1*> \brief \b CGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGEHD2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgehd2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgehd2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgehd2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            IHI, ILO, INFO, LDA, N
25*       ..
26*       .. Array Arguments ..
27*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
28*       ..
29*
30*
31*> \par Purpose:
32*  =============
33*>
34*> \verbatim
35*>
36*> CGEHD2 reduces a complex general matrix A to upper Hessenberg form H
37*> by a unitary similarity transformation:  Q**H * A * Q = H .
38*> \endverbatim
39*
40*  Arguments:
41*  ==========
42*
43*> \param[in] N
44*> \verbatim
45*>          N is INTEGER
46*>          The order of the matrix A.  N >= 0.
47*> \endverbatim
48*>
49*> \param[in] ILO
50*> \verbatim
51*>          ILO is INTEGER
52*> \endverbatim
53*>
54*> \param[in] IHI
55*> \verbatim
56*>          IHI is INTEGER
57*>
58*>          It is assumed that A is already upper triangular in rows
59*>          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
60*>          set by a previous call to CGEBAL; otherwise they should be
61*>          set to 1 and N respectively. See Further Details.
62*>          1 <= ILO <= IHI <= max(1,N).
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*>          A is COMPLEX array, dimension (LDA,N)
68*>          On entry, the n by n general matrix to be reduced.
69*>          On exit, the upper triangle and the first subdiagonal of A
70*>          are overwritten with the upper Hessenberg matrix H, and the
71*>          elements below the first subdiagonal, with the array TAU,
72*>          represent the unitary matrix Q as a product of elementary
73*>          reflectors. See Further Details.
74*> \endverbatim
75*>
76*> \param[in] LDA
77*> \verbatim
78*>          LDA is INTEGER
79*>          The leading dimension of the array A.  LDA >= max(1,N).
80*> \endverbatim
81*>
82*> \param[out] TAU
83*> \verbatim
84*>          TAU is COMPLEX array, dimension (N-1)
85*>          The scalar factors of the elementary reflectors (see Further
86*>          Details).
87*> \endverbatim
88*>
89*> \param[out] WORK
90*> \verbatim
91*>          WORK is COMPLEX array, dimension (N)
92*> \endverbatim
93*>
94*> \param[out] INFO
95*> \verbatim
96*>          INFO is INTEGER
97*>          = 0:  successful exit
98*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
99*> \endverbatim
100*
101*  Authors:
102*  ========
103*
104*> \author Univ. of Tennessee
105*> \author Univ. of California Berkeley
106*> \author Univ. of Colorado Denver
107*> \author NAG Ltd.
108*
109*> \ingroup complexGEcomputational
110*
111*> \par Further Details:
112*  =====================
113*>
114*> \verbatim
115*>
116*>  The matrix Q is represented as a product of (ihi-ilo) elementary
117*>  reflectors
118*>
119*>     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
120*>
121*>  Each H(i) has the form
122*>
123*>     H(i) = I - tau * v * v**H
124*>
125*>  where tau is a complex scalar, and v is a complex vector with
126*>  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
127*>  exit in A(i+2:ihi,i), and tau in TAU(i).
128*>
129*>  The contents of A are illustrated by the following example, with
130*>  n = 7, ilo = 2 and ihi = 6:
131*>
132*>  on entry,                        on exit,
133*>
134*>  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
135*>  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
136*>  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
137*>  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
138*>  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
139*>  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
140*>  (                         a )    (                          a )
141*>
142*>  where a denotes an element of the original matrix A, h denotes a
143*>  modified element of the upper Hessenberg matrix H, and vi denotes an
144*>  element of the vector defining H(i).
145*> \endverbatim
146*>
147*  =====================================================================
148      SUBROUTINE CGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
149*
150*  -- LAPACK computational routine --
151*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
152*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
153*
154*     .. Scalar Arguments ..
155      INTEGER            IHI, ILO, INFO, LDA, N
156*     ..
157*     .. Array Arguments ..
158      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
159*     ..
160*
161*  =====================================================================
162*
163*     .. Parameters ..
164      COMPLEX            ONE
165      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
166*     ..
167*     .. Local Scalars ..
168      INTEGER            I
169      COMPLEX            ALPHA
170*     ..
171*     .. External Subroutines ..
172      EXTERNAL           CLARF, CLARFG, XERBLA
173*     ..
174*     .. Intrinsic Functions ..
175      INTRINSIC          CONJG, MAX, MIN
176*     ..
177*     .. Executable Statements ..
178*
179*     Test the input parameters
180*
181      INFO = 0
182      IF( N.LT.0 ) THEN
183         INFO = -1
184      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
185         INFO = -2
186      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
187         INFO = -3
188      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
189         INFO = -5
190      END IF
191      IF( INFO.NE.0 ) THEN
192         CALL XERBLA( 'CGEHD2', -INFO )
193         RETURN
194      END IF
195*
196      DO 10 I = ILO, IHI - 1
197*
198*        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
199*
200         ALPHA = A( I+1, I )
201         CALL CLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) )
202         A( I+1, I ) = ONE
203*
204*        Apply H(i) to A(1:ihi,i+1:ihi) from the right
205*
206         CALL CLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
207     $               A( 1, I+1 ), LDA, WORK )
208*
209*        Apply H(i)**H to A(i+1:ihi,i+1:n) from the left
210*
211         CALL CLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1,
212     $               CONJG( TAU( I ) ), A( I+1, I+1 ), LDA, WORK )
213*
214         A( I+1, I ) = ALPHA
215   10 CONTINUE
216*
217      RETURN
218*
219*     End of CGEHD2
220*
221      END
222