1*> \brief \b STFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download STFTTR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stfttr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stfttr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stfttr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE STFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          TRANSR, UPLO
25*       INTEGER            INFO, N, LDA
26*       ..
27*       .. Array Arguments ..
28*       REAL               A( 0: LDA-1, 0: * ), ARF( 0: * )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> STFTTR copies a triangular matrix A from rectangular full packed
38*> format (TF) to standard full format (TR).
39*> \endverbatim
40*
41*  Arguments:
42*  ==========
43*
44*> \param[in] TRANSR
45*> \verbatim
46*>          TRANSR is CHARACTER*1
47*>          = 'N':  ARF is in Normal format;
48*>          = 'T':  ARF is in Transpose format.
49*> \endverbatim
50*>
51*> \param[in] UPLO
52*> \verbatim
53*>          UPLO is CHARACTER*1
54*>          = 'U':  A is upper triangular;
55*>          = 'L':  A is lower triangular.
56*> \endverbatim
57*>
58*> \param[in] N
59*> \verbatim
60*>          N is INTEGER
61*>          The order of the matrices ARF and A. N >= 0.
62*> \endverbatim
63*>
64*> \param[in] ARF
65*> \verbatim
66*>          ARF is REAL array, dimension (N*(N+1)/2).
67*>          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
68*>          matrix A in RFP format. See the "Notes" below for more
69*>          details.
70*> \endverbatim
71*>
72*> \param[out] A
73*> \verbatim
74*>          A is REAL array, dimension (LDA,N)
75*>          On exit, the triangular matrix A.  If UPLO = 'U', the
76*>          leading N-by-N upper triangular part of the array A contains
77*>          the upper triangular matrix, and the strictly lower
78*>          triangular part of A is not referenced.  If UPLO = 'L', the
79*>          leading N-by-N lower triangular part of the array A contains
80*>          the lower triangular matrix, and the strictly upper
81*>          triangular part of A is not referenced.
82*> \endverbatim
83*>
84*> \param[in] LDA
85*> \verbatim
86*>          LDA is INTEGER
87*>          The leading dimension of the array A.  LDA >= max(1,N).
88*> \endverbatim
89*>
90*> \param[out] INFO
91*> \verbatim
92*>          INFO is INTEGER
93*>          = 0:  successful exit
94*>          < 0:  if INFO = -i, the i-th argument had an illegal value
95*> \endverbatim
96*
97*  Authors:
98*  ========
99*
100*> \author Univ. of Tennessee
101*> \author Univ. of California Berkeley
102*> \author Univ. of Colorado Denver
103*> \author NAG Ltd.
104*
105*> \ingroup realOTHERcomputational
106*
107*> \par Further Details:
108*  =====================
109*>
110*> \verbatim
111*>
112*>  We first consider Rectangular Full Packed (RFP) Format when N is
113*>  even. We give an example where N = 6.
114*>
115*>      AP is Upper             AP is Lower
116*>
117*>   00 01 02 03 04 05       00
118*>      11 12 13 14 15       10 11
119*>         22 23 24 25       20 21 22
120*>            33 34 35       30 31 32 33
121*>               44 45       40 41 42 43 44
122*>                  55       50 51 52 53 54 55
123*>
124*>
125*>  Let TRANSR = 'N'. RFP holds AP as follows:
126*>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
127*>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
128*>  the transpose of the first three columns of AP upper.
129*>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
130*>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
131*>  the transpose of the last three columns of AP lower.
132*>  This covers the case N even and TRANSR = 'N'.
133*>
134*>         RFP A                   RFP A
135*>
136*>        03 04 05                33 43 53
137*>        13 14 15                00 44 54
138*>        23 24 25                10 11 55
139*>        33 34 35                20 21 22
140*>        00 44 45                30 31 32
141*>        01 11 55                40 41 42
142*>        02 12 22                50 51 52
143*>
144*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
145*>  transpose of RFP A above. One therefore gets:
146*>
147*>
148*>           RFP A                   RFP A
149*>
150*>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
151*>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
152*>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
153*>
154*>
155*>  We then consider Rectangular Full Packed (RFP) Format when N is
156*>  odd. We give an example where N = 5.
157*>
158*>     AP is Upper                 AP is Lower
159*>
160*>   00 01 02 03 04              00
161*>      11 12 13 14              10 11
162*>         22 23 24              20 21 22
163*>            33 34              30 31 32 33
164*>               44              40 41 42 43 44
165*>
166*>
167*>  Let TRANSR = 'N'. RFP holds AP as follows:
168*>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
169*>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
170*>  the transpose of the first two columns of AP upper.
171*>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
172*>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
173*>  the transpose of the last two columns of AP lower.
174*>  This covers the case N odd and TRANSR = 'N'.
175*>
176*>         RFP A                   RFP A
177*>
178*>        02 03 04                00 33 43
179*>        12 13 14                10 11 44
180*>        22 23 24                20 21 22
181*>        00 33 34                30 31 32
182*>        01 11 44                40 41 42
183*>
184*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
185*>  transpose of RFP A above. One therefore gets:
186*>
187*>           RFP A                   RFP A
188*>
189*>     02 12 22 00 01             00 10 20 30 40 50
190*>     03 13 23 33 11             33 11 21 31 41 51
191*>     04 14 24 34 44             43 44 22 32 42 52
192*> \endverbatim
193*
194*  =====================================================================
195      SUBROUTINE STFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
196*
197*  -- LAPACK computational routine --
198*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
199*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
200*
201*     .. Scalar Arguments ..
202      CHARACTER          TRANSR, UPLO
203      INTEGER            INFO, N, LDA
204*     ..
205*     .. Array Arguments ..
206      REAL               A( 0: LDA-1, 0: * ), ARF( 0: * )
207*     ..
208*
209*  =====================================================================
210*
211*     ..
212*     .. Local Scalars ..
213      LOGICAL            LOWER, NISODD, NORMALTRANSR
214      INTEGER            N1, N2, K, NT, NX2, NP1X2
215      INTEGER            I, J, L, IJ
216*     ..
217*     .. External Functions ..
218      LOGICAL            LSAME
219      EXTERNAL           LSAME
220*     ..
221*     .. External Subroutines ..
222      EXTERNAL           XERBLA
223*     ..
224*     .. Intrinsic Functions ..
225      INTRINSIC          MAX, MOD
226*     ..
227*     .. Executable Statements ..
228*
229*     Test the input parameters.
230*
231      INFO = 0
232      NORMALTRANSR = LSAME( TRANSR, 'N' )
233      LOWER = LSAME( UPLO, 'L' )
234      IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
235         INFO = -1
236      ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
237         INFO = -2
238      ELSE IF( N.LT.0 ) THEN
239         INFO = -3
240      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
241         INFO = -6
242      END IF
243      IF( INFO.NE.0 ) THEN
244         CALL XERBLA( 'STFTTR', -INFO )
245         RETURN
246      END IF
247*
248*     Quick return if possible
249*
250      IF( N.LE.1 ) THEN
251         IF( N.EQ.1 ) THEN
252            A( 0, 0 ) = ARF( 0 )
253         END IF
254         RETURN
255      END IF
256*
257*     Size of array ARF(0:nt-1)
258*
259      NT = N*( N+1 ) / 2
260*
261*     set N1 and N2 depending on LOWER: for N even N1=N2=K
262*
263      IF( LOWER ) THEN
264         N2 = N / 2
265         N1 = N - N2
266      ELSE
267         N1 = N / 2
268         N2 = N - N1
269      END IF
270*
271*     If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
272*     If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
273*     N--by--(N+1)/2.
274*
275      IF( MOD( N, 2 ).EQ.0 ) THEN
276         K = N / 2
277         NISODD = .FALSE.
278         IF( .NOT.LOWER )
279     $      NP1X2 = N + N + 2
280      ELSE
281         NISODD = .TRUE.
282         IF( .NOT.LOWER )
283     $      NX2 = N + N
284      END IF
285*
286      IF( NISODD ) THEN
287*
288*        N is odd
289*
290         IF( NORMALTRANSR ) THEN
291*
292*           N is odd and TRANSR = 'N'
293*
294            IF( LOWER ) THEN
295*
296*              N is odd, TRANSR = 'N', and UPLO = 'L'
297*
298               IJ = 0
299               DO J = 0, N2
300                  DO I = N1, N2 + J
301                     A( N2+J, I ) = ARF( IJ )
302                     IJ = IJ + 1
303                  END DO
304                  DO I = J, N - 1
305                     A( I, J ) = ARF( IJ )
306                     IJ = IJ + 1
307                  END DO
308               END DO
309*
310            ELSE
311*
312*              N is odd, TRANSR = 'N', and UPLO = 'U'
313*
314               IJ = NT - N
315               DO J = N - 1, N1, -1
316                  DO I = 0, J
317                     A( I, J ) = ARF( IJ )
318                     IJ = IJ + 1
319                  END DO
320                  DO L = J - N1, N1 - 1
321                     A( J-N1, L ) = ARF( IJ )
322                     IJ = IJ + 1
323                  END DO
324                  IJ = IJ - NX2
325               END DO
326*
327            END IF
328*
329         ELSE
330*
331*           N is odd and TRANSR = 'T'
332*
333            IF( LOWER ) THEN
334*
335*              N is odd, TRANSR = 'T', and UPLO = 'L'
336*
337               IJ = 0
338               DO J = 0, N2 - 1
339                  DO I = 0, J
340                     A( J, I ) = ARF( IJ )
341                     IJ = IJ + 1
342                  END DO
343                  DO I = N1 + J, N - 1
344                     A( I, N1+J ) = ARF( IJ )
345                     IJ = IJ + 1
346                  END DO
347               END DO
348               DO J = N2, N - 1
349                  DO I = 0, N1 - 1
350                     A( J, I ) = ARF( IJ )
351                     IJ = IJ + 1
352                  END DO
353               END DO
354*
355            ELSE
356*
357*              N is odd, TRANSR = 'T', and UPLO = 'U'
358*
359               IJ = 0
360               DO J = 0, N1
361                  DO I = N1, N - 1
362                     A( J, I ) = ARF( IJ )
363                     IJ = IJ + 1
364                  END DO
365               END DO
366               DO J = 0, N1 - 1
367                  DO I = 0, J
368                     A( I, J ) = ARF( IJ )
369                     IJ = IJ + 1
370                  END DO
371                  DO L = N2 + J, N - 1
372                     A( N2+J, L ) = ARF( IJ )
373                     IJ = IJ + 1
374                  END DO
375               END DO
376*
377            END IF
378*
379         END IF
380*
381      ELSE
382*
383*        N is even
384*
385         IF( NORMALTRANSR ) THEN
386*
387*           N is even and TRANSR = 'N'
388*
389            IF( LOWER ) THEN
390*
391*              N is even, TRANSR = 'N', and UPLO = 'L'
392*
393               IJ = 0
394               DO J = 0, K - 1
395                  DO I = K, K + J
396                     A( K+J, I ) = ARF( IJ )
397                     IJ = IJ + 1
398                  END DO
399                  DO I = J, N - 1
400                     A( I, J ) = ARF( IJ )
401                     IJ = IJ + 1
402                  END DO
403               END DO
404*
405            ELSE
406*
407*              N is even, TRANSR = 'N', and UPLO = 'U'
408*
409               IJ = NT - N - 1
410               DO J = N - 1, K, -1
411                  DO I = 0, J
412                     A( I, J ) = ARF( IJ )
413                     IJ = IJ + 1
414                  END DO
415                  DO L = J - K, K - 1
416                     A( J-K, L ) = ARF( IJ )
417                     IJ = IJ + 1
418                  END DO
419                  IJ = IJ - NP1X2
420               END DO
421*
422            END IF
423*
424         ELSE
425*
426*           N is even and TRANSR = 'T'
427*
428            IF( LOWER ) THEN
429*
430*              N is even, TRANSR = 'T', and UPLO = 'L'
431*
432               IJ = 0
433               J = K
434               DO I = K, N - 1
435                  A( I, J ) = ARF( IJ )
436                  IJ = IJ + 1
437               END DO
438               DO J = 0, K - 2
439                  DO I = 0, J
440                     A( J, I ) = ARF( IJ )
441                     IJ = IJ + 1
442                  END DO
443                  DO I = K + 1 + J, N - 1
444                     A( I, K+1+J ) = ARF( IJ )
445                     IJ = IJ + 1
446                  END DO
447               END DO
448               DO J = K - 1, N - 1
449                  DO I = 0, K - 1
450                     A( J, I ) = ARF( IJ )
451                     IJ = IJ + 1
452                  END DO
453               END DO
454*
455            ELSE
456*
457*              N is even, TRANSR = 'T', and UPLO = 'U'
458*
459               IJ = 0
460               DO J = 0, K
461                  DO I = K, N - 1
462                     A( J, I ) = ARF( IJ )
463                     IJ = IJ + 1
464                  END DO
465               END DO
466               DO J = 0, K - 2
467                  DO I = 0, J
468                     A( I, J ) = ARF( IJ )
469                     IJ = IJ + 1
470                  END DO
471                  DO L = K + 1 + J, N - 1
472                     A( K+1+J, L ) = ARF( IJ )
473                     IJ = IJ + 1
474                  END DO
475               END DO
476*              Note that here, on exit of the loop, J = K-1
477               DO I = 0, J
478                  A( I, J ) = ARF( IJ )
479                  IJ = IJ + 1
480               END DO
481*
482            END IF
483*
484         END IF
485*
486      END IF
487*
488      RETURN
489*
490*     End of STFTTR
491*
492      END
493