1*> \brief \b CLASR applies a sequence of plane rotations to a general rectangular matrix. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CLASR + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clasr.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clasr.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clasr.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) 22* 23* .. Scalar Arguments .. 24* CHARACTER DIRECT, PIVOT, SIDE 25* INTEGER LDA, M, N 26* .. 27* .. Array Arguments .. 28* REAL C( * ), S( * ) 29* COMPLEX A( LDA, * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> CLASR applies a sequence of real plane rotations to a complex matrix 39*> A, from either the left or the right. 40*> 41*> When SIDE = 'L', the transformation takes the form 42*> 43*> A := P*A 44*> 45*> and when SIDE = 'R', the transformation takes the form 46*> 47*> A := A*P**T 48*> 49*> where P is an orthogonal matrix consisting of a sequence of z plane 50*> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', 51*> and P**T is the transpose of P. 52*> 53*> When DIRECT = 'F' (Forward sequence), then 54*> 55*> P = P(z-1) * ... * P(2) * P(1) 56*> 57*> and when DIRECT = 'B' (Backward sequence), then 58*> 59*> P = P(1) * P(2) * ... * P(z-1) 60*> 61*> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation 62*> 63*> R(k) = ( c(k) s(k) ) 64*> = ( -s(k) c(k) ). 65*> 66*> When PIVOT = 'V' (Variable pivot), the rotation is performed 67*> for the plane (k,k+1), i.e., P(k) has the form 68*> 69*> P(k) = ( 1 ) 70*> ( ... ) 71*> ( 1 ) 72*> ( c(k) s(k) ) 73*> ( -s(k) c(k) ) 74*> ( 1 ) 75*> ( ... ) 76*> ( 1 ) 77*> 78*> where R(k) appears as a rank-2 modification to the identity matrix in 79*> rows and columns k and k+1. 80*> 81*> When PIVOT = 'T' (Top pivot), the rotation is performed for the 82*> plane (1,k+1), so P(k) has the form 83*> 84*> P(k) = ( c(k) s(k) ) 85*> ( 1 ) 86*> ( ... ) 87*> ( 1 ) 88*> ( -s(k) c(k) ) 89*> ( 1 ) 90*> ( ... ) 91*> ( 1 ) 92*> 93*> where R(k) appears in rows and columns 1 and k+1. 94*> 95*> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is 96*> performed for the plane (k,z), giving P(k) the form 97*> 98*> P(k) = ( 1 ) 99*> ( ... ) 100*> ( 1 ) 101*> ( c(k) s(k) ) 102*> ( 1 ) 103*> ( ... ) 104*> ( 1 ) 105*> ( -s(k) c(k) ) 106*> 107*> where R(k) appears in rows and columns k and z. The rotations are 108*> performed without ever forming P(k) explicitly. 109*> \endverbatim 110* 111* Arguments: 112* ========== 113* 114*> \param[in] SIDE 115*> \verbatim 116*> SIDE is CHARACTER*1 117*> Specifies whether the plane rotation matrix P is applied to 118*> A on the left or the right. 119*> = 'L': Left, compute A := P*A 120*> = 'R': Right, compute A:= A*P**T 121*> \endverbatim 122*> 123*> \param[in] PIVOT 124*> \verbatim 125*> PIVOT is CHARACTER*1 126*> Specifies the plane for which P(k) is a plane rotation 127*> matrix. 128*> = 'V': Variable pivot, the plane (k,k+1) 129*> = 'T': Top pivot, the plane (1,k+1) 130*> = 'B': Bottom pivot, the plane (k,z) 131*> \endverbatim 132*> 133*> \param[in] DIRECT 134*> \verbatim 135*> DIRECT is CHARACTER*1 136*> Specifies whether P is a forward or backward sequence of 137*> plane rotations. 138*> = 'F': Forward, P = P(z-1)*...*P(2)*P(1) 139*> = 'B': Backward, P = P(1)*P(2)*...*P(z-1) 140*> \endverbatim 141*> 142*> \param[in] M 143*> \verbatim 144*> M is INTEGER 145*> The number of rows of the matrix A. If m <= 1, an immediate 146*> return is effected. 147*> \endverbatim 148*> 149*> \param[in] N 150*> \verbatim 151*> N is INTEGER 152*> The number of columns of the matrix A. If n <= 1, an 153*> immediate return is effected. 154*> \endverbatim 155*> 156*> \param[in] C 157*> \verbatim 158*> C is REAL array, dimension 159*> (M-1) if SIDE = 'L' 160*> (N-1) if SIDE = 'R' 161*> The cosines c(k) of the plane rotations. 162*> \endverbatim 163*> 164*> \param[in] S 165*> \verbatim 166*> S is REAL array, dimension 167*> (M-1) if SIDE = 'L' 168*> (N-1) if SIDE = 'R' 169*> The sines s(k) of the plane rotations. The 2-by-2 plane 170*> rotation part of the matrix P(k), R(k), has the form 171*> R(k) = ( c(k) s(k) ) 172*> ( -s(k) c(k) ). 173*> \endverbatim 174*> 175*> \param[in,out] A 176*> \verbatim 177*> A is COMPLEX array, dimension (LDA,N) 178*> The M-by-N matrix A. On exit, A is overwritten by P*A if 179*> SIDE = 'R' or by A*P**T if SIDE = 'L'. 180*> \endverbatim 181*> 182*> \param[in] LDA 183*> \verbatim 184*> LDA is INTEGER 185*> The leading dimension of the array A. LDA >= max(1,M). 186*> \endverbatim 187* 188* Authors: 189* ======== 190* 191*> \author Univ. of Tennessee 192*> \author Univ. of California Berkeley 193*> \author Univ. of Colorado Denver 194*> \author NAG Ltd. 195* 196*> \ingroup complexOTHERauxiliary 197* 198* ===================================================================== 199 SUBROUTINE CLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) 200* 201* -- LAPACK auxiliary routine -- 202* -- LAPACK is a software package provided by Univ. of Tennessee, -- 203* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 204* 205* .. Scalar Arguments .. 206 CHARACTER DIRECT, PIVOT, SIDE 207 INTEGER LDA, M, N 208* .. 209* .. Array Arguments .. 210 REAL C( * ), S( * ) 211 COMPLEX A( LDA, * ) 212* .. 213* 214* ===================================================================== 215* 216* .. Parameters .. 217 REAL ONE, ZERO 218 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 219* .. 220* .. Local Scalars .. 221 INTEGER I, INFO, J 222 REAL CTEMP, STEMP 223 COMPLEX TEMP 224* .. 225* .. Intrinsic Functions .. 226 INTRINSIC MAX 227* .. 228* .. External Functions .. 229 LOGICAL LSAME 230 EXTERNAL LSAME 231* .. 232* .. External Subroutines .. 233 EXTERNAL XERBLA 234* .. 235* .. Executable Statements .. 236* 237* Test the input parameters 238* 239 INFO = 0 240 IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN 241 INFO = 1 242 ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT, 243 $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN 244 INFO = 2 245 ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) ) 246 $ THEN 247 INFO = 3 248 ELSE IF( M.LT.0 ) THEN 249 INFO = 4 250 ELSE IF( N.LT.0 ) THEN 251 INFO = 5 252 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 253 INFO = 9 254 END IF 255 IF( INFO.NE.0 ) THEN 256 CALL XERBLA( 'CLASR ', INFO ) 257 RETURN 258 END IF 259* 260* Quick return if possible 261* 262 IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) 263 $ RETURN 264 IF( LSAME( SIDE, 'L' ) ) THEN 265* 266* Form P * A 267* 268 IF( LSAME( PIVOT, 'V' ) ) THEN 269 IF( LSAME( DIRECT, 'F' ) ) THEN 270 DO 20 J = 1, M - 1 271 CTEMP = C( J ) 272 STEMP = S( J ) 273 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 274 DO 10 I = 1, N 275 TEMP = A( J+1, I ) 276 A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) 277 A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) 278 10 CONTINUE 279 END IF 280 20 CONTINUE 281 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN 282 DO 40 J = M - 1, 1, -1 283 CTEMP = C( J ) 284 STEMP = S( J ) 285 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 286 DO 30 I = 1, N 287 TEMP = A( J+1, I ) 288 A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) 289 A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) 290 30 CONTINUE 291 END IF 292 40 CONTINUE 293 END IF 294 ELSE IF( LSAME( PIVOT, 'T' ) ) THEN 295 IF( LSAME( DIRECT, 'F' ) ) THEN 296 DO 60 J = 2, M 297 CTEMP = C( J-1 ) 298 STEMP = S( J-1 ) 299 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 300 DO 50 I = 1, N 301 TEMP = A( J, I ) 302 A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) 303 A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) 304 50 CONTINUE 305 END IF 306 60 CONTINUE 307 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN 308 DO 80 J = M, 2, -1 309 CTEMP = C( J-1 ) 310 STEMP = S( J-1 ) 311 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 312 DO 70 I = 1, N 313 TEMP = A( J, I ) 314 A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) 315 A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) 316 70 CONTINUE 317 END IF 318 80 CONTINUE 319 END IF 320 ELSE IF( LSAME( PIVOT, 'B' ) ) THEN 321 IF( LSAME( DIRECT, 'F' ) ) THEN 322 DO 100 J = 1, M - 1 323 CTEMP = C( J ) 324 STEMP = S( J ) 325 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 326 DO 90 I = 1, N 327 TEMP = A( J, I ) 328 A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP 329 A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP 330 90 CONTINUE 331 END IF 332 100 CONTINUE 333 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN 334 DO 120 J = M - 1, 1, -1 335 CTEMP = C( J ) 336 STEMP = S( J ) 337 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 338 DO 110 I = 1, N 339 TEMP = A( J, I ) 340 A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP 341 A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP 342 110 CONTINUE 343 END IF 344 120 CONTINUE 345 END IF 346 END IF 347 ELSE IF( LSAME( SIDE, 'R' ) ) THEN 348* 349* Form A * P**T 350* 351 IF( LSAME( PIVOT, 'V' ) ) THEN 352 IF( LSAME( DIRECT, 'F' ) ) THEN 353 DO 140 J = 1, N - 1 354 CTEMP = C( J ) 355 STEMP = S( J ) 356 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 357 DO 130 I = 1, M 358 TEMP = A( I, J+1 ) 359 A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) 360 A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) 361 130 CONTINUE 362 END IF 363 140 CONTINUE 364 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN 365 DO 160 J = N - 1, 1, -1 366 CTEMP = C( J ) 367 STEMP = S( J ) 368 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 369 DO 150 I = 1, M 370 TEMP = A( I, J+1 ) 371 A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) 372 A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) 373 150 CONTINUE 374 END IF 375 160 CONTINUE 376 END IF 377 ELSE IF( LSAME( PIVOT, 'T' ) ) THEN 378 IF( LSAME( DIRECT, 'F' ) ) THEN 379 DO 180 J = 2, N 380 CTEMP = C( J-1 ) 381 STEMP = S( J-1 ) 382 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 383 DO 170 I = 1, M 384 TEMP = A( I, J ) 385 A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) 386 A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) 387 170 CONTINUE 388 END IF 389 180 CONTINUE 390 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN 391 DO 200 J = N, 2, -1 392 CTEMP = C( J-1 ) 393 STEMP = S( J-1 ) 394 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 395 DO 190 I = 1, M 396 TEMP = A( I, J ) 397 A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) 398 A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) 399 190 CONTINUE 400 END IF 401 200 CONTINUE 402 END IF 403 ELSE IF( LSAME( PIVOT, 'B' ) ) THEN 404 IF( LSAME( DIRECT, 'F' ) ) THEN 405 DO 220 J = 1, N - 1 406 CTEMP = C( J ) 407 STEMP = S( J ) 408 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 409 DO 210 I = 1, M 410 TEMP = A( I, J ) 411 A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP 412 A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP 413 210 CONTINUE 414 END IF 415 220 CONTINUE 416 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN 417 DO 240 J = N - 1, 1, -1 418 CTEMP = C( J ) 419 STEMP = S( J ) 420 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN 421 DO 230 I = 1, M 422 TEMP = A( I, J ) 423 A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP 424 A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP 425 230 CONTINUE 426 END IF 427 240 CONTINUE 428 END IF 429 END IF 430 END IF 431* 432 RETURN 433* 434* End of CLASR 435* 436 END 437