1*> \brief \b CUNGQL 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CUNGQL + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungql.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungql.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungql.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CUNGQL( M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) 22* 23* .. Scalar Arguments .. 24* INTEGER INFO, K, LDA, LWORK, M, N 25* .. 26* .. Array Arguments .. 27* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) 28* .. 29* 30* 31*> \par Purpose: 32* ============= 33*> 34*> \verbatim 35*> 36*> CUNGQL generates an M-by-N complex matrix Q with orthonormal columns, 37*> which is defined as the last N columns of a product of K elementary 38*> reflectors of order M 39*> 40*> Q = H(k) . . . H(2) H(1) 41*> 42*> as returned by CGEQLF. 43*> \endverbatim 44* 45* Arguments: 46* ========== 47* 48*> \param[in] M 49*> \verbatim 50*> M is INTEGER 51*> The number of rows of the matrix Q. M >= 0. 52*> \endverbatim 53*> 54*> \param[in] N 55*> \verbatim 56*> N is INTEGER 57*> The number of columns of the matrix Q. M >= N >= 0. 58*> \endverbatim 59*> 60*> \param[in] K 61*> \verbatim 62*> K is INTEGER 63*> The number of elementary reflectors whose product defines the 64*> matrix Q. N >= K >= 0. 65*> \endverbatim 66*> 67*> \param[in,out] A 68*> \verbatim 69*> A is COMPLEX array, dimension (LDA,N) 70*> On entry, the (n-k+i)-th column must contain the vector which 71*> defines the elementary reflector H(i), for i = 1,2,...,k, as 72*> returned by CGEQLF in the last k columns of its array 73*> argument A. 74*> On exit, the M-by-N matrix Q. 75*> \endverbatim 76*> 77*> \param[in] LDA 78*> \verbatim 79*> LDA is INTEGER 80*> The first dimension of the array A. LDA >= max(1,M). 81*> \endverbatim 82*> 83*> \param[in] TAU 84*> \verbatim 85*> TAU is COMPLEX array, dimension (K) 86*> TAU(i) must contain the scalar factor of the elementary 87*> reflector H(i), as returned by CGEQLF. 88*> \endverbatim 89*> 90*> \param[out] WORK 91*> \verbatim 92*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) 93*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 94*> \endverbatim 95*> 96*> \param[in] LWORK 97*> \verbatim 98*> LWORK is INTEGER 99*> The dimension of the array WORK. LWORK >= max(1,N). 100*> For optimum performance LWORK >= N*NB, where NB is the 101*> optimal blocksize. 102*> 103*> If LWORK = -1, then a workspace query is assumed; the routine 104*> only calculates the optimal size of the WORK array, returns 105*> this value as the first entry of the WORK array, and no error 106*> message related to LWORK is issued by XERBLA. 107*> \endverbatim 108*> 109*> \param[out] INFO 110*> \verbatim 111*> INFO is INTEGER 112*> = 0: successful exit 113*> < 0: if INFO = -i, the i-th argument has an illegal value 114*> \endverbatim 115* 116* Authors: 117* ======== 118* 119*> \author Univ. of Tennessee 120*> \author Univ. of California Berkeley 121*> \author Univ. of Colorado Denver 122*> \author NAG Ltd. 123* 124*> \ingroup complexOTHERcomputational 125* 126* ===================================================================== 127 SUBROUTINE CUNGQL( M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) 128* 129* -- LAPACK computational routine -- 130* -- LAPACK is a software package provided by Univ. of Tennessee, -- 131* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 132* 133* .. Scalar Arguments .. 134 INTEGER INFO, K, LDA, LWORK, M, N 135* .. 136* .. Array Arguments .. 137 COMPLEX A( LDA, * ), TAU( * ), WORK( * ) 138* .. 139* 140* ===================================================================== 141* 142* .. Parameters .. 143 COMPLEX ZERO 144 PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) ) 145* .. 146* .. Local Scalars .. 147 LOGICAL LQUERY 148 INTEGER I, IB, IINFO, IWS, J, KK, L, LDWORK, LWKOPT, 149 $ NB, NBMIN, NX 150* .. 151* .. External Subroutines .. 152 EXTERNAL CLARFB, CLARFT, CUNG2L, XERBLA 153* .. 154* .. Intrinsic Functions .. 155 INTRINSIC MAX, MIN 156* .. 157* .. External Functions .. 158 INTEGER ILAENV 159 EXTERNAL ILAENV 160* .. 161* .. Executable Statements .. 162* 163* Test the input arguments 164* 165 INFO = 0 166 LQUERY = ( LWORK.EQ.-1 ) 167 IF( M.LT.0 ) THEN 168 INFO = -1 169 ELSE IF( N.LT.0 .OR. N.GT.M ) THEN 170 INFO = -2 171 ELSE IF( K.LT.0 .OR. K.GT.N ) THEN 172 INFO = -3 173 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 174 INFO = -5 175 END IF 176* 177 IF( INFO.EQ.0 ) THEN 178 IF( N.EQ.0 ) THEN 179 LWKOPT = 1 180 ELSE 181 NB = ILAENV( 1, 'CUNGQL', ' ', M, N, K, -1 ) 182 LWKOPT = N*NB 183 END IF 184 WORK( 1 ) = LWKOPT 185* 186 IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN 187 INFO = -8 188 END IF 189 END IF 190* 191 IF( INFO.NE.0 ) THEN 192 CALL XERBLA( 'CUNGQL', -INFO ) 193 RETURN 194 ELSE IF( LQUERY ) THEN 195 RETURN 196 END IF 197* 198* Quick return if possible 199* 200 IF( N.LE.0 ) THEN 201 RETURN 202 END IF 203* 204 NBMIN = 2 205 NX = 0 206 IWS = N 207 IF( NB.GT.1 .AND. NB.LT.K ) THEN 208* 209* Determine when to cross over from blocked to unblocked code. 210* 211 NX = MAX( 0, ILAENV( 3, 'CUNGQL', ' ', M, N, K, -1 ) ) 212 IF( NX.LT.K ) THEN 213* 214* Determine if workspace is large enough for blocked code. 215* 216 LDWORK = N 217 IWS = LDWORK*NB 218 IF( LWORK.LT.IWS ) THEN 219* 220* Not enough workspace to use optimal NB: reduce NB and 221* determine the minimum value of NB. 222* 223 NB = LWORK / LDWORK 224 NBMIN = MAX( 2, ILAENV( 2, 'CUNGQL', ' ', M, N, K, -1 ) ) 225 END IF 226 END IF 227 END IF 228* 229 IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN 230* 231* Use blocked code after the first block. 232* The last kk columns are handled by the block method. 233* 234 KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB ) 235* 236* Set A(m-kk+1:m,1:n-kk) to zero. 237* 238 DO 20 J = 1, N - KK 239 DO 10 I = M - KK + 1, M 240 A( I, J ) = ZERO 241 10 CONTINUE 242 20 CONTINUE 243 ELSE 244 KK = 0 245 END IF 246* 247* Use unblocked code for the first or only block. 248* 249 CALL CUNG2L( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO ) 250* 251 IF( KK.GT.0 ) THEN 252* 253* Use blocked code 254* 255 DO 50 I = K - KK + 1, K, NB 256 IB = MIN( NB, K-I+1 ) 257 IF( N-K+I.GT.1 ) THEN 258* 259* Form the triangular factor of the block reflector 260* H = H(i+ib-1) . . . H(i+1) H(i) 261* 262 CALL CLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB, 263 $ A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK ) 264* 265* Apply H to A(1:m-k+i+ib-1,1:n-k+i-1) from the left 266* 267 CALL CLARFB( 'Left', 'No transpose', 'Backward', 268 $ 'Columnwise', M-K+I+IB-1, N-K+I-1, IB, 269 $ A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA, 270 $ WORK( IB+1 ), LDWORK ) 271 END IF 272* 273* Apply H to rows 1:m-k+i+ib-1 of current block 274* 275 CALL CUNG2L( M-K+I+IB-1, IB, IB, A( 1, N-K+I ), LDA, 276 $ TAU( I ), WORK, IINFO ) 277* 278* Set rows m-k+i+ib:m of current block to zero 279* 280 DO 40 J = N - K + I, N - K + I + IB - 1 281 DO 30 L = M - K + I + IB, M 282 A( L, J ) = ZERO 283 30 CONTINUE 284 40 CONTINUE 285 50 CONTINUE 286 END IF 287* 288 WORK( 1 ) = IWS 289 RETURN 290* 291* End of CUNGQL 292* 293 END 294