param[in] N_ERR_BNDS
366*> \verbatim
367*>          N_ERR_BNDS is INTEGER
368*>     Number of error bounds to return for each right hand side
369*>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
370*>     ERR_BNDS_COMP below.
371*> \endverbatim
372*>
373*> \param[out] ERR_BNDS_NORM
374*> \verbatim
375*>          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
376*>     For each right-hand side, this array contains information about
377*>     various error bounds and condition numbers corresponding to the
378*>     normwise relative error, which is defined as follows:
379*>
380*>     Normwise relative error in the ith solution vector:
381*>             max_j (abs(XTRUE(j,i) - X(j,i)))
382*>            ------------------------------
383*>                  max_j abs(X(j,i))
384*>
385*>     The array is indexed by the type of error information as described
386*>     below. There currently are up to three pieces of information
387*>     returned.
388*>
389*>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
390*>     right-hand side.
391*>
392*>     The second index in ERR_BNDS_NORM(:,err) contains the following
393*>     three fields:
394*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
395*>              reciprocal condition number is less than the threshold
396*>              sqrt(n) * slamch('Epsilon').
397*>
398*>     err = 2 "Guaranteed" error bound: The estimated forward error,
399*>              almost certainly within a factor of 10 of the true error
400*>              so long as the next entry is greater than the threshold
401*>              sqrt(n) * slamch('Epsilon'). This error bound should only
402*>              be trusted if the previous boolean is true.
403*>
404*>     err = 3  Reciprocal condition number: Estimated normwise
405*>              reciprocal condition number.  Compared with the threshold
406*>              sqrt(n) * slamch('Epsilon') to determine if the error
407*>              estimate is "guaranteed". These reciprocal condition
408*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
409*>              appropriately scaled matrix Z.
410*>              Let Z = S*A, where S scales each row by a power of the
411*>              radix so all absolute row sums of Z are approximately 1.
412*>
413*>     See Lapack Working Note 165 for further details and extra
414*>     cautions.
415*> \endverbatim
416*>
417*> \param[out] ERR_BNDS_COMP
418*> \verbatim
419*>          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
420*>     For each right-hand side, this array contains information about
421*>     various error bounds and condition numbers corresponding to the
422*>     componentwise relative error, which is defined as follows:
423*>
424*>     Componentwise relative error in the ith solution vector:
425*>                    abs(XTRUE(j,i) - X(j,i))
426*>             max_j ----------------------
427*>                         abs(X(j,i))
428*>
429*>     The array is indexed by the right-hand side i (on which the
430*>     componentwise relative error depends), and the type of error
431*>     information as described below. There currently are up to three
432*>     pieces of information returned for each right-hand side. If
433*>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
434*>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
435*>     the first (:,N_ERR_BNDS) entries are returned.
436*>
437*>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
438*>     right-hand side.
439*>
440*>     The second index in ERR_BNDS_COMP(:,err) contains the following
441*>     three fields:
442*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
443*>              reciprocal condition number is less than the threshold
444*>              sqrt(n) * slamch('Epsilon').
445*>
446*>     err = 2 "Guaranteed" error bound: The estimated forward error,
447*>              almost certainly within a factor of 10 of the true error
448*>              so long as the next entry is greater than the threshold
449*>              sqrt(n) * slamch('Epsilon'). This error bound should only
450*>              be trusted if the previous boolean is true.
451*>
452*>     err = 3  Reciprocal condition number: Estimated componentwise
453*>              reciprocal condition number.  Compared with the threshold
454*>              sqrt(n) * slamch('Epsilon') to determine if the error
455*>              estimate is "guaranteed". These reciprocal condition
456*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
457*>              appropriately scaled matrix Z.
458*>              Let Z = S*(A*diag(x)), where x is the solution for the
459*>              current right-hand side and S scales each row of
460*>              A*diag(x) by a power of the radix so all absolute row
461*>              sums of Z are approximately 1.
462*>
463*>     See Lapack Working Note 165 for further details and extra
464*>     cautions.
465*> \endverbatim
466*>
467*> \param[in] NPARAMS
468*> \verbatim
469*>          NPARAMS is INTEGER
470*>     Specifies the number of parameters set in PARAMS.  If <= 0, the
471*>     PARAMS array is never referenced and default values are used.
472*> \endverbatim
473*>
474*> \param[in,out] PARAMS
475*> \verbatim
476*>          PARAMS is REAL array, dimension NPARAMS
477*>     Specifies algorithm parameters.  If an entry is < 0.0, then
478*>     that entry will be filled with default value used for that
479*>     parameter.  Only positions up to NPARAMS are accessed; defaults
480*>     are used for higher-numbered parameters.
481*>
482*>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
483*>            refinement or not.
484*>         Default: 1.0
485*>            = 0.0:  No refinement is performed, and no error bounds are
486*>                    computed.
487*>            = 1.0:  Use the double-precision refinement algorithm,
488*>                    possibly with doubled-single computations if the
489*>                    compilation environment does not support DOUBLE
490*>                    PRECISION.
491*>              (other values are reserved for future use)
492*>
493*>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
494*>            computations allowed for refinement.
495*>         Default: 10
496*>         Aggressive: Set to 100 to permit convergence using approximate
497*>                     factorizations or factorizations other than LU. If
498*>                     the factorization uses a technique other than
499*>                     Gaussian elimination, the guarantees in
500*>                     err_bnds_norm and err_bnds_comp may no longer be
501*>                     trustworthy.
502*>
503*>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
504*>            will attempt to find a solution with small componentwise
505*>            relative error in the double-precision algorithm.  Positive
506*>            is true, 0.0 is false.
507*>         Default: 1.0 (attempt componentwise convergence)
508*> \endverbatim
509*>
510*> \param[out] WORK
511*> \verbatim
512*>          WORK is COMPLEX array, dimension (2*N)
513*> \endverbatim
514*>
515*> \param[out] RWORK
516*> \verbatim
517*>          RWORK is REAL array, dimension (2*N)
518*> \endverbatim
519*>
520*> \param[out] INFO
521*> \verbatim
522*>          INFO is INTEGER
523*>       = 0:  Successful exit. The solution to every right-hand side is
524*>         guaranteed.
525*>       < 0:  If INFO = -i, the i-th argument had an illegal value
526*>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
527*>         has been completed, but the factor U is exactly singular, so
528*>         the solution and error bounds could not be computed. RCOND = 0
529*>         is returned.
530*>       = N+J: The solution corresponding to the Jth right-hand side is
531*>         not guaranteed. The solutions corresponding to other right-
532*>         hand sides K with K > J may not be guaranteed as well, but
533*>         only the first such right-hand side is reported. If a small
534*>         componentwise error is not requested (PARAMS(3) = 0.0) then
535*>         the Jth right-hand side is the first with a normwise error
536*>         bound that is not guaranteed (the smallest J such
537*>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
538*>         the Jth right-hand side is the first with either a normwise or
539*>         componentwise error bound that is not guaranteed (the smallest
540*>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
541*>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
542*>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
543*>         about all of the right-hand sides check ERR_BNDS_NORM or
544*>         ERR_BNDS_COMP.
545*> \endverbatim
546*
547*  Authors:
548*  ========
549*
550*> \author Univ. of Tennessee
551*> \author Univ. of California Berkeley
552*> \author Univ. of Colorado Denver
553*> \author NAG Ltd.
554*
555*> \ingroup complexGBsolve
556*
557*  =====================================================================
558      SUBROUTINE CGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
559     $                    LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
560     $                    RCOND, RPVGRW, BERR, N_ERR_BNDS,
561     $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
562     $                    WORK, RWORK, INFO )
563*
564*  -- LAPACK driver routine --
565*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
566*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
567*
568*     .. Scalar Arguments ..
569      CHARACTER          EQUED, FACT, TRANS
570      INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
571     $                   N_ERR_BNDS
572      REAL               RCOND, RPVGRW
573*     ..
574*     .. Array Arguments ..
575      INTEGER            IPIV( * )
576      COMPLEX            AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
577     $                   X( LDX , * ),WORK( * )
578      REAL               R( * ), C( * ), PARAMS( * ), BERR( * ),
579     $                   ERR_BNDS_NORM( NRHS, * ),
580     $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
581*     ..
582*
583*  ==================================================================
584*
585*     .. Parameters ..
586      REAL               ZERO, ONE
587      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
588      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
589      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
590      INTEGER            CMP_ERR_I, PIV_GROWTH_I
591      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
592     $                   BERR_I = 3 )
593      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
594      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
595     $                   PIV_GROWTH_I = 9 )
596*     ..
597*     .. Local Scalars ..
598      LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
599      INTEGER            INFEQU, I, J, KL, KU
600      REAL               AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
601     $                   ROWCND, SMLNUM
602*     ..
603*     .. External Functions ..
604      EXTERNAL           LSAME, SLAMCH, CLA_GBRPVGRW
605      LOGICAL            LSAME
606      REAL               SLAMCH, CLA_GBRPVGRW
607*     ..
608*     .. External Subroutines ..
609      EXTERNAL           CGBEQUB, CGBTRF, CGBTRS, CLACPY, CLAQGB,
610     $                   XERBLA, CLASCL2, CGBRFSX
611*     ..
612*     .. Intrinsic Functions ..
613      INTRINSIC          MAX, MIN
614*     ..
615*     .. Executable Statements ..
616*
617      INFO = 0
618      NOFACT = LSAME( FACT, 'N' )
619      EQUIL = LSAME( FACT, 'E' )
620      NOTRAN = LSAME( TRANS, 'N' )
621      SMLNUM = SLAMCH( 'Safe minimum' )
622      BIGNUM = ONE / SMLNUM
623      IF( NOFACT .OR. EQUIL ) THEN
624         EQUED = 'N'
625         ROWEQU = .FALSE.
626         COLEQU = .FALSE.
627      ELSE
628         ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
629         COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
630      END IF
631*
632*     Default is failure.  If an input parameter is wrong or
633*     factorization fails, make everything look horrible.  Only the
634*     pivot growth is set here, the rest is initialized in CGBRFSX.
635*
636      RPVGRW = ZERO
637*
638*     Test the input parameters.  PARAMS is not tested until CGERFSX.
639*
640      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
641     $     LSAME( FACT, 'F' ) ) THEN
642         INFO = -1
643      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
644     $        LSAME( TRANS, 'C' ) ) THEN
645         INFO = -2
646      ELSE IF( N.LT.0 ) THEN
647         INFO = -3
648      ELSE IF( KL.LT.0 ) THEN
649         INFO = -4
650      ELSE IF( KU.LT.0 ) THEN
651         INFO = -5
652      ELSE IF( NRHS.LT.0 ) THEN
653         INFO = -6
654      ELSE IF( LDAB.LT.KL+KU+1 ) THEN
655         INFO = -8
656      ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
657         INFO = -10
658      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
659     $        ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
660         INFO = -12
661      ELSE
662         IF( ROWEQU ) THEN
663            RCMIN = BIGNUM
664            RCMAX = ZERO
665            DO 10 J = 1, N
666               RCMIN = MIN( RCMIN, R( J ) )
667               RCMAX = MAX( RCMAX, R( J ) )
668 10         CONTINUE
669            IF( RCMIN.LE.ZERO ) THEN
670               INFO = -13
671            ELSE IF( N.GT.0 ) THEN
672               ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
673            ELSE
674               ROWCND = ONE
675            END IF
676         END IF
677         IF( COLEQU .AND. INFO.EQ.0 ) THEN
678            RCMIN = BIGNUM
679            RCMAX = ZERO
680            DO 20 J = 1, N
681               RCMIN = MIN( RCMIN, C( J ) )
682               RCMAX = MAX( RCMAX, C( J ) )
683 20         CONTINUE
684            IF( RCMIN.LE.ZERO ) THEN
685               INFO = -14
686            ELSE IF( N.GT.0 ) THEN
687               COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
688            ELSE
689               COLCND = ONE
690            END IF
691         END IF
692         IF( INFO.EQ.0 ) THEN
693            IF( LDB.LT.MAX( 1, N ) ) THEN
694               INFO = -15
695            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
696               INFO = -16
697            END IF
698         END IF
699      END IF
700*
701      IF( INFO.NE.0 ) THEN
702         CALL XERBLA( 'CGBSVXX', -INFO )
703         RETURN
704      END IF
705*
706      IF( EQUIL ) THEN
707*
708*     Compute row and column scalings to equilibrate the matrix A.
709*
710         CALL CGBEQUB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
711     $        AMAX, INFEQU )
712         IF( INFEQU.EQ.0 ) THEN
713*
714*     Equilibrate the matrix.
715*
716            CALL CLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
717     $           AMAX, EQUED )
718            ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
719            COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
720         END IF
721*
722*     If the scaling factors are not applied, set them to 1.0.
723*
724         IF ( .NOT.ROWEQU ) THEN
725            DO J = 1, N
726               R( J ) = 1.0
727            END DO
728         END IF
729         IF ( .NOT.COLEQU ) THEN
730            DO J = 1, N
731               C( J ) = 1.0
732            END DO
733         END IF
734      END IF
735*
736*     Scale the right-hand side.
737*
738      IF( NOTRAN ) THEN
739         IF( ROWEQU ) CALL CLASCL2( N, NRHS, R, B, LDB )
740      ELSE
741         IF( COLEQU ) CALL CLASCL2( N, NRHS, C, B, LDB )
742      END IF
743*
744      IF( NOFACT .OR. EQUIL ) THEN
745*
746*        Compute the LU factorization of A.
747*
748         DO 40, J = 1, N
749            DO 30, I = KL+1, 2*KL+KU+1
750               AFB( I, J ) = AB( I-KL, J )
751 30         CONTINUE
752 40      CONTINUE
753         CALL CGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
754*
755*        Return if INFO is non-zero.
756*
757         IF( INFO.GT.0 ) THEN
758*
759*           Pivot in column INFO is exactly 0
760*           Compute the reciprocal pivot growth factor of the
761*           leading rank-deficient INFO columns of A.
762*
763            RPVGRW = CLA_GBRPVGRW( N, KL, KU, INFO, AB, LDAB, AFB,
764     $           LDAFB )
765            RETURN
766         END IF
767      END IF
768*
769*     Compute the reciprocal pivot growth factor RPVGRW.
770*
771      RPVGRW = CLA_GBRPVGRW( N, KL, KU, N, AB, LDAB, AFB, LDAFB )
772*
773*     Compute the solution matrix X.
774*
775      CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
776      CALL CGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
777     $     INFO )
778*
779*     Use iterative refinement to improve the computed solution and
780*     compute error bounds and backward error estimates for it.
781*
782      CALL CGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
783     $     IPIV, R, C, B, LDB, X, LDX, RCOND, BERR,
784     $     N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
785     $     WORK, RWORK, INFO )
786
787*
788*     Scale solutions.
789*
790      IF ( COLEQU .AND. NOTRAN ) THEN
791         CALL CLASCL2( N, NRHS, C, X, LDX )
792      ELSE IF ( ROWEQU .AND. .NOT.NOTRAN ) THEN
793         CALL CLASCL2( N, NRHS, R, X, LDX )
794      END IF
795*
796      RETURN
797*
798*     End of CGBSVXX
799*
800      END
801