1*> \brief \b ZLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZLANGT + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlangt.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlangt.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlangt.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* DOUBLE PRECISION FUNCTION ZLANGT( NORM, N, DL, D, DU ) 22* 23* .. Scalar Arguments .. 24* CHARACTER NORM 25* INTEGER N 26* .. 27* .. Array Arguments .. 28* COMPLEX*16 D( * ), DL( * ), DU( * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> ZLANGT returns the value of the one norm, or the Frobenius norm, or 38*> the infinity norm, or the element of largest absolute value of a 39*> complex tridiagonal matrix A. 40*> \endverbatim 41*> 42*> \return ZLANGT 43*> \verbatim 44*> 45*> ZLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm' 46*> ( 47*> ( norm1(A), NORM = '1', 'O' or 'o' 48*> ( 49*> ( normI(A), NORM = 'I' or 'i' 50*> ( 51*> ( normF(A), NORM = 'F', 'f', 'E' or 'e' 52*> 53*> where norm1 denotes the one norm of a matrix (maximum column sum), 54*> normI denotes the infinity norm of a matrix (maximum row sum) and 55*> normF denotes the Frobenius norm of a matrix (square root of sum of 56*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 57*> \endverbatim 58* 59* Arguments: 60* ========== 61* 62*> \param[in] NORM 63*> \verbatim 64*> NORM is CHARACTER*1 65*> Specifies the value to be returned in ZLANGT as described 66*> above. 67*> \endverbatim 68*> 69*> \param[in] N 70*> \verbatim 71*> N is INTEGER 72*> The order of the matrix A. N >= 0. When N = 0, ZLANGT is 73*> set to zero. 74*> \endverbatim 75*> 76*> \param[in] DL 77*> \verbatim 78*> DL is COMPLEX*16 array, dimension (N-1) 79*> The (n-1) sub-diagonal elements of A. 80*> \endverbatim 81*> 82*> \param[in] D 83*> \verbatim 84*> D is COMPLEX*16 array, dimension (N) 85*> The diagonal elements of A. 86*> \endverbatim 87*> 88*> \param[in] DU 89*> \verbatim 90*> DU is COMPLEX*16 array, dimension (N-1) 91*> The (n-1) super-diagonal elements of A. 92*> \endverbatim 93* 94* Authors: 95* ======== 96* 97*> \author Univ. of Tennessee 98*> \author Univ. of California Berkeley 99*> \author Univ. of Colorado Denver 100*> \author NAG Ltd. 101* 102*> \ingroup complex16OTHERauxiliary 103* 104* ===================================================================== 105 DOUBLE PRECISION FUNCTION ZLANGT( NORM, N, DL, D, DU ) 106* 107* -- LAPACK auxiliary routine -- 108* -- LAPACK is a software package provided by Univ. of Tennessee, -- 109* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 110* 111* .. Scalar Arguments .. 112 CHARACTER NORM 113 INTEGER N 114* .. 115* .. Array Arguments .. 116 COMPLEX*16 D( * ), DL( * ), DU( * ) 117* .. 118* 119* ===================================================================== 120* 121* .. Parameters .. 122 DOUBLE PRECISION ONE, ZERO 123 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 124* .. 125* .. Local Scalars .. 126 INTEGER I 127 DOUBLE PRECISION ANORM, SCALE, SUM, TEMP 128* .. 129* .. External Functions .. 130 LOGICAL LSAME, DISNAN 131 EXTERNAL LSAME, DISNAN 132* .. 133* .. External Subroutines .. 134 EXTERNAL ZLASSQ 135* .. 136* .. Intrinsic Functions .. 137 INTRINSIC ABS, SQRT 138* .. 139* .. Executable Statements .. 140* 141 IF( N.LE.0 ) THEN 142 ANORM = ZERO 143 ELSE IF( LSAME( NORM, 'M' ) ) THEN 144* 145* Find max(abs(A(i,j))). 146* 147 ANORM = ABS( D( N ) ) 148 DO 10 I = 1, N - 1 149 IF( ANORM.LT.ABS( DL( I ) ) .OR. DISNAN( ABS( DL( I ) ) ) ) 150 $ ANORM = ABS(DL(I)) 151 IF( ANORM.LT.ABS( D( I ) ) .OR. DISNAN( ABS( D( I ) ) ) ) 152 $ ANORM = ABS(D(I)) 153 IF( ANORM.LT.ABS( DU( I ) ) .OR. DISNAN (ABS( DU( I ) ) ) ) 154 $ ANORM = ABS(DU(I)) 155 10 CONTINUE 156 ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN 157* 158* Find norm1(A). 159* 160 IF( N.EQ.1 ) THEN 161 ANORM = ABS( D( 1 ) ) 162 ELSE 163 ANORM = ABS( D( 1 ) )+ABS( DL( 1 ) ) 164 TEMP = ABS( D( N ) )+ABS( DU( N-1 ) ) 165 IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP 166 DO 20 I = 2, N - 1 167 TEMP = ABS( D( I ) )+ABS( DL( I ) )+ABS( DU( I-1 ) ) 168 IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP 169 20 CONTINUE 170 END IF 171 ELSE IF( LSAME( NORM, 'I' ) ) THEN 172* 173* Find normI(A). 174* 175 IF( N.EQ.1 ) THEN 176 ANORM = ABS( D( 1 ) ) 177 ELSE 178 ANORM = ABS( D( 1 ) )+ABS( DU( 1 ) ) 179 TEMP = ABS( D( N ) )+ABS( DL( N-1 ) ) 180 IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP 181 DO 30 I = 2, N - 1 182 TEMP = ABS( D( I ) )+ABS( DU( I ) )+ABS( DL( I-1 ) ) 183 IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP 184 30 CONTINUE 185 END IF 186 ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 187* 188* Find normF(A). 189* 190 SCALE = ZERO 191 SUM = ONE 192 CALL ZLASSQ( N, D, 1, SCALE, SUM ) 193 IF( N.GT.1 ) THEN 194 CALL ZLASSQ( N-1, DL, 1, SCALE, SUM ) 195 CALL ZLASSQ( N-1, DU, 1, SCALE, SUM ) 196 END IF 197 ANORM = SCALE*SQRT( SUM ) 198 END IF 199* 200 ZLANGT = ANORM 201 RETURN 202* 203* End of ZLANGT 204* 205 END 206