1*> \brief \b ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZLANSY + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlansy.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlansy.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlansy.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK ) 22* 23* .. Scalar Arguments .. 24* CHARACTER NORM, UPLO 25* INTEGER LDA, N 26* .. 27* .. Array Arguments .. 28* DOUBLE PRECISION WORK( * ) 29* COMPLEX*16 A( LDA, * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> ZLANSY returns the value of the one norm, or the Frobenius norm, or 39*> the infinity norm, or the element of largest absolute value of a 40*> complex symmetric matrix A. 41*> \endverbatim 42*> 43*> \return ZLANSY 44*> \verbatim 45*> 46*> ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' 47*> ( 48*> ( norm1(A), NORM = '1', 'O' or 'o' 49*> ( 50*> ( normI(A), NORM = 'I' or 'i' 51*> ( 52*> ( normF(A), NORM = 'F', 'f', 'E' or 'e' 53*> 54*> where norm1 denotes the one norm of a matrix (maximum column sum), 55*> normI denotes the infinity norm of a matrix (maximum row sum) and 56*> normF denotes the Frobenius norm of a matrix (square root of sum of 57*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 58*> \endverbatim 59* 60* Arguments: 61* ========== 62* 63*> \param[in] NORM 64*> \verbatim 65*> NORM is CHARACTER*1 66*> Specifies the value to be returned in ZLANSY as described 67*> above. 68*> \endverbatim 69*> 70*> \param[in] UPLO 71*> \verbatim 72*> UPLO is CHARACTER*1 73*> Specifies whether the upper or lower triangular part of the 74*> symmetric matrix A is to be referenced. 75*> = 'U': Upper triangular part of A is referenced 76*> = 'L': Lower triangular part of A is referenced 77*> \endverbatim 78*> 79*> \param[in] N 80*> \verbatim 81*> N is INTEGER 82*> The order of the matrix A. N >= 0. When N = 0, ZLANSY is 83*> set to zero. 84*> \endverbatim 85*> 86*> \param[in] A 87*> \verbatim 88*> A is COMPLEX*16 array, dimension (LDA,N) 89*> The symmetric matrix A. If UPLO = 'U', the leading n by n 90*> upper triangular part of A contains the upper triangular part 91*> of the matrix A, and the strictly lower triangular part of A 92*> is not referenced. If UPLO = 'L', the leading n by n lower 93*> triangular part of A contains the lower triangular part of 94*> the matrix A, and the strictly upper triangular part of A is 95*> not referenced. 96*> \endverbatim 97*> 98*> \param[in] LDA 99*> \verbatim 100*> LDA is INTEGER 101*> The leading dimension of the array A. LDA >= max(N,1). 102*> \endverbatim 103*> 104*> \param[out] WORK 105*> \verbatim 106*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), 107*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, 108*> WORK is not referenced. 109*> \endverbatim 110* 111* Authors: 112* ======== 113* 114*> \author Univ. of Tennessee 115*> \author Univ. of California Berkeley 116*> \author Univ. of Colorado Denver 117*> \author NAG Ltd. 118* 119*> \ingroup complex16SYauxiliary 120* 121* ===================================================================== 122 DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK ) 123* 124* -- LAPACK auxiliary routine -- 125* -- LAPACK is a software package provided by Univ. of Tennessee, -- 126* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 127* 128 IMPLICIT NONE 129* .. Scalar Arguments .. 130 CHARACTER NORM, UPLO 131 INTEGER LDA, N 132* .. 133* .. Array Arguments .. 134 DOUBLE PRECISION WORK( * ) 135 COMPLEX*16 A( LDA, * ) 136* .. 137* 138* ===================================================================== 139* 140* .. Parameters .. 141 DOUBLE PRECISION ONE, ZERO 142 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 143* .. 144* .. Local Scalars .. 145 INTEGER I, J 146 DOUBLE PRECISION ABSA, SUM, VALUE 147* .. 148* .. Local Arrays .. 149 DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 ) 150* .. 151* .. External Functions .. 152 LOGICAL LSAME, DISNAN 153 EXTERNAL LSAME, DISNAN 154* .. 155* .. External Subroutines .. 156 EXTERNAL ZLASSQ, DCOMBSSQ 157* .. 158* .. Intrinsic Functions .. 159 INTRINSIC ABS, SQRT 160* .. 161* .. Executable Statements .. 162* 163 IF( N.EQ.0 ) THEN 164 VALUE = ZERO 165 ELSE IF( LSAME( NORM, 'M' ) ) THEN 166* 167* Find max(abs(A(i,j))). 168* 169 VALUE = ZERO 170 IF( LSAME( UPLO, 'U' ) ) THEN 171 DO 20 J = 1, N 172 DO 10 I = 1, J 173 SUM = ABS( A( I, J ) ) 174 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 175 10 CONTINUE 176 20 CONTINUE 177 ELSE 178 DO 40 J = 1, N 179 DO 30 I = J, N 180 SUM = ABS( A( I, J ) ) 181 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 182 30 CONTINUE 183 40 CONTINUE 184 END IF 185 ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. 186 $ ( NORM.EQ.'1' ) ) THEN 187* 188* Find normI(A) ( = norm1(A), since A is symmetric). 189* 190 VALUE = ZERO 191 IF( LSAME( UPLO, 'U' ) ) THEN 192 DO 60 J = 1, N 193 SUM = ZERO 194 DO 50 I = 1, J - 1 195 ABSA = ABS( A( I, J ) ) 196 SUM = SUM + ABSA 197 WORK( I ) = WORK( I ) + ABSA 198 50 CONTINUE 199 WORK( J ) = SUM + ABS( A( J, J ) ) 200 60 CONTINUE 201 DO 70 I = 1, N 202 SUM = WORK( I ) 203 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 204 70 CONTINUE 205 ELSE 206 DO 80 I = 1, N 207 WORK( I ) = ZERO 208 80 CONTINUE 209 DO 100 J = 1, N 210 SUM = WORK( J ) + ABS( A( J, J ) ) 211 DO 90 I = J + 1, N 212 ABSA = ABS( A( I, J ) ) 213 SUM = SUM + ABSA 214 WORK( I ) = WORK( I ) + ABSA 215 90 CONTINUE 216 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 217 100 CONTINUE 218 END IF 219 ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 220* 221* Find normF(A). 222* SSQ(1) is scale 223* SSQ(2) is sum-of-squares 224* For better accuracy, sum each column separately. 225* 226 SSQ( 1 ) = ZERO 227 SSQ( 2 ) = ONE 228* 229* Sum off-diagonals 230* 231 IF( LSAME( UPLO, 'U' ) ) THEN 232 DO 110 J = 2, N 233 COLSSQ( 1 ) = ZERO 234 COLSSQ( 2 ) = ONE 235 CALL ZLASSQ( J-1, A( 1, J ), 1, COLSSQ(1), COLSSQ(2) ) 236 CALL DCOMBSSQ( SSQ, COLSSQ ) 237 110 CONTINUE 238 ELSE 239 DO 120 J = 1, N - 1 240 COLSSQ( 1 ) = ZERO 241 COLSSQ( 2 ) = ONE 242 CALL ZLASSQ( N-J, A( J+1, J ), 1, COLSSQ(1), COLSSQ(2) ) 243 CALL DCOMBSSQ( SSQ, COLSSQ ) 244 120 CONTINUE 245 END IF 246 SSQ( 2 ) = 2*SSQ( 2 ) 247* 248* Sum diagonal 249* 250 COLSSQ( 1 ) = ZERO 251 COLSSQ( 2 ) = ONE 252 CALL ZLASSQ( N, A, LDA+1, COLSSQ( 1 ), COLSSQ( 2 ) ) 253 CALL DCOMBSSQ( SSQ, COLSSQ ) 254 VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) 255 END IF 256* 257 ZLANSY = VALUE 258 RETURN 259* 260* End of ZLANSY 261* 262 END 263