1*> \brief \b ZLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLAQPS + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqps.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqps.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqps.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
22*                          VN2, AUXV, F, LDF )
23*
24*       .. Scalar Arguments ..
25*       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
26*       ..
27*       .. Array Arguments ..
28*       INTEGER            JPVT( * )
29*       DOUBLE PRECISION   VN1( * ), VN2( * )
30*       COMPLEX*16         A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*> ZLAQPS computes a step of QR factorization with column pivoting
40*> of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
41*> NB columns from A starting from the row OFFSET+1, and updates all
42*> of the matrix with Blas-3 xGEMM.
43*>
44*> In some cases, due to catastrophic cancellations, it cannot
45*> factorize NB columns.  Hence, the actual number of factorized
46*> columns is returned in KB.
47*>
48*> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
49*> \endverbatim
50*
51*  Arguments:
52*  ==========
53*
54*> \param[in] M
55*> \verbatim
56*>          M is INTEGER
57*>          The number of rows of the matrix A. M >= 0.
58*> \endverbatim
59*>
60*> \param[in] N
61*> \verbatim
62*>          N is INTEGER
63*>          The number of columns of the matrix A. N >= 0
64*> \endverbatim
65*>
66*> \param[in] OFFSET
67*> \verbatim
68*>          OFFSET is INTEGER
69*>          The number of rows of A that have been factorized in
70*>          previous steps.
71*> \endverbatim
72*>
73*> \param[in] NB
74*> \verbatim
75*>          NB is INTEGER
76*>          The number of columns to factorize.
77*> \endverbatim
78*>
79*> \param[out] KB
80*> \verbatim
81*>          KB is INTEGER
82*>          The number of columns actually factorized.
83*> \endverbatim
84*>
85*> \param[in,out] A
86*> \verbatim
87*>          A is COMPLEX*16 array, dimension (LDA,N)
88*>          On entry, the M-by-N matrix A.
89*>          On exit, block A(OFFSET+1:M,1:KB) is the triangular
90*>          factor obtained and block A(1:OFFSET,1:N) has been
91*>          accordingly pivoted, but no factorized.
92*>          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
93*>          been updated.
94*> \endverbatim
95*>
96*> \param[in] LDA
97*> \verbatim
98*>          LDA is INTEGER
99*>          The leading dimension of the array A. LDA >= max(1,M).
100*> \endverbatim
101*>
102*> \param[in,out] JPVT
103*> \verbatim
104*>          JPVT is INTEGER array, dimension (N)
105*>          JPVT(I) = K <==> Column K of the full matrix A has been
106*>          permuted into position I in AP.
107*> \endverbatim
108*>
109*> \param[out] TAU
110*> \verbatim
111*>          TAU is COMPLEX*16 array, dimension (KB)
112*>          The scalar factors of the elementary reflectors.
113*> \endverbatim
114*>
115*> \param[in,out] VN1
116*> \verbatim
117*>          VN1 is DOUBLE PRECISION array, dimension (N)
118*>          The vector with the partial column norms.
119*> \endverbatim
120*>
121*> \param[in,out] VN2
122*> \verbatim
123*>          VN2 is DOUBLE PRECISION array, dimension (N)
124*>          The vector with the exact column norms.
125*> \endverbatim
126*>
127*> \param[in,out] AUXV
128*> \verbatim
129*>          AUXV is COMPLEX*16 array, dimension (NB)
130*>          Auxiliary vector.
131*> \endverbatim
132*>
133*> \param[in,out] F
134*> \verbatim
135*>          F is COMPLEX*16 array, dimension (LDF,NB)
136*>          Matrix F**H = L * Y**H * A.
137*> \endverbatim
138*>
139*> \param[in] LDF
140*> \verbatim
141*>          LDF is INTEGER
142*>          The leading dimension of the array F. LDF >= max(1,N).
143*> \endverbatim
144*
145*  Authors:
146*  ========
147*
148*> \author Univ. of Tennessee
149*> \author Univ. of California Berkeley
150*> \author Univ. of Colorado Denver
151*> \author NAG Ltd.
152*
153*> \ingroup complex16OTHERauxiliary
154*
155*> \par Contributors:
156*  ==================
157*>
158*>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
159*>    X. Sun, Computer Science Dept., Duke University, USA
160*> \n
161*>  Partial column norm updating strategy modified on April 2011
162*>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
163*>    University of Zagreb, Croatia.
164*
165*> \par References:
166*  ================
167*>
168*> LAPACK Working Note 176
169*
170*> \htmlonly
171*> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
172*> \endhtmlonly
173*
174*  =====================================================================
175      SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
176     $                   VN2, AUXV, F, LDF )
177*
178*  -- LAPACK auxiliary routine --
179*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
180*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
181*
182*     .. Scalar Arguments ..
183      INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
184*     ..
185*     .. Array Arguments ..
186      INTEGER            JPVT( * )
187      DOUBLE PRECISION   VN1( * ), VN2( * )
188      COMPLEX*16         A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * )
189*     ..
190*
191*  =====================================================================
192*
193*     .. Parameters ..
194      DOUBLE PRECISION   ZERO, ONE
195      COMPLEX*16         CZERO, CONE
196      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0,
197     $                   CZERO = ( 0.0D+0, 0.0D+0 ),
198     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
199*     ..
200*     .. Local Scalars ..
201      INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
202      DOUBLE PRECISION   TEMP, TEMP2, TOL3Z
203      COMPLEX*16         AKK
204*     ..
205*     .. External Subroutines ..
206      EXTERNAL           ZGEMM, ZGEMV, ZLARFG, ZSWAP
207*     ..
208*     .. Intrinsic Functions ..
209      INTRINSIC          ABS, DBLE, DCONJG, MAX, MIN, NINT, SQRT
210*     ..
211*     .. External Functions ..
212      INTEGER            IDAMAX
213      DOUBLE PRECISION   DLAMCH, DZNRM2
214      EXTERNAL           IDAMAX, DLAMCH, DZNRM2
215*     ..
216*     .. Executable Statements ..
217*
218      LASTRK = MIN( M, N+OFFSET )
219      LSTICC = 0
220      K = 0
221      TOL3Z = SQRT(DLAMCH('Epsilon'))
222*
223*     Beginning of while loop.
224*
225   10 CONTINUE
226      IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
227         K = K + 1
228         RK = OFFSET + K
229*
230*        Determine ith pivot column and swap if necessary
231*
232         PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
233         IF( PVT.NE.K ) THEN
234            CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
235            CALL ZSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
236            ITEMP = JPVT( PVT )
237            JPVT( PVT ) = JPVT( K )
238            JPVT( K ) = ITEMP
239            VN1( PVT ) = VN1( K )
240            VN2( PVT ) = VN2( K )
241         END IF
242*
243*        Apply previous Householder reflectors to column K:
244*        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**H.
245*
246         IF( K.GT.1 ) THEN
247            DO 20 J = 1, K - 1
248               F( K, J ) = DCONJG( F( K, J ) )
249   20       CONTINUE
250            CALL ZGEMV( 'No transpose', M-RK+1, K-1, -CONE, A( RK, 1 ),
251     $                  LDA, F( K, 1 ), LDF, CONE, A( RK, K ), 1 )
252            DO 30 J = 1, K - 1
253               F( K, J ) = DCONJG( F( K, J ) )
254   30       CONTINUE
255         END IF
256*
257*        Generate elementary reflector H(k).
258*
259         IF( RK.LT.M ) THEN
260            CALL ZLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
261         ELSE
262            CALL ZLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
263         END IF
264*
265         AKK = A( RK, K )
266         A( RK, K ) = CONE
267*
268*        Compute Kth column of F:
269*
270*        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**H*A(RK:M,K).
271*
272         IF( K.LT.N ) THEN
273            CALL ZGEMV( 'Conjugate transpose', M-RK+1, N-K, TAU( K ),
274     $                  A( RK, K+1 ), LDA, A( RK, K ), 1, CZERO,
275     $                  F( K+1, K ), 1 )
276         END IF
277*
278*        Padding F(1:K,K) with zeros.
279*
280         DO 40 J = 1, K
281            F( J, K ) = CZERO
282   40    CONTINUE
283*
284*        Incremental updating of F:
285*        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**H
286*                    *A(RK:M,K).
287*
288         IF( K.GT.1 ) THEN
289            CALL ZGEMV( 'Conjugate transpose', M-RK+1, K-1, -TAU( K ),
290     $                  A( RK, 1 ), LDA, A( RK, K ), 1, CZERO,
291     $                  AUXV( 1 ), 1 )
292*
293            CALL ZGEMV( 'No transpose', N, K-1, CONE, F( 1, 1 ), LDF,
294     $                  AUXV( 1 ), 1, CONE, F( 1, K ), 1 )
295         END IF
296*
297*        Update the current row of A:
298*        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**H.
299*
300         IF( K.LT.N ) THEN
301            CALL ZGEMM( 'No transpose', 'Conjugate transpose', 1, N-K,
302     $                  K, -CONE, A( RK, 1 ), LDA, F( K+1, 1 ), LDF,
303     $                  CONE, A( RK, K+1 ), LDA )
304         END IF
305*
306*        Update partial column norms.
307*
308         IF( RK.LT.LASTRK ) THEN
309            DO 50 J = K + 1, N
310               IF( VN1( J ).NE.ZERO ) THEN
311*
312*                 NOTE: The following 4 lines follow from the analysis in
313*                 Lapack Working Note 176.
314*
315                  TEMP = ABS( A( RK, J ) ) / VN1( J )
316                  TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
317                  TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
318                  IF( TEMP2 .LE. TOL3Z ) THEN
319                     VN2( J ) = DBLE( LSTICC )
320                     LSTICC = J
321                  ELSE
322                     VN1( J ) = VN1( J )*SQRT( TEMP )
323                  END IF
324               END IF
325   50       CONTINUE
326         END IF
327*
328         A( RK, K ) = AKK
329*
330*        End of while loop.
331*
332         GO TO 10
333      END IF
334      KB = K
335      RK = OFFSET + KB
336*
337*     Apply the block reflector to the rest of the matrix:
338*     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
339*                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**H.
340*
341      IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
342         CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-RK, N-KB,
343     $               KB, -CONE, A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF,
344     $               CONE, A( RK+1, KB+1 ), LDA )
345      END IF
346*
347*     Recomputation of difficult columns.
348*
349   60 CONTINUE
350      IF( LSTICC.GT.0 ) THEN
351         ITEMP = NINT( VN2( LSTICC ) )
352         VN1( LSTICC ) = DZNRM2( M-RK, A( RK+1, LSTICC ), 1 )
353*
354*        NOTE: The computation of VN1( LSTICC ) relies on the fact that
355*        SNRM2 does not fail on vectors with norm below the value of
356*        SQRT(DLAMCH('S'))
357*
358         VN2( LSTICC ) = VN1( LSTICC )
359         LSTICC = ITEMP
360         GO TO 60
361      END IF
362*
363      RETURN
364*
365*     End of ZLAQPS
366*
367      END
368