1*> \brief \b ZLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLANGT + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlangt.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlangt.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlangt.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       DOUBLE PRECISION FUNCTION ZLANGT( NORM, N, DL, D, DU )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          NORM
25*       INTEGER            N
26*       ..
27*       .. Array Arguments ..
28*       COMPLEX*16         D( * ), DL( * ), DU( * )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> ZLANGT  returns the value of the one norm,  or the Frobenius norm, or
38*> the  infinity norm,  or the  element of  largest absolute value  of a
39*> complex tridiagonal matrix A.
40*> \endverbatim
41*>
42*> \return ZLANGT
43*> \verbatim
44*>
45*>    ZLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
46*>             (
47*>             ( norm1(A),         NORM = '1', 'O' or 'o'
48*>             (
49*>             ( normI(A),         NORM = 'I' or 'i'
50*>             (
51*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
52*>
53*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
54*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
55*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
56*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
57*> \endverbatim
58*
59*  Arguments:
60*  ==========
61*
62*> \param[in] NORM
63*> \verbatim
64*>          NORM is CHARACTER*1
65*>          Specifies the value to be returned in ZLANGT as described
66*>          above.
67*> \endverbatim
68*>
69*> \param[in] N
70*> \verbatim
71*>          N is INTEGER
72*>          The order of the matrix A.  N >= 0.  When N = 0, ZLANGT is
73*>          set to zero.
74*> \endverbatim
75*>
76*> \param[in] DL
77*> \verbatim
78*>          DL is COMPLEX*16 array, dimension (N-1)
79*>          The (n-1) sub-diagonal elements of A.
80*> \endverbatim
81*>
82*> \param[in] D
83*> \verbatim
84*>          D is COMPLEX*16 array, dimension (N)
85*>          The diagonal elements of A.
86*> \endverbatim
87*>
88*> \param[in] DU
89*> \verbatim
90*>          DU is COMPLEX*16 array, dimension (N-1)
91*>          The (n-1) super-diagonal elements of A.
92*> \endverbatim
93*
94*  Authors:
95*  ========
96*
97*> \author Univ. of Tennessee
98*> \author Univ. of California Berkeley
99*> \author Univ. of Colorado Denver
100*> \author NAG Ltd.
101*
102*> \ingroup complex16OTHERauxiliary
103*
104*  =====================================================================
105      DOUBLE PRECISION FUNCTION ZLANGT( NORM, N, DL, D, DU )
106*
107*  -- LAPACK auxiliary routine --
108*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
109*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
110*
111*     .. Scalar Arguments ..
112      CHARACTER          NORM
113      INTEGER            N
114*     ..
115*     .. Array Arguments ..
116      COMPLEX*16         D( * ), DL( * ), DU( * )
117*     ..
118*
119*  =====================================================================
120*
121*     .. Parameters ..
122      DOUBLE PRECISION   ONE, ZERO
123      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
124*     ..
125*     .. Local Scalars ..
126      INTEGER            I
127      DOUBLE PRECISION   ANORM, SCALE, SUM, TEMP
128*     ..
129*     .. External Functions ..
130      LOGICAL            LSAME, DISNAN
131      EXTERNAL           LSAME, DISNAN
132*     ..
133*     .. External Subroutines ..
134      EXTERNAL           ZLASSQ
135*     ..
136*     .. Intrinsic Functions ..
137      INTRINSIC          ABS, SQRT
138*     ..
139*     .. Executable Statements ..
140*
141      IF( N.LE.0 ) THEN
142         ANORM = ZERO
143      ELSE IF( LSAME( NORM, 'M' ) ) THEN
144*
145*        Find max(abs(A(i,j))).
146*
147         ANORM = ABS( D( N ) )
148         DO 10 I = 1, N - 1
149            IF( ANORM.LT.ABS( DL( I ) ) .OR. DISNAN( ABS( DL( I ) ) ) )
150     $           ANORM = ABS(DL(I))
151            IF( ANORM.LT.ABS( D( I ) ) .OR. DISNAN( ABS( D( I ) ) ) )
152     $           ANORM = ABS(D(I))
153            IF( ANORM.LT.ABS( DU( I ) ) .OR. DISNAN (ABS( DU( I ) ) ) )
154     $           ANORM = ABS(DU(I))
155   10    CONTINUE
156      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
157*
158*        Find norm1(A).
159*
160         IF( N.EQ.1 ) THEN
161            ANORM = ABS( D( 1 ) )
162         ELSE
163            ANORM = ABS( D( 1 ) )+ABS( DL( 1 ) )
164            TEMP = ABS( D( N ) )+ABS( DU( N-1 ) )
165            IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
166            DO 20 I = 2, N - 1
167               TEMP = ABS( D( I ) )+ABS( DL( I ) )+ABS( DU( I-1 ) )
168               IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
169   20       CONTINUE
170         END IF
171      ELSE IF( LSAME( NORM, 'I' ) ) THEN
172*
173*        Find normI(A).
174*
175         IF( N.EQ.1 ) THEN
176            ANORM = ABS( D( 1 ) )
177         ELSE
178            ANORM = ABS( D( 1 ) )+ABS( DU( 1 ) )
179            TEMP = ABS( D( N ) )+ABS( DL( N-1 ) )
180            IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
181            DO 30 I = 2, N - 1
182               TEMP = ABS( D( I ) )+ABS( DU( I ) )+ABS( DL( I-1 ) )
183               IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
184   30       CONTINUE
185         END IF
186      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
187*
188*        Find normF(A).
189*
190         SCALE = ZERO
191         SUM = ONE
192         CALL ZLASSQ( N, D, 1, SCALE, SUM )
193         IF( N.GT.1 ) THEN
194            CALL ZLASSQ( N-1, DL, 1, SCALE, SUM )
195            CALL ZLASSQ( N-1, DU, 1, SCALE, SUM )
196         END IF
197         ANORM = SCALE*SQRT( SUM )
198      END IF
199*
200      ZLANGT = ANORM
201      RETURN
202*
203*     End of ZLANGT
204*
205      END
206