1*> \brief \b ZGGQRF 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZGGQRF + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggqrf.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggqrf.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggqrf.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, 22* LWORK, INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDA, LDB, LWORK, M, N, P 26* .. 27* .. Array Arguments .. 28* COMPLEX*16 A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ), 29* $ WORK( * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> ZGGQRF computes a generalized QR factorization of an N-by-M matrix A 39*> and an N-by-P matrix B: 40*> 41*> A = Q*R, B = Q*T*Z, 42*> 43*> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix, 44*> and R and T assume one of the forms: 45*> 46*> if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, 47*> ( 0 ) N-M N M-N 48*> M 49*> 50*> where R11 is upper triangular, and 51*> 52*> if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, 53*> P-N N ( T21 ) P 54*> P 55*> 56*> where T12 or T21 is upper triangular. 57*> 58*> In particular, if B is square and nonsingular, the GQR factorization 59*> of A and B implicitly gives the QR factorization of inv(B)*A: 60*> 61*> inv(B)*A = Z**H * (inv(T)*R) 62*> 63*> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the 64*> conjugate transpose of matrix Z. 65*> \endverbatim 66* 67* Arguments: 68* ========== 69* 70*> \param[in] N 71*> \verbatim 72*> N is INTEGER 73*> The number of rows of the matrices A and B. N >= 0. 74*> \endverbatim 75*> 76*> \param[in] M 77*> \verbatim 78*> M is INTEGER 79*> The number of columns of the matrix A. M >= 0. 80*> \endverbatim 81*> 82*> \param[in] P 83*> \verbatim 84*> P is INTEGER 85*> The number of columns of the matrix B. P >= 0. 86*> \endverbatim 87*> 88*> \param[in,out] A 89*> \verbatim 90*> A is COMPLEX*16 array, dimension (LDA,M) 91*> On entry, the N-by-M matrix A. 92*> On exit, the elements on and above the diagonal of the array 93*> contain the min(N,M)-by-M upper trapezoidal matrix R (R is 94*> upper triangular if N >= M); the elements below the diagonal, 95*> with the array TAUA, represent the unitary matrix Q as a 96*> product of min(N,M) elementary reflectors (see Further 97*> Details). 98*> \endverbatim 99*> 100*> \param[in] LDA 101*> \verbatim 102*> LDA is INTEGER 103*> The leading dimension of the array A. LDA >= max(1,N). 104*> \endverbatim 105*> 106*> \param[out] TAUA 107*> \verbatim 108*> TAUA is COMPLEX*16 array, dimension (min(N,M)) 109*> The scalar factors of the elementary reflectors which 110*> represent the unitary matrix Q (see Further Details). 111*> \endverbatim 112*> 113*> \param[in,out] B 114*> \verbatim 115*> B is COMPLEX*16 array, dimension (LDB,P) 116*> On entry, the N-by-P matrix B. 117*> On exit, if N <= P, the upper triangle of the subarray 118*> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; 119*> if N > P, the elements on and above the (N-P)-th subdiagonal 120*> contain the N-by-P upper trapezoidal matrix T; the remaining 121*> elements, with the array TAUB, represent the unitary 122*> matrix Z as a product of elementary reflectors (see Further 123*> Details). 124*> \endverbatim 125*> 126*> \param[in] LDB 127*> \verbatim 128*> LDB is INTEGER 129*> The leading dimension of the array B. LDB >= max(1,N). 130*> \endverbatim 131*> 132*> \param[out] TAUB 133*> \verbatim 134*> TAUB is COMPLEX*16 array, dimension (min(N,P)) 135*> The scalar factors of the elementary reflectors which 136*> represent the unitary matrix Z (see Further Details). 137*> \endverbatim 138*> 139*> \param[out] WORK 140*> \verbatim 141*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) 142*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 143*> \endverbatim 144*> 145*> \param[in] LWORK 146*> \verbatim 147*> LWORK is INTEGER 148*> The dimension of the array WORK. LWORK >= max(1,N,M,P). 149*> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), 150*> where NB1 is the optimal blocksize for the QR factorization 151*> of an N-by-M matrix, NB2 is the optimal blocksize for the 152*> RQ factorization of an N-by-P matrix, and NB3 is the optimal 153*> blocksize for a call of ZUNMQR. 154*> 155*> If LWORK = -1, then a workspace query is assumed; the routine 156*> only calculates the optimal size of the WORK array, returns 157*> this value as the first entry of the WORK array, and no error 158*> message related to LWORK is issued by XERBLA. 159*> \endverbatim 160*> 161*> \param[out] INFO 162*> \verbatim 163*> INFO is INTEGER 164*> = 0: successful exit 165*> < 0: if INFO = -i, the i-th argument had an illegal value. 166*> \endverbatim 167* 168* Authors: 169* ======== 170* 171*> \author Univ. of Tennessee 172*> \author Univ. of California Berkeley 173*> \author Univ. of Colorado Denver 174*> \author NAG Ltd. 175* 176*> \ingroup complex16OTHERcomputational 177* 178*> \par Further Details: 179* ===================== 180*> 181*> \verbatim 182*> 183*> The matrix Q is represented as a product of elementary reflectors 184*> 185*> Q = H(1) H(2) . . . H(k), where k = min(n,m). 186*> 187*> Each H(i) has the form 188*> 189*> H(i) = I - taua * v * v**H 190*> 191*> where taua is a complex scalar, and v is a complex vector with 192*> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), 193*> and taua in TAUA(i). 194*> To form Q explicitly, use LAPACK subroutine ZUNGQR. 195*> To use Q to update another matrix, use LAPACK subroutine ZUNMQR. 196*> 197*> The matrix Z is represented as a product of elementary reflectors 198*> 199*> Z = H(1) H(2) . . . H(k), where k = min(n,p). 200*> 201*> Each H(i) has the form 202*> 203*> H(i) = I - taub * v * v**H 204*> 205*> where taub is a complex scalar, and v is a complex vector with 206*> v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in 207*> B(n-k+i,1:p-k+i-1), and taub in TAUB(i). 208*> To form Z explicitly, use LAPACK subroutine ZUNGRQ. 209*> To use Z to update another matrix, use LAPACK subroutine ZUNMRQ. 210*> \endverbatim 211*> 212* ===================================================================== 213 SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, 214 $ LWORK, INFO ) 215* 216* -- LAPACK computational routine -- 217* -- LAPACK is a software package provided by Univ. of Tennessee, -- 218* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 219* 220* .. Scalar Arguments .. 221 INTEGER INFO, LDA, LDB, LWORK, M, N, P 222* .. 223* .. Array Arguments .. 224 COMPLEX*16 A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ), 225 $ WORK( * ) 226* .. 227* 228* ===================================================================== 229* 230* .. Local Scalars .. 231 LOGICAL LQUERY 232 INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3 233* .. 234* .. External Subroutines .. 235 EXTERNAL XERBLA, ZGEQRF, ZGERQF, ZUNMQR 236* .. 237* .. External Functions .. 238 INTEGER ILAENV 239 EXTERNAL ILAENV 240* .. 241* .. Intrinsic Functions .. 242 INTRINSIC INT, MAX, MIN 243* .. 244* .. Executable Statements .. 245* 246* Test the input parameters 247* 248 INFO = 0 249 NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, M, -1, -1 ) 250 NB2 = ILAENV( 1, 'ZGERQF', ' ', N, P, -1, -1 ) 251 NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 ) 252 NB = MAX( NB1, NB2, NB3 ) 253 LWKOPT = MAX( N, M, P )*NB 254 WORK( 1 ) = LWKOPT 255 LQUERY = ( LWORK.EQ.-1 ) 256 IF( N.LT.0 ) THEN 257 INFO = -1 258 ELSE IF( M.LT.0 ) THEN 259 INFO = -2 260 ELSE IF( P.LT.0 ) THEN 261 INFO = -3 262 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 263 INFO = -5 264 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN 265 INFO = -8 266 ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN 267 INFO = -11 268 END IF 269 IF( INFO.NE.0 ) THEN 270 CALL XERBLA( 'ZGGQRF', -INFO ) 271 RETURN 272 ELSE IF( LQUERY ) THEN 273 RETURN 274 END IF 275* 276* QR factorization of N-by-M matrix A: A = Q*R 277* 278 CALL ZGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO ) 279 LOPT = DBLE( WORK( 1 ) ) 280* 281* Update B := Q**H*B. 282* 283 CALL ZUNMQR( 'Left', 'Conjugate Transpose', N, P, MIN( N, M ), A, 284 $ LDA, TAUA, B, LDB, WORK, LWORK, INFO ) 285 LOPT = MAX( LOPT, INT( WORK( 1 ) ) ) 286* 287* RQ factorization of N-by-P matrix B: B = T*Z. 288* 289 CALL ZGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO ) 290 WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) ) 291* 292 RETURN 293* 294* End of ZGGQRF 295* 296 END 297