1*> \brief \b CLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLAHR2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahr2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahr2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahr2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            K, LDA, LDT, LDY, N, NB
25*       ..
26*       .. Array Arguments ..
27*       COMPLEX            A( LDA, * ), T( LDT, NB ), TAU( NB ),
28*      $                   Y( LDY, NB )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> CLAHR2 reduces the first NB columns of A complex general n-BY-(n-k+1)
38*> matrix A so that elements below the k-th subdiagonal are zero. The
39*> reduction is performed by an unitary similarity transformation
40*> Q**H * A * Q. The routine returns the matrices V and T which determine
41*> Q as a block reflector I - V*T*v**H, and also the matrix Y = A * V * T.
42*>
43*> This is an auxiliary routine called by CGEHRD.
44*> \endverbatim
45*
46*  Arguments:
47*  ==========
48*
49*> \param[in] N
50*> \verbatim
51*>          N is INTEGER
52*>          The order of the matrix A.
53*> \endverbatim
54*>
55*> \param[in] K
56*> \verbatim
57*>          K is INTEGER
58*>          The offset for the reduction. Elements below the k-th
59*>          subdiagonal in the first NB columns are reduced to zero.
60*>          K < N.
61*> \endverbatim
62*>
63*> \param[in] NB
64*> \verbatim
65*>          NB is INTEGER
66*>          The number of columns to be reduced.
67*> \endverbatim
68*>
69*> \param[in,out] A
70*> \verbatim
71*>          A is COMPLEX array, dimension (LDA,N-K+1)
72*>          On entry, the n-by-(n-k+1) general matrix A.
73*>          On exit, the elements on and above the k-th subdiagonal in
74*>          the first NB columns are overwritten with the corresponding
75*>          elements of the reduced matrix; the elements below the k-th
76*>          subdiagonal, with the array TAU, represent the matrix Q as a
77*>          product of elementary reflectors. The other columns of A are
78*>          unchanged. See Further Details.
79*> \endverbatim
80*>
81*> \param[in] LDA
82*> \verbatim
83*>          LDA is INTEGER
84*>          The leading dimension of the array A.  LDA >= max(1,N).
85*> \endverbatim
86*>
87*> \param[out] TAU
88*> \verbatim
89*>          TAU is COMPLEX array, dimension (NB)
90*>          The scalar factors of the elementary reflectors. See Further
91*>          Details.
92*> \endverbatim
93*>
94*> \param[out] T
95*> \verbatim
96*>          T is COMPLEX array, dimension (LDT,NB)
97*>          The upper triangular matrix T.
98*> \endverbatim
99*>
100*> \param[in] LDT
101*> \verbatim
102*>          LDT is INTEGER
103*>          The leading dimension of the array T.  LDT >= NB.
104*> \endverbatim
105*>
106*> \param[out] Y
107*> \verbatim
108*>          Y is COMPLEX array, dimension (LDY,NB)
109*>          The n-by-nb matrix Y.
110*> \endverbatim
111*>
112*> \param[in] LDY
113*> \verbatim
114*>          LDY is INTEGER
115*>          The leading dimension of the array Y. LDY >= N.
116*> \endverbatim
117*
118*  Authors:
119*  ========
120*
121*> \author Univ. of Tennessee
122*> \author Univ. of California Berkeley
123*> \author Univ. of Colorado Denver
124*> \author NAG Ltd.
125*
126*> \ingroup complexOTHERauxiliary
127*
128*> \par Further Details:
129*  =====================
130*>
131*> \verbatim
132*>
133*>  The matrix Q is represented as a product of nb elementary reflectors
134*>
135*>     Q = H(1) H(2) . . . H(nb).
136*>
137*>  Each H(i) has the form
138*>
139*>     H(i) = I - tau * v * v**H
140*>
141*>  where tau is a complex scalar, and v is a complex vector with
142*>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
143*>  A(i+k+1:n,i), and tau in TAU(i).
144*>
145*>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
146*>  V which is needed, with T and Y, to apply the transformation to the
147*>  unreduced part of the matrix, using an update of the form:
148*>  A := (I - V*T*V**H) * (A - Y*V**H).
149*>
150*>  The contents of A on exit are illustrated by the following example
151*>  with n = 7, k = 3 and nb = 2:
152*>
153*>     ( a   a   a   a   a )
154*>     ( a   a   a   a   a )
155*>     ( a   a   a   a   a )
156*>     ( h   h   a   a   a )
157*>     ( v1  h   a   a   a )
158*>     ( v1  v2  a   a   a )
159*>     ( v1  v2  a   a   a )
160*>
161*>  where a denotes an element of the original matrix A, h denotes a
162*>  modified element of the upper Hessenberg matrix H, and vi denotes an
163*>  element of the vector defining H(i).
164*>
165*>  This subroutine is a slight modification of LAPACK-3.0's CLAHRD
166*>  incorporating improvements proposed by Quintana-Orti and Van de
167*>  Gejin. Note that the entries of A(1:K,2:NB) differ from those
168*>  returned by the original LAPACK-3.0's CLAHRD routine. (This
169*>  subroutine is not backward compatible with LAPACK-3.0's CLAHRD.)
170*> \endverbatim
171*
172*> \par References:
173*  ================
174*>
175*>  Gregorio Quintana-Orti and Robert van de Geijn, "Improving the
176*>  performance of reduction to Hessenberg form," ACM Transactions on
177*>  Mathematical Software, 32(2):180-194, June 2006.
178*>
179*  =====================================================================
180      SUBROUTINE CLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
181*
182*  -- LAPACK auxiliary routine --
183*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
184*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
185*
186*     .. Scalar Arguments ..
187      INTEGER            K, LDA, LDT, LDY, N, NB
188*     ..
189*     .. Array Arguments ..
190      COMPLEX            A( LDA, * ), T( LDT, NB ), TAU( NB ),
191     $                   Y( LDY, NB )
192*     ..
193*
194*  =====================================================================
195*
196*     .. Parameters ..
197      COMPLEX            ZERO, ONE
198      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
199     $                     ONE = ( 1.0E+0, 0.0E+0 ) )
200*     ..
201*     .. Local Scalars ..
202      INTEGER            I
203      COMPLEX            EI
204*     ..
205*     .. External Subroutines ..
206      EXTERNAL           CAXPY, CCOPY, CGEMM, CGEMV, CLACPY,
207     $                   CLARFG, CSCAL, CTRMM, CTRMV, CLACGV
208*     ..
209*     .. Intrinsic Functions ..
210      INTRINSIC          MIN
211*     ..
212*     .. Executable Statements ..
213*
214*     Quick return if possible
215*
216      IF( N.LE.1 )
217     $   RETURN
218*
219      DO 10 I = 1, NB
220         IF( I.GT.1 ) THEN
221*
222*           Update A(K+1:N,I)
223*
224*           Update I-th column of A - Y * V**H
225*
226            CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
227            CALL CGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, Y(K+1,1), LDY,
228     $                  A( K+I-1, 1 ), LDA, ONE, A( K+1, I ), 1 )
229            CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
230*
231*           Apply I - V * T**H * V**H to this column (call it b) from the
232*           left, using the last column of T as workspace
233*
234*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
235*                    ( V2 )             ( b2 )
236*
237*           where V1 is unit lower triangular
238*
239*           w := V1**H * b1
240*
241            CALL CCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
242            CALL CTRMV( 'Lower', 'Conjugate transpose', 'UNIT',
243     $                  I-1, A( K+1, 1 ),
244     $                  LDA, T( 1, NB ), 1 )
245*
246*           w := w + V2**H * b2
247*
248            CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1,
249     $                  ONE, A( K+I, 1 ),
250     $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
251*
252*           w := T**H * w
253*
254            CALL CTRMV( 'Upper', 'Conjugate transpose', 'NON-UNIT',
255     $                  I-1, T, LDT,
256     $                  T( 1, NB ), 1 )
257*
258*           b2 := b2 - V2*w
259*
260            CALL CGEMV( 'NO TRANSPOSE', N-K-I+1, I-1, -ONE,
261     $                  A( K+I, 1 ),
262     $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
263*
264*           b1 := b1 - V1*w
265*
266            CALL CTRMV( 'Lower', 'NO TRANSPOSE',
267     $                  'UNIT', I-1,
268     $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
269            CALL CAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
270*
271            A( K+I-1, I-1 ) = EI
272         END IF
273*
274*        Generate the elementary reflector H(I) to annihilate
275*        A(K+I+1:N,I)
276*
277         CALL CLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
278     $                TAU( I ) )
279         EI = A( K+I, I )
280         A( K+I, I ) = ONE
281*
282*        Compute  Y(K+1:N,I)
283*
284         CALL CGEMV( 'NO TRANSPOSE', N-K, N-K-I+1,
285     $               ONE, A( K+1, I+1 ),
286     $               LDA, A( K+I, I ), 1, ZERO, Y( K+1, I ), 1 )
287         CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1,
288     $               ONE, A( K+I, 1 ), LDA,
289     $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
290         CALL CGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE,
291     $               Y( K+1, 1 ), LDY,
292     $               T( 1, I ), 1, ONE, Y( K+1, I ), 1 )
293         CALL CSCAL( N-K, TAU( I ), Y( K+1, I ), 1 )
294*
295*        Compute T(1:I,I)
296*
297         CALL CSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
298         CALL CTRMV( 'Upper', 'No Transpose', 'NON-UNIT',
299     $               I-1, T, LDT,
300     $               T( 1, I ), 1 )
301         T( I, I ) = TAU( I )
302*
303   10 CONTINUE
304      A( K+NB, NB ) = EI
305*
306*     Compute Y(1:K,1:NB)
307*
308      CALL CLACPY( 'ALL', K, NB, A( 1, 2 ), LDA, Y, LDY )
309      CALL CTRMM( 'RIGHT', 'Lower', 'NO TRANSPOSE',
310     $            'UNIT', K, NB,
311     $            ONE, A( K+1, 1 ), LDA, Y, LDY )
312      IF( N.GT.K+NB )
313     $   CALL CGEMM( 'NO TRANSPOSE', 'NO TRANSPOSE', K,
314     $               NB, N-K-NB, ONE,
315     $               A( 1, 2+NB ), LDA, A( K+1+NB, 1 ), LDA, ONE, Y,
316     $               LDY )
317      CALL CTRMM( 'RIGHT', 'Upper', 'NO TRANSPOSE',
318     $            'NON-UNIT', K, NB,
319     $            ONE, T, LDT, Y, LDY )
320*
321      RETURN
322*
323*     End of CLAHR2
324*
325      END
326