1*> \brief \b SHSEQR
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SHSEQR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/shseqr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/shseqr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/shseqr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
22*                          LDZ, WORK, LWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
26*       CHARACTER          COMPZ, JOB
27*       ..
28*       .. Array Arguments ..
29*       REAL               H( LDH, * ), WI( * ), WORK( * ), WR( * ),
30*      $                   Z( LDZ, * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*>    SHSEQR computes the eigenvalues of a Hessenberg matrix H
40*>    and, optionally, the matrices T and Z from the Schur decomposition
41*>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
42*>    Schur form), and Z is the orthogonal matrix of Schur vectors.
43*>
44*>    Optionally Z may be postmultiplied into an input orthogonal
45*>    matrix Q so that this routine can give the Schur factorization
46*>    of a matrix A which has been reduced to the Hessenberg form H
47*>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
48*> \endverbatim
49*
50*  Arguments:
51*  ==========
52*
53*> \param[in] JOB
54*> \verbatim
55*>          JOB is CHARACTER*1
56*>           = 'E':  compute eigenvalues only;
57*>           = 'S':  compute eigenvalues and the Schur form T.
58*> \endverbatim
59*>
60*> \param[in] COMPZ
61*> \verbatim
62*>          COMPZ is CHARACTER*1
63*>           = 'N':  no Schur vectors are computed;
64*>           = 'I':  Z is initialized to the unit matrix and the matrix Z
65*>                   of Schur vectors of H is returned;
66*>           = 'V':  Z must contain an orthogonal matrix Q on entry, and
67*>                   the product Q*Z is returned.
68*> \endverbatim
69*>
70*> \param[in] N
71*> \verbatim
72*>          N is INTEGER
73*>           The order of the matrix H.  N >= 0.
74*> \endverbatim
75*>
76*> \param[in] ILO
77*> \verbatim
78*>          ILO is INTEGER
79*> \endverbatim
80*>
81*> \param[in] IHI
82*> \verbatim
83*>          IHI is INTEGER
84*>
85*>           It is assumed that H is already upper triangular in rows
86*>           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
87*>           set by a previous call to SGEBAL, and then passed to ZGEHRD
88*>           when the matrix output by SGEBAL is reduced to Hessenberg
89*>           form. Otherwise ILO and IHI should be set to 1 and N
90*>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
91*>           If N = 0, then ILO = 1 and IHI = 0.
92*> \endverbatim
93*>
94*> \param[in,out] H
95*> \verbatim
96*>          H is REAL array, dimension (LDH,N)
97*>           On entry, the upper Hessenberg matrix H.
98*>           On exit, if INFO = 0 and JOB = 'S', then H contains the
99*>           upper quasi-triangular matrix T from the Schur decomposition
100*>           (the Schur form); 2-by-2 diagonal blocks (corresponding to
101*>           complex conjugate pairs of eigenvalues) are returned in
102*>           standard form, with H(i,i) = H(i+1,i+1) and
103*>           H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and JOB = 'E', the
104*>           contents of H are unspecified on exit.  (The output value of
105*>           H when INFO > 0 is given under the description of INFO
106*>           below.)
107*>
108*>           Unlike earlier versions of SHSEQR, this subroutine may
109*>           explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1
110*>           or j = IHI+1, IHI+2, ... N.
111*> \endverbatim
112*>
113*> \param[in] LDH
114*> \verbatim
115*>          LDH is INTEGER
116*>           The leading dimension of the array H. LDH >= max(1,N).
117*> \endverbatim
118*>
119*> \param[out] WR
120*> \verbatim
121*>          WR is REAL array, dimension (N)
122*> \endverbatim
123*>
124*> \param[out] WI
125*> \verbatim
126*>          WI is REAL array, dimension (N)
127*>
128*>           The real and imaginary parts, respectively, of the computed
129*>           eigenvalues. If two eigenvalues are computed as a complex
130*>           conjugate pair, they are stored in consecutive elements of
131*>           WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and
132*>           WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in
133*>           the same order as on the diagonal of the Schur form returned
134*>           in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
135*>           diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
136*>           WI(i+1) = -WI(i).
137*> \endverbatim
138*>
139*> \param[in,out] Z
140*> \verbatim
141*>          Z is REAL array, dimension (LDZ,N)
142*>           If COMPZ = 'N', Z is not referenced.
143*>           If COMPZ = 'I', on entry Z need not be set and on exit,
144*>           if INFO = 0, Z contains the orthogonal matrix Z of the Schur
145*>           vectors of H.  If COMPZ = 'V', on entry Z must contain an
146*>           N-by-N matrix Q, which is assumed to be equal to the unit
147*>           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
148*>           if INFO = 0, Z contains Q*Z.
149*>           Normally Q is the orthogonal matrix generated by SORGHR
150*>           after the call to SGEHRD which formed the Hessenberg matrix
151*>           H. (The output value of Z when INFO > 0 is given under
152*>           the description of INFO below.)
153*> \endverbatim
154*>
155*> \param[in] LDZ
156*> \verbatim
157*>          LDZ is INTEGER
158*>           The leading dimension of the array Z.  if COMPZ = 'I' or
159*>           COMPZ = 'V', then LDZ >= MAX(1,N).  Otherwise, LDZ >= 1.
160*> \endverbatim
161*>
162*> \param[out] WORK
163*> \verbatim
164*>          WORK is REAL array, dimension (LWORK)
165*>           On exit, if INFO = 0, WORK(1) returns an estimate of
166*>           the optimal value for LWORK.
167*> \endverbatim
168*>
169*> \param[in] LWORK
170*> \verbatim
171*>          LWORK is INTEGER
172*>           The dimension of the array WORK.  LWORK >= max(1,N)
173*>           is sufficient and delivers very good and sometimes
174*>           optimal performance.  However, LWORK as large as 11*N
175*>           may be required for optimal performance.  A workspace
176*>           query is recommended to determine the optimal workspace
177*>           size.
178*>
179*>           If LWORK = -1, then SHSEQR does a workspace query.
180*>           In this case, SHSEQR checks the input parameters and
181*>           estimates the optimal workspace size for the given
182*>           values of N, ILO and IHI.  The estimate is returned
183*>           in WORK(1).  No error message related to LWORK is
184*>           issued by XERBLA.  Neither H nor Z are accessed.
185*> \endverbatim
186*>
187*> \param[out] INFO
188*> \verbatim
189*>          INFO is INTEGER
190*>             = 0:  successful exit
191*>             < 0:  if INFO = -i, the i-th argument had an illegal
192*>                    value
193*>             > 0:  if INFO = i, SHSEQR failed to compute all of
194*>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
195*>                and WI contain those eigenvalues which have been
196*>                successfully computed.  (Failures are rare.)
197*>
198*>                If INFO > 0 and JOB = 'E', then on exit, the
199*>                remaining unconverged eigenvalues are the eigen-
200*>                values of the upper Hessenberg matrix rows and
201*>                columns ILO through INFO of the final, output
202*>                value of H.
203*>
204*>                If INFO > 0 and JOB   = 'S', then on exit
205*>
206*>           (*)  (initial value of H)*U  = U*(final value of H)
207*>
208*>                where U is an orthogonal matrix.  The final
209*>                value of H is upper Hessenberg and quasi-triangular
210*>                in rows and columns INFO+1 through IHI.
211*>
212*>                If INFO > 0 and COMPZ = 'V', then on exit
213*>
214*>                  (final value of Z)  =  (initial value of Z)*U
215*>
216*>                where U is the orthogonal matrix in (*) (regard-
217*>                less of the value of JOB.)
218*>
219*>                If INFO > 0 and COMPZ = 'I', then on exit
220*>                      (final value of Z)  = U
221*>                where U is the orthogonal matrix in (*) (regard-
222*>                less of the value of JOB.)
223*>
224*>                If INFO > 0 and COMPZ = 'N', then Z is not
225*>                accessed.
226*> \endverbatim
227*
228*  Authors:
229*  ========
230*
231*> \author Univ. of Tennessee
232*> \author Univ. of California Berkeley
233*> \author Univ. of Colorado Denver
234*> \author NAG Ltd.
235*
236*> \ingroup realOTHERcomputational
237*
238*> \par Contributors:
239*  ==================
240*>
241*>       Karen Braman and Ralph Byers, Department of Mathematics,
242*>       University of Kansas, USA
243*
244*> \par Further Details:
245*  =====================
246*>
247*> \verbatim
248*>
249*>             Default values supplied by
250*>             ILAENV(ISPEC,'SHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
251*>             It is suggested that these defaults be adjusted in order
252*>             to attain best performance in each particular
253*>             computational environment.
254*>
255*>            ISPEC=12: The SLAHQR vs SLAQR0 crossover point.
256*>                      Default: 75. (Must be at least 11.)
257*>
258*>            ISPEC=13: Recommended deflation window size.
259*>                      This depends on ILO, IHI and NS.  NS is the
260*>                      number of simultaneous shifts returned
261*>                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
262*>                      The default for (IHI-ILO+1) <= 500 is NS.
263*>                      The default for (IHI-ILO+1) >  500 is 3*NS/2.
264*>
265*>            ISPEC=14: Nibble crossover point. (See IPARMQ for
266*>                      details.)  Default: 14% of deflation window
267*>                      size.
268*>
269*>            ISPEC=15: Number of simultaneous shifts in a multishift
270*>                      QR iteration.
271*>
272*>                      If IHI-ILO+1 is ...
273*>
274*>                      greater than      ...but less    ... the
275*>                      or equal to ...      than        default is
276*>
277*>                           1               30          NS =   2(+)
278*>                          30               60          NS =   4(+)
279*>                          60              150          NS =  10(+)
280*>                         150              590          NS =  **
281*>                         590             3000          NS =  64
282*>                        3000             6000          NS = 128
283*>                        6000             infinity      NS = 256
284*>
285*>                  (+)  By default some or all matrices of this order
286*>                       are passed to the implicit double shift routine
287*>                       SLAHQR and this parameter is ignored.  See
288*>                       ISPEC=12 above and comments in IPARMQ for
289*>                       details.
290*>
291*>                 (**)  The asterisks (**) indicate an ad-hoc
292*>                       function of N increasing from 10 to 64.
293*>
294*>            ISPEC=16: Select structured matrix multiply.
295*>                      If the number of simultaneous shifts (specified
296*>                      by ISPEC=15) is less than 14, then the default
297*>                      for ISPEC=16 is 0.  Otherwise the default for
298*>                      ISPEC=16 is 2.
299*> \endverbatim
300*
301*> \par References:
302*  ================
303*>
304*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
305*>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
306*>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
307*>       929--947, 2002.
308*> \n
309*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
310*>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
311*>       of Matrix Analysis, volume 23, pages 948--973, 2002.
312*
313*  =====================================================================
314      SUBROUTINE SHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
315     $                   LDZ, WORK, LWORK, INFO )
316*
317*  -- LAPACK computational routine --
318*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
319*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
320*
321*     .. Scalar Arguments ..
322      INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
323      CHARACTER          COMPZ, JOB
324*     ..
325*     .. Array Arguments ..
326      REAL               H( LDH, * ), WI( * ), WORK( * ), WR( * ),
327     $                   Z( LDZ, * )
328*     ..
329*
330*  =====================================================================
331*
332*     .. Parameters ..
333*
334*     ==== Matrices of order NTINY or smaller must be processed by
335*     .    SLAHQR because of insufficient subdiagonal scratch space.
336*     .    (This is a hard limit.) ====
337      INTEGER            NTINY
338      PARAMETER          ( NTINY = 15 )
339*
340*     ==== NL allocates some local workspace to help small matrices
341*     .    through a rare SLAHQR failure.  NL > NTINY = 15 is
342*     .    required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
343*     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
344*     .    allows up to six simultaneous shifts and a 16-by-16
345*     .    deflation window.  ====
346      INTEGER            NL
347      PARAMETER          ( NL = 49 )
348      REAL               ZERO, ONE
349      PARAMETER          ( ZERO = 0.0e0, ONE = 1.0e0 )
350*     ..
351*     .. Local Arrays ..
352      REAL               HL( NL, NL ), WORKL( NL )
353*     ..
354*     .. Local Scalars ..
355      INTEGER            I, KBOT, NMIN
356      LOGICAL            INITZ, LQUERY, WANTT, WANTZ
357*     ..
358*     .. External Functions ..
359      INTEGER            ILAENV
360      LOGICAL            LSAME
361      EXTERNAL           ILAENV, LSAME
362*     ..
363*     .. External Subroutines ..
364      EXTERNAL           SLACPY, SLAHQR, SLAQR0, SLASET, XERBLA
365*     ..
366*     .. Intrinsic Functions ..
367      INTRINSIC          MAX, MIN, REAL
368*     ..
369*     .. Executable Statements ..
370*
371*     ==== Decode and check the input parameters. ====
372*
373      WANTT = LSAME( JOB, 'S' )
374      INITZ = LSAME( COMPZ, 'I' )
375      WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
376      WORK( 1 ) = REAL( MAX( 1, N ) )
377      LQUERY = LWORK.EQ.-1
378*
379      INFO = 0
380      IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
381         INFO = -1
382      ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
383         INFO = -2
384      ELSE IF( N.LT.0 ) THEN
385         INFO = -3
386      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
387         INFO = -4
388      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
389         INFO = -5
390      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
391         INFO = -7
392      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
393         INFO = -11
394      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
395         INFO = -13
396      END IF
397*
398      IF( INFO.NE.0 ) THEN
399*
400*        ==== Quick return in case of invalid argument. ====
401*
402         CALL XERBLA( 'SHSEQR', -INFO )
403         RETURN
404*
405      ELSE IF( N.EQ.0 ) THEN
406*
407*        ==== Quick return in case N = 0; nothing to do. ====
408*
409         RETURN
410*
411      ELSE IF( LQUERY ) THEN
412*
413*        ==== Quick return in case of a workspace query ====
414*
415         CALL SLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
416     $                IHI, Z, LDZ, WORK, LWORK, INFO )
417*        ==== Ensure reported workspace size is backward-compatible with
418*        .    previous LAPACK versions. ====
419         WORK( 1 ) = MAX( REAL( MAX( 1, N ) ), WORK( 1 ) )
420         RETURN
421*
422      ELSE
423*
424*        ==== copy eigenvalues isolated by SGEBAL ====
425*
426         DO 10 I = 1, ILO - 1
427            WR( I ) = H( I, I )
428            WI( I ) = ZERO
429   10    CONTINUE
430         DO 20 I = IHI + 1, N
431            WR( I ) = H( I, I )
432            WI( I ) = ZERO
433   20    CONTINUE
434*
435*        ==== Initialize Z, if requested ====
436*
437         IF( INITZ )
438     $      CALL SLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
439*
440*        ==== Quick return if possible ====
441*
442         IF( ILO.EQ.IHI ) THEN
443            WR( ILO ) = H( ILO, ILO )
444            WI( ILO ) = ZERO
445            RETURN
446         END IF
447*
448*        ==== SLAHQR/SLAQR0 crossover point ====
449*
450         NMIN = ILAENV( 12, 'SHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
451     $          ILO, IHI, LWORK )
452         NMIN = MAX( NTINY, NMIN )
453*
454*        ==== SLAQR0 for big matrices; SLAHQR for small ones ====
455*
456         IF( N.GT.NMIN ) THEN
457            CALL SLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
458     $                   IHI, Z, LDZ, WORK, LWORK, INFO )
459         ELSE
460*
461*           ==== Small matrix ====
462*
463            CALL SLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
464     $                   IHI, Z, LDZ, INFO )
465*
466            IF( INFO.GT.0 ) THEN
467*
468*              ==== A rare SLAHQR failure!  SLAQR0 sometimes succeeds
469*              .    when SLAHQR fails. ====
470*
471               KBOT = INFO
472*
473               IF( N.GE.NL ) THEN
474*
475*                 ==== Larger matrices have enough subdiagonal scratch
476*                 .    space to call SLAQR0 directly. ====
477*
478                  CALL SLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, WR,
479     $                         WI, ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
480*
481               ELSE
482*
483*                 ==== Tiny matrices don't have enough subdiagonal
484*                 .    scratch space to benefit from SLAQR0.  Hence,
485*                 .    tiny matrices must be copied into a larger
486*                 .    array before calling SLAQR0. ====
487*
488                  CALL SLACPY( 'A', N, N, H, LDH, HL, NL )
489                  HL( N+1, N ) = ZERO
490                  CALL SLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
491     $                         NL )
492                  CALL SLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, WR,
493     $                         WI, ILO, IHI, Z, LDZ, WORKL, NL, INFO )
494                  IF( WANTT .OR. INFO.NE.0 )
495     $               CALL SLACPY( 'A', N, N, HL, NL, H, LDH )
496               END IF
497            END IF
498         END IF
499*
500*        ==== Clear out the trash, if necessary. ====
501*
502         IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
503     $      CALL SLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
504*
505*        ==== Ensure reported workspace size is backward-compatible with
506*        .    previous LAPACK versions. ====
507*
508         WORK( 1 ) = MAX( REAL( MAX( 1, N ) ), WORK( 1 ) )
509      END IF
510*
511*     ==== End of SHSEQR ====
512*
513      END
514