1*> \brief \b SLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLARRV + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrv.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrv.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrv.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SLARRV( N, VL, VU, D, L, PIVMIN,
22*                          ISPLIT, M, DOL, DOU, MINRGP,
23*                          RTOL1, RTOL2, W, WERR, WGAP,
24*                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
25*                          WORK, IWORK, INFO )
26*
27*       .. Scalar Arguments ..
28*       INTEGER            DOL, DOU, INFO, LDZ, M, N
29*       REAL               MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
30*       ..
31*       .. Array Arguments ..
32*       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
33*      $                   ISUPPZ( * ), IWORK( * )
34*       REAL               D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
35*      $                   WGAP( * ), WORK( * )
36*       REAL              Z( LDZ, * )
37*       ..
38*
39*
40*> \par Purpose:
41*  =============
42*>
43*> \verbatim
44*>
45*> SLARRV computes the eigenvectors of the tridiagonal matrix
46*> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
47*> The input eigenvalues should have been computed by SLARRE.
48*> \endverbatim
49*
50*  Arguments:
51*  ==========
52*
53*> \param[in] N
54*> \verbatim
55*>          N is INTEGER
56*>          The order of the matrix.  N >= 0.
57*> \endverbatim
58*>
59*> \param[in] VL
60*> \verbatim
61*>          VL is REAL
62*>          Lower bound of the interval that contains the desired
63*>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
64*>          end of the extremal eigenvalues in the desired RANGE.
65*> \endverbatim
66*>
67*> \param[in] VU
68*> \verbatim
69*>          VU is REAL
70*>          Upper bound of the interval that contains the desired
71*>          eigenvalues. VL < VU.
72*>          Note: VU is currently not used by this implementation of SLARRV, VU is
73*>          passed to SLARRV because it could be used compute gaps on the right end
74*>          of the extremal eigenvalues. However, with not much initial accuracy in
75*>          LAMBDA and VU, the formula can lead to an overestimation of the right gap
76*>          and thus to inadequately early RQI 'convergence'. This is currently
77*>          prevented this by forcing a small right gap. And so it turns out that VU
78*>          is currently not used by this implementation of SLARRV.
79*> \endverbatim
80*>
81*> \param[in,out] D
82*> \verbatim
83*>          D is REAL array, dimension (N)
84*>          On entry, the N diagonal elements of the diagonal matrix D.
85*>          On exit, D may be overwritten.
86*> \endverbatim
87*>
88*> \param[in,out] L
89*> \verbatim
90*>          L is REAL array, dimension (N)
91*>          On entry, the (N-1) subdiagonal elements of the unit
92*>          bidiagonal matrix L are in elements 1 to N-1 of L
93*>          (if the matrix is not split.) At the end of each block
94*>          is stored the corresponding shift as given by SLARRE.
95*>          On exit, L is overwritten.
96*> \endverbatim
97*>
98*> \param[in] PIVMIN
99*> \verbatim
100*>          PIVMIN is REAL
101*>          The minimum pivot allowed in the Sturm sequence.
102*> \endverbatim
103*>
104*> \param[in] ISPLIT
105*> \verbatim
106*>          ISPLIT is INTEGER array, dimension (N)
107*>          The splitting points, at which T breaks up into blocks.
108*>          The first block consists of rows/columns 1 to
109*>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
110*>          through ISPLIT( 2 ), etc.
111*> \endverbatim
112*>
113*> \param[in] M
114*> \verbatim
115*>          M is INTEGER
116*>          The total number of input eigenvalues.  0 <= M <= N.
117*> \endverbatim
118*>
119*> \param[in] DOL
120*> \verbatim
121*>          DOL is INTEGER
122*> \endverbatim
123*>
124*> \param[in] DOU
125*> \verbatim
126*>          DOU is INTEGER
127*>          If the user wants to compute only selected eigenvectors from all
128*>          the eigenvalues supplied, he can specify an index range DOL:DOU.
129*>          Or else the setting DOL=1, DOU=M should be applied.
130*>          Note that DOL and DOU refer to the order in which the eigenvalues
131*>          are stored in W.
132*>          If the user wants to compute only selected eigenpairs, then
133*>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
134*>          computed eigenvectors. All other columns of Z are set to zero.
135*> \endverbatim
136*>
137*> \param[in] MINRGP
138*> \verbatim
139*>          MINRGP is REAL
140*> \endverbatim
141*>
142*> \param[in] RTOL1
143*> \verbatim
144*>          RTOL1 is REAL
145*> \endverbatim
146*>
147*> \param[in] RTOL2
148*> \verbatim
149*>          RTOL2 is REAL
150*>           Parameters for bisection.
151*>           An interval [LEFT,RIGHT] has converged if
152*>           RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
153*> \endverbatim
154*>
155*> \param[in,out] W
156*> \verbatim
157*>          W is REAL array, dimension (N)
158*>          The first M elements of W contain the APPROXIMATE eigenvalues for
159*>          which eigenvectors are to be computed.  The eigenvalues
160*>          should be grouped by split-off block and ordered from
161*>          smallest to largest within the block ( The output array
162*>          W from SLARRE is expected here ). Furthermore, they are with
163*>          respect to the shift of the corresponding root representation
164*>          for their block. On exit, W holds the eigenvalues of the
165*>          UNshifted matrix.
166*> \endverbatim
167*>
168*> \param[in,out] WERR
169*> \verbatim
170*>          WERR is REAL array, dimension (N)
171*>          The first M elements contain the semiwidth of the uncertainty
172*>          interval of the corresponding eigenvalue in W
173*> \endverbatim
174*>
175*> \param[in,out] WGAP
176*> \verbatim
177*>          WGAP is REAL array, dimension (N)
178*>          The separation from the right neighbor eigenvalue in W.
179*> \endverbatim
180*>
181*> \param[in] IBLOCK
182*> \verbatim
183*>          IBLOCK is INTEGER array, dimension (N)
184*>          The indices of the blocks (submatrices) associated with the
185*>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
186*>          W(i) belongs to the first block from the top, =2 if W(i)
187*>          belongs to the second block, etc.
188*> \endverbatim
189*>
190*> \param[in] INDEXW
191*> \verbatim
192*>          INDEXW is INTEGER array, dimension (N)
193*>          The indices of the eigenvalues within each block (submatrix);
194*>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
195*>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
196*> \endverbatim
197*>
198*> \param[in] GERS
199*> \verbatim
200*>          GERS is REAL array, dimension (2*N)
201*>          The N Gerschgorin intervals (the i-th Gerschgorin interval
202*>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
203*>          be computed from the original UNshifted matrix.
204*> \endverbatim
205*>
206*> \param[out] Z
207*> \verbatim
208*>          Z is REAL array, dimension (LDZ, max(1,M) )
209*>          If INFO = 0, the first M columns of Z contain the
210*>          orthonormal eigenvectors of the matrix T
211*>          corresponding to the input eigenvalues, with the i-th
212*>          column of Z holding the eigenvector associated with W(i).
213*>          Note: the user must ensure that at least max(1,M) columns are
214*>          supplied in the array Z.
215*> \endverbatim
216*>
217*> \param[in] LDZ
218*> \verbatim
219*>          LDZ is INTEGER
220*>          The leading dimension of the array Z.  LDZ >= 1, and if
221*>          JOBZ = 'V', LDZ >= max(1,N).
222*> \endverbatim
223*>
224*> \param[out] ISUPPZ
225*> \verbatim
226*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
227*>          The support of the eigenvectors in Z, i.e., the indices
228*>          indicating the nonzero elements in Z. The I-th eigenvector
229*>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
230*>          ISUPPZ( 2*I ).
231*> \endverbatim
232*>
233*> \param[out] WORK
234*> \verbatim
235*>          WORK is REAL array, dimension (12*N)
236*> \endverbatim
237*>
238*> \param[out] IWORK
239*> \verbatim
240*>          IWORK is INTEGER array, dimension (7*N)
241*> \endverbatim
242*>
243*> \param[out] INFO
244*> \verbatim
245*>          INFO is INTEGER
246*>          = 0:  successful exit
247*>
248*>          > 0:  A problem occurred in SLARRV.
249*>          < 0:  One of the called subroutines signaled an internal problem.
250*>                Needs inspection of the corresponding parameter IINFO
251*>                for further information.
252*>
253*>          =-1:  Problem in SLARRB when refining a child's eigenvalues.
254*>          =-2:  Problem in SLARRF when computing the RRR of a child.
255*>                When a child is inside a tight cluster, it can be difficult
256*>                to find an RRR. A partial remedy from the user's point of
257*>                view is to make the parameter MINRGP smaller and recompile.
258*>                However, as the orthogonality of the computed vectors is
259*>                proportional to 1/MINRGP, the user should be aware that
260*>                he might be trading in precision when he decreases MINRGP.
261*>          =-3:  Problem in SLARRB when refining a single eigenvalue
262*>                after the Rayleigh correction was rejected.
263*>          = 5:  The Rayleigh Quotient Iteration failed to converge to
264*>                full accuracy in MAXITR steps.
265*> \endverbatim
266*
267*  Authors:
268*  ========
269*
270*> \author Univ. of Tennessee
271*> \author Univ. of California Berkeley
272*> \author Univ. of Colorado Denver
273*> \author NAG Ltd.
274*
275*> \ingroup realOTHERauxiliary
276*
277*> \par Contributors:
278*  ==================
279*>
280*> Beresford Parlett, University of California, Berkeley, USA \n
281*> Jim Demmel, University of California, Berkeley, USA \n
282*> Inderjit Dhillon, University of Texas, Austin, USA \n
283*> Osni Marques, LBNL/NERSC, USA \n
284*> Christof Voemel, University of California, Berkeley, USA
285*
286*  =====================================================================
287      SUBROUTINE SLARRV( N, VL, VU, D, L, PIVMIN,
288     $                   ISPLIT, M, DOL, DOU, MINRGP,
289     $                   RTOL1, RTOL2, W, WERR, WGAP,
290     $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
291     $                   WORK, IWORK, INFO )
292*
293*  -- LAPACK auxiliary routine --
294*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
295*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
296*
297*     .. Scalar Arguments ..
298      INTEGER            DOL, DOU, INFO, LDZ, M, N
299      REAL               MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
300*     ..
301*     .. Array Arguments ..
302      INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
303     $                   ISUPPZ( * ), IWORK( * )
304      REAL               D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
305     $                   WGAP( * ), WORK( * )
306      REAL              Z( LDZ, * )
307*     ..
308*
309*  =====================================================================
310*
311*     .. Parameters ..
312      INTEGER            MAXITR
313      PARAMETER          ( MAXITR = 10 )
314      REAL               ZERO, ONE, TWO, THREE, FOUR, HALF
315      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0,
316     $                     TWO = 2.0E0, THREE = 3.0E0,
317     $                     FOUR = 4.0E0, HALF = 0.5E0)
318*     ..
319*     .. Local Scalars ..
320      LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
321      INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
322     $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
323     $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
324     $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
325     $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
326     $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
327     $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
328     $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
329     $                   ZUSEDW
330      REAL               BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
331     $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
332     $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
333     $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
334*     ..
335*     .. External Functions ..
336      REAL              SLAMCH
337      EXTERNAL           SLAMCH
338*     ..
339*     .. External Subroutines ..
340      EXTERNAL           SCOPY, SLAR1V, SLARRB, SLARRF, SLASET,
341     $                   SSCAL
342*     ..
343*     .. Intrinsic Functions ..
344      INTRINSIC ABS, REAL, MAX, MIN
345*     ..
346*     .. Executable Statements ..
347*     ..
348
349      INFO = 0
350*
351*     Quick return if possible
352*
353      IF( N.LE.0 ) THEN
354         RETURN
355      END IF
356*
357*     The first N entries of WORK are reserved for the eigenvalues
358      INDLD = N+1
359      INDLLD= 2*N+1
360      INDWRK= 3*N+1
361      MINWSIZE = 12 * N
362
363      DO 5 I= 1,MINWSIZE
364         WORK( I ) = ZERO
365 5    CONTINUE
366
367*     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
368*     factorization used to compute the FP vector
369      IINDR = 0
370*     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
371*     layer and the one above.
372      IINDC1 = N
373      IINDC2 = 2*N
374      IINDWK = 3*N + 1
375
376      MINIWSIZE = 7 * N
377      DO 10 I= 1,MINIWSIZE
378         IWORK( I ) = 0
379 10   CONTINUE
380
381      ZUSEDL = 1
382      IF(DOL.GT.1) THEN
383*        Set lower bound for use of Z
384         ZUSEDL = DOL-1
385      ENDIF
386      ZUSEDU = M
387      IF(DOU.LT.M) THEN
388*        Set lower bound for use of Z
389         ZUSEDU = DOU+1
390      ENDIF
391*     The width of the part of Z that is used
392      ZUSEDW = ZUSEDU - ZUSEDL + 1
393
394
395      CALL SLASET( 'Full', N, ZUSEDW, ZERO, ZERO,
396     $                    Z(1,ZUSEDL), LDZ )
397
398      EPS = SLAMCH( 'Precision' )
399      RQTOL = TWO * EPS
400*
401*     Set expert flags for standard code.
402      TRYRQC = .TRUE.
403
404      IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
405      ELSE
406*        Only selected eigenpairs are computed. Since the other evalues
407*        are not refined by RQ iteration, bisection has to compute to full
408*        accuracy.
409         RTOL1 = FOUR * EPS
410         RTOL2 = FOUR * EPS
411      ENDIF
412
413*     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
414*     desired eigenvalues. The support of the nonzero eigenvector
415*     entries is contained in the interval IBEGIN:IEND.
416*     Remark that if k eigenpairs are desired, then the eigenvectors
417*     are stored in k contiguous columns of Z.
418
419*     DONE is the number of eigenvectors already computed
420      DONE = 0
421      IBEGIN = 1
422      WBEGIN = 1
423      DO 170 JBLK = 1, IBLOCK( M )
424         IEND = ISPLIT( JBLK )
425         SIGMA = L( IEND )
426*        Find the eigenvectors of the submatrix indexed IBEGIN
427*        through IEND.
428         WEND = WBEGIN - 1
429 15      CONTINUE
430         IF( WEND.LT.M ) THEN
431            IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
432               WEND = WEND + 1
433               GO TO 15
434            END IF
435         END IF
436         IF( WEND.LT.WBEGIN ) THEN
437            IBEGIN = IEND + 1
438            GO TO 170
439         ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
440            IBEGIN = IEND + 1
441            WBEGIN = WEND + 1
442            GO TO 170
443         END IF
444
445*        Find local spectral diameter of the block
446         GL = GERS( 2*IBEGIN-1 )
447         GU = GERS( 2*IBEGIN )
448         DO 20 I = IBEGIN+1 , IEND
449            GL = MIN( GERS( 2*I-1 ), GL )
450            GU = MAX( GERS( 2*I ), GU )
451 20      CONTINUE
452         SPDIAM = GU - GL
453
454*        OLDIEN is the last index of the previous block
455         OLDIEN = IBEGIN - 1
456*        Calculate the size of the current block
457         IN = IEND - IBEGIN + 1
458*        The number of eigenvalues in the current block
459         IM = WEND - WBEGIN + 1
460
461*        This is for a 1x1 block
462         IF( IBEGIN.EQ.IEND ) THEN
463            DONE = DONE+1
464            Z( IBEGIN, WBEGIN ) = ONE
465            ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
466            ISUPPZ( 2*WBEGIN ) = IBEGIN
467            W( WBEGIN ) = W( WBEGIN ) + SIGMA
468            WORK( WBEGIN ) = W( WBEGIN )
469            IBEGIN = IEND + 1
470            WBEGIN = WBEGIN + 1
471            GO TO 170
472         END IF
473
474*        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
475*        Note that these can be approximations, in this case, the corresp.
476*        entries of WERR give the size of the uncertainty interval.
477*        The eigenvalue approximations will be refined when necessary as
478*        high relative accuracy is required for the computation of the
479*        corresponding eigenvectors.
480         CALL SCOPY( IM, W( WBEGIN ), 1,
481     $                   WORK( WBEGIN ), 1 )
482
483*        We store in W the eigenvalue approximations w.r.t. the original
484*        matrix T.
485         DO 30 I=1,IM
486            W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
487 30      CONTINUE
488
489
490*        NDEPTH is the current depth of the representation tree
491         NDEPTH = 0
492*        PARITY is either 1 or 0
493         PARITY = 1
494*        NCLUS is the number of clusters for the next level of the
495*        representation tree, we start with NCLUS = 1 for the root
496         NCLUS = 1
497         IWORK( IINDC1+1 ) = 1
498         IWORK( IINDC1+2 ) = IM
499
500*        IDONE is the number of eigenvectors already computed in the current
501*        block
502         IDONE = 0
503*        loop while( IDONE.LT.IM )
504*        generate the representation tree for the current block and
505*        compute the eigenvectors
506   40    CONTINUE
507         IF( IDONE.LT.IM ) THEN
508*           This is a crude protection against infinitely deep trees
509            IF( NDEPTH.GT.M ) THEN
510               INFO = -2
511               RETURN
512            ENDIF
513*           breadth first processing of the current level of the representation
514*           tree: OLDNCL = number of clusters on current level
515            OLDNCL = NCLUS
516*           reset NCLUS to count the number of child clusters
517            NCLUS = 0
518*
519            PARITY = 1 - PARITY
520            IF( PARITY.EQ.0 ) THEN
521               OLDCLS = IINDC1
522               NEWCLS = IINDC2
523            ELSE
524               OLDCLS = IINDC2
525               NEWCLS = IINDC1
526            END IF
527*           Process the clusters on the current level
528            DO 150 I = 1, OLDNCL
529               J = OLDCLS + 2*I
530*              OLDFST, OLDLST = first, last index of current cluster.
531*                               cluster indices start with 1 and are relative
532*                               to WBEGIN when accessing W, WGAP, WERR, Z
533               OLDFST = IWORK( J-1 )
534               OLDLST = IWORK( J )
535               IF( NDEPTH.GT.0 ) THEN
536*                 Retrieve relatively robust representation (RRR) of cluster
537*                 that has been computed at the previous level
538*                 The RRR is stored in Z and overwritten once the eigenvectors
539*                 have been computed or when the cluster is refined
540
541                  IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
542*                    Get representation from location of the leftmost evalue
543*                    of the cluster
544                     J = WBEGIN + OLDFST - 1
545                  ELSE
546                     IF(WBEGIN+OLDFST-1.LT.DOL) THEN
547*                       Get representation from the left end of Z array
548                        J = DOL - 1
549                     ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
550*                       Get representation from the right end of Z array
551                        J = DOU
552                     ELSE
553                        J = WBEGIN + OLDFST - 1
554                     ENDIF
555                  ENDIF
556                  CALL SCOPY( IN, Z( IBEGIN, J ), 1, D( IBEGIN ), 1 )
557                  CALL SCOPY( IN-1, Z( IBEGIN, J+1 ), 1, L( IBEGIN ),
558     $               1 )
559                  SIGMA = Z( IEND, J+1 )
560
561*                 Set the corresponding entries in Z to zero
562                  CALL SLASET( 'Full', IN, 2, ZERO, ZERO,
563     $                         Z( IBEGIN, J), LDZ )
564               END IF
565
566*              Compute DL and DLL of current RRR
567               DO 50 J = IBEGIN, IEND-1
568                  TMP = D( J )*L( J )
569                  WORK( INDLD-1+J ) = TMP
570                  WORK( INDLLD-1+J ) = TMP*L( J )
571   50          CONTINUE
572
573               IF( NDEPTH.GT.0 ) THEN
574*                 P and Q are index of the first and last eigenvalue to compute
575*                 within the current block
576                  P = INDEXW( WBEGIN-1+OLDFST )
577                  Q = INDEXW( WBEGIN-1+OLDLST )
578*                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
579*                 through the Q-OFFSET elements of these arrays are to be used.
580*                  OFFSET = P-OLDFST
581                  OFFSET = INDEXW( WBEGIN ) - 1
582*                 perform limited bisection (if necessary) to get approximate
583*                 eigenvalues to the precision needed.
584                  CALL SLARRB( IN, D( IBEGIN ),
585     $                         WORK(INDLLD+IBEGIN-1),
586     $                         P, Q, RTOL1, RTOL2, OFFSET,
587     $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
588     $                         WORK( INDWRK ), IWORK( IINDWK ),
589     $                         PIVMIN, SPDIAM, IN, IINFO )
590                  IF( IINFO.NE.0 ) THEN
591                     INFO = -1
592                     RETURN
593                  ENDIF
594*                 We also recompute the extremal gaps. W holds all eigenvalues
595*                 of the unshifted matrix and must be used for computation
596*                 of WGAP, the entries of WORK might stem from RRRs with
597*                 different shifts. The gaps from WBEGIN-1+OLDFST to
598*                 WBEGIN-1+OLDLST are correctly computed in SLARRB.
599*                 However, we only allow the gaps to become greater since
600*                 this is what should happen when we decrease WERR
601                  IF( OLDFST.GT.1) THEN
602                     WGAP( WBEGIN+OLDFST-2 ) =
603     $             MAX(WGAP(WBEGIN+OLDFST-2),
604     $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
605     $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
606                  ENDIF
607                  IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
608                     WGAP( WBEGIN+OLDLST-1 ) =
609     $               MAX(WGAP(WBEGIN+OLDLST-1),
610     $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
611     $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
612                  ENDIF
613*                 Each time the eigenvalues in WORK get refined, we store
614*                 the newly found approximation with all shifts applied in W
615                  DO 53 J=OLDFST,OLDLST
616                     W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
617 53               CONTINUE
618               END IF
619
620*              Process the current node.
621               NEWFST = OLDFST
622               DO 140 J = OLDFST, OLDLST
623                  IF( J.EQ.OLDLST ) THEN
624*                    we are at the right end of the cluster, this is also the
625*                    boundary of the child cluster
626                     NEWLST = J
627                  ELSE IF ( WGAP( WBEGIN + J -1).GE.
628     $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
629*                    the right relative gap is big enough, the child cluster
630*                    (NEWFST,..,NEWLST) is well separated from the following
631                     NEWLST = J
632                   ELSE
633*                    inside a child cluster, the relative gap is not
634*                    big enough.
635                     GOTO 140
636                  END IF
637
638*                 Compute size of child cluster found
639                  NEWSIZ = NEWLST - NEWFST + 1
640
641*                 NEWFTT is the place in Z where the new RRR or the computed
642*                 eigenvector is to be stored
643                  IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
644*                    Store representation at location of the leftmost evalue
645*                    of the cluster
646                     NEWFTT = WBEGIN + NEWFST - 1
647                  ELSE
648                     IF(WBEGIN+NEWFST-1.LT.DOL) THEN
649*                       Store representation at the left end of Z array
650                        NEWFTT = DOL - 1
651                     ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
652*                       Store representation at the right end of Z array
653                        NEWFTT = DOU
654                     ELSE
655                        NEWFTT = WBEGIN + NEWFST - 1
656                     ENDIF
657                  ENDIF
658
659                  IF( NEWSIZ.GT.1) THEN
660*
661*                    Current child is not a singleton but a cluster.
662*                    Compute and store new representation of child.
663*
664*
665*                    Compute left and right cluster gap.
666*
667*                    LGAP and RGAP are not computed from WORK because
668*                    the eigenvalue approximations may stem from RRRs
669*                    different shifts. However, W hold all eigenvalues
670*                    of the unshifted matrix. Still, the entries in WGAP
671*                    have to be computed from WORK since the entries
672*                    in W might be of the same order so that gaps are not
673*                    exhibited correctly for very close eigenvalues.
674                     IF( NEWFST.EQ.1 ) THEN
675                        LGAP = MAX( ZERO,
676     $                       W(WBEGIN)-WERR(WBEGIN) - VL )
677                    ELSE
678                        LGAP = WGAP( WBEGIN+NEWFST-2 )
679                     ENDIF
680                     RGAP = WGAP( WBEGIN+NEWLST-1 )
681*
682*                    Compute left- and rightmost eigenvalue of child
683*                    to high precision in order to shift as close
684*                    as possible and obtain as large relative gaps
685*                    as possible
686*
687                     DO 55 K =1,2
688                        IF(K.EQ.1) THEN
689                           P = INDEXW( WBEGIN-1+NEWFST )
690                        ELSE
691                           P = INDEXW( WBEGIN-1+NEWLST )
692                        ENDIF
693                        OFFSET = INDEXW( WBEGIN ) - 1
694                        CALL SLARRB( IN, D(IBEGIN),
695     $                       WORK( INDLLD+IBEGIN-1 ),P,P,
696     $                       RQTOL, RQTOL, OFFSET,
697     $                       WORK(WBEGIN),WGAP(WBEGIN),
698     $                       WERR(WBEGIN),WORK( INDWRK ),
699     $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
700     $                       IN, IINFO )
701 55                  CONTINUE
702*
703                     IF((WBEGIN+NEWLST-1.LT.DOL).OR.
704     $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
705*                       if the cluster contains no desired eigenvalues
706*                       skip the computation of that branch of the rep. tree
707*
708*                       We could skip before the refinement of the extremal
709*                       eigenvalues of the child, but then the representation
710*                       tree could be different from the one when nothing is
711*                       skipped. For this reason we skip at this place.
712                        IDONE = IDONE + NEWLST - NEWFST + 1
713                        GOTO 139
714                     ENDIF
715*
716*                    Compute RRR of child cluster.
717*                    Note that the new RRR is stored in Z
718*
719*                    SLARRF needs LWORK = 2*N
720                     CALL SLARRF( IN, D( IBEGIN ), L( IBEGIN ),
721     $                         WORK(INDLD+IBEGIN-1),
722     $                         NEWFST, NEWLST, WORK(WBEGIN),
723     $                         WGAP(WBEGIN), WERR(WBEGIN),
724     $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
725     $                         Z(IBEGIN, NEWFTT),Z(IBEGIN, NEWFTT+1),
726     $                         WORK( INDWRK ), IINFO )
727                     IF( IINFO.EQ.0 ) THEN
728*                       a new RRR for the cluster was found by SLARRF
729*                       update shift and store it
730                        SSIGMA = SIGMA + TAU
731                        Z( IEND, NEWFTT+1 ) = SSIGMA
732*                       WORK() are the midpoints and WERR() the semi-width
733*                       Note that the entries in W are unchanged.
734                        DO 116 K = NEWFST, NEWLST
735                           FUDGE =
736     $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
737                           WORK( WBEGIN + K - 1 ) =
738     $                          WORK( WBEGIN + K - 1) - TAU
739                           FUDGE = FUDGE +
740     $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
741*                          Fudge errors
742                           WERR( WBEGIN + K - 1 ) =
743     $                          WERR( WBEGIN + K - 1 ) + FUDGE
744*                          Gaps are not fudged. Provided that WERR is small
745*                          when eigenvalues are close, a zero gap indicates
746*                          that a new representation is needed for resolving
747*                          the cluster. A fudge could lead to a wrong decision
748*                          of judging eigenvalues 'separated' which in
749*                          reality are not. This could have a negative impact
750*                          on the orthogonality of the computed eigenvectors.
751 116                    CONTINUE
752
753                        NCLUS = NCLUS + 1
754                        K = NEWCLS + 2*NCLUS
755                        IWORK( K-1 ) = NEWFST
756                        IWORK( K ) = NEWLST
757                     ELSE
758                        INFO = -2
759                        RETURN
760                     ENDIF
761                  ELSE
762*
763*                    Compute eigenvector of singleton
764*
765                     ITER = 0
766*
767                     TOL = FOUR * LOG(REAL(IN)) * EPS
768*
769                     K = NEWFST
770                     WINDEX = WBEGIN + K - 1
771                     WINDMN = MAX(WINDEX - 1,1)
772                     WINDPL = MIN(WINDEX + 1,M)
773                     LAMBDA = WORK( WINDEX )
774                     DONE = DONE + 1
775*                    Check if eigenvector computation is to be skipped
776                     IF((WINDEX.LT.DOL).OR.
777     $                  (WINDEX.GT.DOU)) THEN
778                        ESKIP = .TRUE.
779                        GOTO 125
780                     ELSE
781                        ESKIP = .FALSE.
782                     ENDIF
783                     LEFT = WORK( WINDEX ) - WERR( WINDEX )
784                     RIGHT = WORK( WINDEX ) + WERR( WINDEX )
785                     INDEIG = INDEXW( WINDEX )
786*                    Note that since we compute the eigenpairs for a child,
787*                    all eigenvalue approximations are w.r.t the same shift.
788*                    In this case, the entries in WORK should be used for
789*                    computing the gaps since they exhibit even very small
790*                    differences in the eigenvalues, as opposed to the
791*                    entries in W which might "look" the same.
792
793                     IF( K .EQ. 1) THEN
794*                       In the case RANGE='I' and with not much initial
795*                       accuracy in LAMBDA and VL, the formula
796*                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
797*                       can lead to an overestimation of the left gap and
798*                       thus to inadequately early RQI 'convergence'.
799*                       Prevent this by forcing a small left gap.
800                        LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
801                     ELSE
802                        LGAP = WGAP(WINDMN)
803                     ENDIF
804                     IF( K .EQ. IM) THEN
805*                       In the case RANGE='I' and with not much initial
806*                       accuracy in LAMBDA and VU, the formula
807*                       can lead to an overestimation of the right gap and
808*                       thus to inadequately early RQI 'convergence'.
809*                       Prevent this by forcing a small right gap.
810                        RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
811                     ELSE
812                        RGAP = WGAP(WINDEX)
813                     ENDIF
814                     GAP = MIN( LGAP, RGAP )
815                     IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
816*                       The eigenvector support can become wrong
817*                       because significant entries could be cut off due to a
818*                       large GAPTOL parameter in LAR1V. Prevent this.
819                        GAPTOL = ZERO
820                     ELSE
821                        GAPTOL = GAP * EPS
822                     ENDIF
823                     ISUPMN = IN
824                     ISUPMX = 1
825*                    Update WGAP so that it holds the minimum gap
826*                    to the left or the right. This is crucial in the
827*                    case where bisection is used to ensure that the
828*                    eigenvalue is refined up to the required precision.
829*                    The correct value is restored afterwards.
830                     SAVGAP = WGAP(WINDEX)
831                     WGAP(WINDEX) = GAP
832*                    We want to use the Rayleigh Quotient Correction
833*                    as often as possible since it converges quadratically
834*                    when we are close enough to the desired eigenvalue.
835*                    However, the Rayleigh Quotient can have the wrong sign
836*                    and lead us away from the desired eigenvalue. In this
837*                    case, the best we can do is to use bisection.
838                     USEDBS = .FALSE.
839                     USEDRQ = .FALSE.
840*                    Bisection is initially turned off unless it is forced
841                     NEEDBS =  .NOT.TRYRQC
842 120                 CONTINUE
843*                    Check if bisection should be used to refine eigenvalue
844                     IF(NEEDBS) THEN
845*                       Take the bisection as new iterate
846                        USEDBS = .TRUE.
847                        ITMP1 = IWORK( IINDR+WINDEX )
848                        OFFSET = INDEXW( WBEGIN ) - 1
849                        CALL SLARRB( IN, D(IBEGIN),
850     $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
851     $                       ZERO, TWO*EPS, OFFSET,
852     $                       WORK(WBEGIN),WGAP(WBEGIN),
853     $                       WERR(WBEGIN),WORK( INDWRK ),
854     $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
855     $                       ITMP1, IINFO )
856                        IF( IINFO.NE.0 ) THEN
857                           INFO = -3
858                           RETURN
859                        ENDIF
860                        LAMBDA = WORK( WINDEX )
861*                       Reset twist index from inaccurate LAMBDA to
862*                       force computation of true MINGMA
863                        IWORK( IINDR+WINDEX ) = 0
864                     ENDIF
865*                    Given LAMBDA, compute the eigenvector.
866                     CALL SLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
867     $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
868     $                    WORK(INDLLD+IBEGIN-1),
869     $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
870     $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
871     $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
872     $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
873                     IF(ITER .EQ. 0) THEN
874                        BSTRES = RESID
875                        BSTW = LAMBDA
876                     ELSEIF(RESID.LT.BSTRES) THEN
877                        BSTRES = RESID
878                        BSTW = LAMBDA
879                     ENDIF
880                     ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
881                     ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
882                     ITER = ITER + 1
883
884*                    sin alpha <= |resid|/gap
885*                    Note that both the residual and the gap are
886*                    proportional to the matrix, so ||T|| doesn't play
887*                    a role in the quotient
888
889*
890*                    Convergence test for Rayleigh-Quotient iteration
891*                    (omitted when Bisection has been used)
892*
893                     IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
894     $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
895     $                    THEN
896*                       We need to check that the RQCORR update doesn't
897*                       move the eigenvalue away from the desired one and
898*                       towards a neighbor. -> protection with bisection
899                        IF(INDEIG.LE.NEGCNT) THEN
900*                          The wanted eigenvalue lies to the left
901                           SGNDEF = -ONE
902                        ELSE
903*                          The wanted eigenvalue lies to the right
904                           SGNDEF = ONE
905                        ENDIF
906*                       We only use the RQCORR if it improves the
907*                       the iterate reasonably.
908                        IF( ( RQCORR*SGNDEF.GE.ZERO )
909     $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
910     $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
911     $                       ) THEN
912                           USEDRQ = .TRUE.
913*                          Store new midpoint of bisection interval in WORK
914                           IF(SGNDEF.EQ.ONE) THEN
915*                             The current LAMBDA is on the left of the true
916*                             eigenvalue
917                              LEFT = LAMBDA
918*                             We prefer to assume that the error estimate
919*                             is correct. We could make the interval not
920*                             as a bracket but to be modified if the RQCORR
921*                             chooses to. In this case, the RIGHT side should
922*                             be modified as follows:
923*                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
924                           ELSE
925*                             The current LAMBDA is on the right of the true
926*                             eigenvalue
927                              RIGHT = LAMBDA
928*                             See comment about assuming the error estimate is
929*                             correct above.
930*                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
931                           ENDIF
932                           WORK( WINDEX ) =
933     $                       HALF * (RIGHT + LEFT)
934*                          Take RQCORR since it has the correct sign and
935*                          improves the iterate reasonably
936                           LAMBDA = LAMBDA + RQCORR
937*                          Update width of error interval
938                           WERR( WINDEX ) =
939     $                             HALF * (RIGHT-LEFT)
940                        ELSE
941                           NEEDBS = .TRUE.
942                        ENDIF
943                        IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
944*                             The eigenvalue is computed to bisection accuracy
945*                             compute eigenvector and stop
946                           USEDBS = .TRUE.
947                           GOTO 120
948                        ELSEIF( ITER.LT.MAXITR ) THEN
949                           GOTO 120
950                        ELSEIF( ITER.EQ.MAXITR ) THEN
951                           NEEDBS = .TRUE.
952                           GOTO 120
953                        ELSE
954                           INFO = 5
955                           RETURN
956                        END IF
957                     ELSE
958                        STP2II = .FALSE.
959        IF(USEDRQ .AND. USEDBS .AND.
960     $                     BSTRES.LE.RESID) THEN
961                           LAMBDA = BSTW
962                           STP2II = .TRUE.
963                        ENDIF
964                        IF (STP2II) THEN
965*                          improve error angle by second step
966                           CALL SLAR1V( IN, 1, IN, LAMBDA,
967     $                          D( IBEGIN ), L( IBEGIN ),
968     $                          WORK(INDLD+IBEGIN-1),
969     $                          WORK(INDLLD+IBEGIN-1),
970     $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
971     $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
972     $                          IWORK( IINDR+WINDEX ),
973     $                          ISUPPZ( 2*WINDEX-1 ),
974     $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
975                        ENDIF
976                        WORK( WINDEX ) = LAMBDA
977                     END IF
978*
979*                    Compute FP-vector support w.r.t. whole matrix
980*
981                     ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
982                     ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
983                     ZFROM = ISUPPZ( 2*WINDEX-1 )
984                     ZTO = ISUPPZ( 2*WINDEX )
985                     ISUPMN = ISUPMN + OLDIEN
986                     ISUPMX = ISUPMX + OLDIEN
987*                    Ensure vector is ok if support in the RQI has changed
988                     IF(ISUPMN.LT.ZFROM) THEN
989                        DO 122 II = ISUPMN,ZFROM-1
990                           Z( II, WINDEX ) = ZERO
991 122                    CONTINUE
992                     ENDIF
993                     IF(ISUPMX.GT.ZTO) THEN
994                        DO 123 II = ZTO+1,ISUPMX
995                           Z( II, WINDEX ) = ZERO
996 123                    CONTINUE
997                     ENDIF
998                     CALL SSCAL( ZTO-ZFROM+1, NRMINV,
999     $                       Z( ZFROM, WINDEX ), 1 )
1000 125                 CONTINUE
1001*                    Update W
1002                     W( WINDEX ) = LAMBDA+SIGMA
1003*                    Recompute the gaps on the left and right
1004*                    But only allow them to become larger and not
1005*                    smaller (which can only happen through "bad"
1006*                    cancellation and doesn't reflect the theory
1007*                    where the initial gaps are underestimated due
1008*                    to WERR being too crude.)
1009                     IF(.NOT.ESKIP) THEN
1010                        IF( K.GT.1) THEN
1011                           WGAP( WINDMN ) = MAX( WGAP(WINDMN),
1012     $                          W(WINDEX)-WERR(WINDEX)
1013     $                          - W(WINDMN)-WERR(WINDMN) )
1014                        ENDIF
1015                        IF( WINDEX.LT.WEND ) THEN
1016                           WGAP( WINDEX ) = MAX( SAVGAP,
1017     $                          W( WINDPL )-WERR( WINDPL )
1018     $                          - W( WINDEX )-WERR( WINDEX) )
1019                        ENDIF
1020                     ENDIF
1021                     IDONE = IDONE + 1
1022                  ENDIF
1023*                 here ends the code for the current child
1024*
1025 139              CONTINUE
1026*                 Proceed to any remaining child nodes
1027                  NEWFST = J + 1
1028 140           CONTINUE
1029 150        CONTINUE
1030            NDEPTH = NDEPTH + 1
1031            GO TO 40
1032         END IF
1033         IBEGIN = IEND + 1
1034         WBEGIN = WEND + 1
1035 170  CONTINUE
1036*
1037
1038      RETURN
1039*
1040*     End of SLARRV
1041*
1042      END
1043