1*> \brief \b SORMTR 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SORMTR + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormtr.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormtr.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormtr.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SORMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, 22* WORK, LWORK, INFO ) 23* 24* .. Scalar Arguments .. 25* CHARACTER SIDE, TRANS, UPLO 26* INTEGER INFO, LDA, LDC, LWORK, M, N 27* .. 28* .. Array Arguments .. 29* REAL A( LDA, * ), C( LDC, * ), TAU( * ), 30* $ WORK( * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> SORMTR overwrites the general real M-by-N matrix C with 40*> 41*> SIDE = 'L' SIDE = 'R' 42*> TRANS = 'N': Q * C C * Q 43*> TRANS = 'T': Q**T * C C * Q**T 44*> 45*> where Q is a real orthogonal matrix of order nq, with nq = m if 46*> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of 47*> nq-1 elementary reflectors, as returned by SSYTRD: 48*> 49*> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); 50*> 51*> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). 52*> \endverbatim 53* 54* Arguments: 55* ========== 56* 57*> \param[in] SIDE 58*> \verbatim 59*> SIDE is CHARACTER*1 60*> = 'L': apply Q or Q**T from the Left; 61*> = 'R': apply Q or Q**T from the Right. 62*> \endverbatim 63*> 64*> \param[in] UPLO 65*> \verbatim 66*> UPLO is CHARACTER*1 67*> = 'U': Upper triangle of A contains elementary reflectors 68*> from SSYTRD; 69*> = 'L': Lower triangle of A contains elementary reflectors 70*> from SSYTRD. 71*> \endverbatim 72*> 73*> \param[in] TRANS 74*> \verbatim 75*> TRANS is CHARACTER*1 76*> = 'N': No transpose, apply Q; 77*> = 'T': Transpose, apply Q**T. 78*> \endverbatim 79*> 80*> \param[in] M 81*> \verbatim 82*> M is INTEGER 83*> The number of rows of the matrix C. M >= 0. 84*> \endverbatim 85*> 86*> \param[in] N 87*> \verbatim 88*> N is INTEGER 89*> The number of columns of the matrix C. N >= 0. 90*> \endverbatim 91*> 92*> \param[in] A 93*> \verbatim 94*> A is REAL array, dimension 95*> (LDA,M) if SIDE = 'L' 96*> (LDA,N) if SIDE = 'R' 97*> The vectors which define the elementary reflectors, as 98*> returned by SSYTRD. 99*> \endverbatim 100*> 101*> \param[in] LDA 102*> \verbatim 103*> LDA is INTEGER 104*> The leading dimension of the array A. 105*> LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. 106*> \endverbatim 107*> 108*> \param[in] TAU 109*> \verbatim 110*> TAU is REAL array, dimension 111*> (M-1) if SIDE = 'L' 112*> (N-1) if SIDE = 'R' 113*> TAU(i) must contain the scalar factor of the elementary 114*> reflector H(i), as returned by SSYTRD. 115*> \endverbatim 116*> 117*> \param[in,out] C 118*> \verbatim 119*> C is REAL array, dimension (LDC,N) 120*> On entry, the M-by-N matrix C. 121*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. 122*> \endverbatim 123*> 124*> \param[in] LDC 125*> \verbatim 126*> LDC is INTEGER 127*> The leading dimension of the array C. LDC >= max(1,M). 128*> \endverbatim 129*> 130*> \param[out] WORK 131*> \verbatim 132*> WORK is REAL array, dimension (MAX(1,LWORK)) 133*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 134*> \endverbatim 135*> 136*> \param[in] LWORK 137*> \verbatim 138*> LWORK is INTEGER 139*> The dimension of the array WORK. 140*> If SIDE = 'L', LWORK >= max(1,N); 141*> if SIDE = 'R', LWORK >= max(1,M). 142*> For optimum performance LWORK >= N*NB if SIDE = 'L', and 143*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal 144*> blocksize. 145*> 146*> If LWORK = -1, then a workspace query is assumed; the routine 147*> only calculates the optimal size of the WORK array, returns 148*> this value as the first entry of the WORK array, and no error 149*> message related to LWORK is issued by XERBLA. 150*> \endverbatim 151*> 152*> \param[out] INFO 153*> \verbatim 154*> INFO is INTEGER 155*> = 0: successful exit 156*> < 0: if INFO = -i, the i-th argument had an illegal value 157*> \endverbatim 158* 159* Authors: 160* ======== 161* 162*> \author Univ. of Tennessee 163*> \author Univ. of California Berkeley 164*> \author Univ. of Colorado Denver 165*> \author NAG Ltd. 166* 167*> \ingroup realOTHERcomputational 168* 169* ===================================================================== 170 SUBROUTINE SORMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, 171 $ WORK, LWORK, INFO ) 172* 173* -- LAPACK computational routine -- 174* -- LAPACK is a software package provided by Univ. of Tennessee, -- 175* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 176* 177* .. Scalar Arguments .. 178 CHARACTER SIDE, TRANS, UPLO 179 INTEGER INFO, LDA, LDC, LWORK, M, N 180* .. 181* .. Array Arguments .. 182 REAL A( LDA, * ), C( LDC, * ), TAU( * ), 183 $ WORK( * ) 184* .. 185* 186* ===================================================================== 187* 188* .. Local Scalars .. 189 LOGICAL LEFT, LQUERY, UPPER 190 INTEGER I1, I2, IINFO, LWKOPT, MI, NI, NB, NQ, NW 191* .. 192* .. External Functions .. 193 LOGICAL LSAME 194 INTEGER ILAENV 195 EXTERNAL ILAENV, LSAME 196* .. 197* .. External Subroutines .. 198 EXTERNAL SORMQL, SORMQR, XERBLA 199* .. 200* .. Intrinsic Functions .. 201 INTRINSIC MAX 202* .. 203* .. Executable Statements .. 204* 205* Test the input arguments 206* 207 INFO = 0 208 LEFT = LSAME( SIDE, 'L' ) 209 UPPER = LSAME( UPLO, 'U' ) 210 LQUERY = ( LWORK.EQ.-1 ) 211* 212* NQ is the order of Q and NW is the minimum dimension of WORK 213* 214 IF( LEFT ) THEN 215 NQ = M 216 NW = MAX( 1, N ) 217 ELSE 218 NQ = N 219 NW = MAX( 1, M ) 220 END IF 221 IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN 222 INFO = -1 223 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 224 INFO = -2 225 ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) ) 226 $ THEN 227 INFO = -3 228 ELSE IF( M.LT.0 ) THEN 229 INFO = -4 230 ELSE IF( N.LT.0 ) THEN 231 INFO = -5 232 ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN 233 INFO = -7 234 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN 235 INFO = -10 236 ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN 237 INFO = -12 238 END IF 239* 240 IF( INFO.EQ.0 ) THEN 241 IF( UPPER ) THEN 242 IF( LEFT ) THEN 243 NB = ILAENV( 1, 'SORMQL', SIDE // TRANS, M-1, N, M-1, 244 $ -1 ) 245 ELSE 246 NB = ILAENV( 1, 'SORMQL', SIDE // TRANS, M, N-1, N-1, 247 $ -1 ) 248 END IF 249 ELSE 250 IF( LEFT ) THEN 251 NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M-1, N, M-1, 252 $ -1 ) 253 ELSE 254 NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M, N-1, N-1, 255 $ -1 ) 256 END IF 257 END IF 258 LWKOPT = NW*NB 259 WORK( 1 ) = LWKOPT 260 END IF 261* 262 IF( INFO.NE.0 ) THEN 263 CALL XERBLA( 'SORMTR', -INFO ) 264 RETURN 265 ELSE IF( LQUERY ) THEN 266 RETURN 267 END IF 268* 269* Quick return if possible 270* 271 IF( M.EQ.0 .OR. N.EQ.0 .OR. NQ.EQ.1 ) THEN 272 WORK( 1 ) = 1 273 RETURN 274 END IF 275* 276 IF( LEFT ) THEN 277 MI = M - 1 278 NI = N 279 ELSE 280 MI = M 281 NI = N - 1 282 END IF 283* 284 IF( UPPER ) THEN 285* 286* Q was determined by a call to SSYTRD with UPLO = 'U' 287* 288 CALL SORMQL( SIDE, TRANS, MI, NI, NQ-1, A( 1, 2 ), LDA, TAU, C, 289 $ LDC, WORK, LWORK, IINFO ) 290 ELSE 291* 292* Q was determined by a call to SSYTRD with UPLO = 'L' 293* 294 IF( LEFT ) THEN 295 I1 = 2 296 I2 = 1 297 ELSE 298 I1 = 1 299 I2 = 2 300 END IF 301 CALL SORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU, 302 $ C( I1, I2 ), LDC, WORK, LWORK, IINFO ) 303 END IF 304 WORK( 1 ) = LWKOPT 305 RETURN 306* 307* End of SORMTR 308* 309 END 310