1*> \brief \b DORT03 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE DORT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK, 12* RESULT, INFO ) 13* 14* .. Scalar Arguments .. 15* CHARACTER*( * ) RC 16* INTEGER INFO, K, LDU, LDV, LWORK, MU, MV, N 17* DOUBLE PRECISION RESULT 18* .. 19* .. Array Arguments .. 20* DOUBLE PRECISION U( LDU, * ), V( LDV, * ), WORK( * ) 21* .. 22* 23* 24*> \par Purpose: 25* ============= 26*> 27*> \verbatim 28*> 29*> DORT03 compares two orthogonal matrices U and V to see if their 30*> corresponding rows or columns span the same spaces. The rows are 31*> checked if RC = 'R', and the columns are checked if RC = 'C'. 32*> 33*> RESULT is the maximum of 34*> 35*> | V*V' - I | / ( MV ulp ), if RC = 'R', or 36*> 37*> | V'*V - I | / ( MV ulp ), if RC = 'C', 38*> 39*> and the maximum over rows (or columns) 1 to K of 40*> 41*> | U(i) - S*V(i) |/ ( N ulp ) 42*> 43*> where S is +-1 (chosen to minimize the expression), U(i) is the i-th 44*> row (column) of U, and V(i) is the i-th row (column) of V. 45*> \endverbatim 46* 47* Arguments: 48* ========== 49* 50*> \param[in] RC 51*> \verbatim 52*> RC is CHARACTER*1 53*> If RC = 'R' the rows of U and V are to be compared. 54*> If RC = 'C' the columns of U and V are to be compared. 55*> \endverbatim 56*> 57*> \param[in] MU 58*> \verbatim 59*> MU is INTEGER 60*> The number of rows of U if RC = 'R', and the number of 61*> columns if RC = 'C'. If MU = 0 DORT03 does nothing. 62*> MU must be at least zero. 63*> \endverbatim 64*> 65*> \param[in] MV 66*> \verbatim 67*> MV is INTEGER 68*> The number of rows of V if RC = 'R', and the number of 69*> columns if RC = 'C'. If MV = 0 DORT03 does nothing. 70*> MV must be at least zero. 71*> \endverbatim 72*> 73*> \param[in] N 74*> \verbatim 75*> N is INTEGER 76*> If RC = 'R', the number of columns in the matrices U and V, 77*> and if RC = 'C', the number of rows in U and V. If N = 0 78*> DORT03 does nothing. N must be at least zero. 79*> \endverbatim 80*> 81*> \param[in] K 82*> \verbatim 83*> K is INTEGER 84*> The number of rows or columns of U and V to compare. 85*> 0 <= K <= max(MU,MV). 86*> \endverbatim 87*> 88*> \param[in] U 89*> \verbatim 90*> U is DOUBLE PRECISION array, dimension (LDU,N) 91*> The first matrix to compare. If RC = 'R', U is MU by N, and 92*> if RC = 'C', U is N by MU. 93*> \endverbatim 94*> 95*> \param[in] LDU 96*> \verbatim 97*> LDU is INTEGER 98*> The leading dimension of U. If RC = 'R', LDU >= max(1,MU), 99*> and if RC = 'C', LDU >= max(1,N). 100*> \endverbatim 101*> 102*> \param[in] V 103*> \verbatim 104*> V is DOUBLE PRECISION array, dimension (LDV,N) 105*> The second matrix to compare. If RC = 'R', V is MV by N, and 106*> if RC = 'C', V is N by MV. 107*> \endverbatim 108*> 109*> \param[in] LDV 110*> \verbatim 111*> LDV is INTEGER 112*> The leading dimension of V. If RC = 'R', LDV >= max(1,MV), 113*> and if RC = 'C', LDV >= max(1,N). 114*> \endverbatim 115*> 116*> \param[out] WORK 117*> \verbatim 118*> WORK is DOUBLE PRECISION array, dimension (LWORK) 119*> \endverbatim 120*> 121*> \param[in] LWORK 122*> \verbatim 123*> LWORK is INTEGER 124*> The length of the array WORK. For best performance, LWORK 125*> should be at least N*N if RC = 'C' or M*M if RC = 'R', but 126*> the tests will be done even if LWORK is 0. 127*> \endverbatim 128*> 129*> \param[out] RESULT 130*> \verbatim 131*> RESULT is DOUBLE PRECISION 132*> The value computed by the test described above. RESULT is 133*> limited to 1/ulp to avoid overflow. 134*> \endverbatim 135*> 136*> \param[out] INFO 137*> \verbatim 138*> INFO is INTEGER 139*> 0 indicates a successful exit 140*> -k indicates the k-th parameter had an illegal value 141*> \endverbatim 142* 143* Authors: 144* ======== 145* 146*> \author Univ. of Tennessee 147*> \author Univ. of California Berkeley 148*> \author Univ. of Colorado Denver 149*> \author NAG Ltd. 150* 151*> \ingroup double_eig 152* 153* ===================================================================== 154 SUBROUTINE DORT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK, 155 $ RESULT, INFO ) 156* 157* -- LAPACK test routine -- 158* -- LAPACK is a software package provided by Univ. of Tennessee, -- 159* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 160* 161* .. Scalar Arguments .. 162 CHARACTER*( * ) RC 163 INTEGER INFO, K, LDU, LDV, LWORK, MU, MV, N 164 DOUBLE PRECISION RESULT 165* .. 166* .. Array Arguments .. 167 DOUBLE PRECISION U( LDU, * ), V( LDV, * ), WORK( * ) 168* .. 169* 170* ===================================================================== 171* 172* .. Parameters .. 173 DOUBLE PRECISION ZERO, ONE 174 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) 175* .. 176* .. Local Scalars .. 177 INTEGER I, IRC, J, LMX 178 DOUBLE PRECISION RES1, RES2, S, ULP 179* .. 180* .. External Functions .. 181 LOGICAL LSAME 182 INTEGER IDAMAX 183 DOUBLE PRECISION DLAMCH 184 EXTERNAL LSAME, IDAMAX, DLAMCH 185* .. 186* .. Intrinsic Functions .. 187 INTRINSIC ABS, DBLE, MAX, MIN, SIGN 188* .. 189* .. External Subroutines .. 190 EXTERNAL DORT01, XERBLA 191* .. 192* .. Executable Statements .. 193* 194* Check inputs 195* 196 INFO = 0 197 IF( LSAME( RC, 'R' ) ) THEN 198 IRC = 0 199 ELSE IF( LSAME( RC, 'C' ) ) THEN 200 IRC = 1 201 ELSE 202 IRC = -1 203 END IF 204 IF( IRC.EQ.-1 ) THEN 205 INFO = -1 206 ELSE IF( MU.LT.0 ) THEN 207 INFO = -2 208 ELSE IF( MV.LT.0 ) THEN 209 INFO = -3 210 ELSE IF( N.LT.0 ) THEN 211 INFO = -4 212 ELSE IF( K.LT.0 .OR. K.GT.MAX( MU, MV ) ) THEN 213 INFO = -5 214 ELSE IF( ( IRC.EQ.0 .AND. LDU.LT.MAX( 1, MU ) ) .OR. 215 $ ( IRC.EQ.1 .AND. LDU.LT.MAX( 1, N ) ) ) THEN 216 INFO = -7 217 ELSE IF( ( IRC.EQ.0 .AND. LDV.LT.MAX( 1, MV ) ) .OR. 218 $ ( IRC.EQ.1 .AND. LDV.LT.MAX( 1, N ) ) ) THEN 219 INFO = -9 220 END IF 221 IF( INFO.NE.0 ) THEN 222 CALL XERBLA( 'DORT03', -INFO ) 223 RETURN 224 END IF 225* 226* Initialize result 227* 228 RESULT = ZERO 229 IF( MU.EQ.0 .OR. MV.EQ.0 .OR. N.EQ.0 ) 230 $ RETURN 231* 232* Machine constants 233* 234 ULP = DLAMCH( 'Precision' ) 235* 236 IF( IRC.EQ.0 ) THEN 237* 238* Compare rows 239* 240 RES1 = ZERO 241 DO 20 I = 1, K 242 LMX = IDAMAX( N, U( I, 1 ), LDU ) 243 S = SIGN( ONE, U( I, LMX ) )*SIGN( ONE, V( I, LMX ) ) 244 DO 10 J = 1, N 245 RES1 = MAX( RES1, ABS( U( I, J )-S*V( I, J ) ) ) 246 10 CONTINUE 247 20 CONTINUE 248 RES1 = RES1 / ( DBLE( N )*ULP ) 249* 250* Compute orthogonality of rows of V. 251* 252 CALL DORT01( 'Rows', MV, N, V, LDV, WORK, LWORK, RES2 ) 253* 254 ELSE 255* 256* Compare columns 257* 258 RES1 = ZERO 259 DO 40 I = 1, K 260 LMX = IDAMAX( N, U( 1, I ), 1 ) 261 S = SIGN( ONE, U( LMX, I ) )*SIGN( ONE, V( LMX, I ) ) 262 DO 30 J = 1, N 263 RES1 = MAX( RES1, ABS( U( J, I )-S*V( J, I ) ) ) 264 30 CONTINUE 265 40 CONTINUE 266 RES1 = RES1 / ( DBLE( N )*ULP ) 267* 268* Compute orthogonality of columns of V. 269* 270 CALL DORT01( 'Columns', N, MV, V, LDV, WORK, LWORK, RES2 ) 271 END IF 272* 273 RESULT = MIN( MAX( RES1, RES2 ), ONE / ULP ) 274 RETURN 275* 276* End of DORT03 277* 278 END 279