1*> \brief \b SGET51 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE SGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK, 12* RESULT ) 13* 14* .. Scalar Arguments .. 15* INTEGER ITYPE, LDA, LDB, LDU, LDV, N 16* REAL RESULT 17* .. 18* .. Array Arguments .. 19* REAL A( LDA, * ), B( LDB, * ), U( LDU, * ), 20* $ V( LDV, * ), WORK( * ) 21* .. 22* 23* 24*> \par Purpose: 25* ============= 26*> 27*> \verbatim 28*> 29*> SGET51 generally checks a decomposition of the form 30*> 31*> A = U B V' 32*> 33*> where ' means transpose and U and V are orthogonal. 34*> 35*> Specifically, if ITYPE=1 36*> 37*> RESULT = | A - U B V' | / ( |A| n ulp ) 38*> 39*> If ITYPE=2, then: 40*> 41*> RESULT = | A - B | / ( |A| n ulp ) 42*> 43*> If ITYPE=3, then: 44*> 45*> RESULT = | I - UU' | / ( n ulp ) 46*> \endverbatim 47* 48* Arguments: 49* ========== 50* 51*> \param[in] ITYPE 52*> \verbatim 53*> ITYPE is INTEGER 54*> Specifies the type of tests to be performed. 55*> =1: RESULT = | A - U B V' | / ( |A| n ulp ) 56*> =2: RESULT = | A - B | / ( |A| n ulp ) 57*> =3: RESULT = | I - UU' | / ( n ulp ) 58*> \endverbatim 59*> 60*> \param[in] N 61*> \verbatim 62*> N is INTEGER 63*> The size of the matrix. If it is zero, SGET51 does nothing. 64*> It must be at least zero. 65*> \endverbatim 66*> 67*> \param[in] A 68*> \verbatim 69*> A is REAL array, dimension (LDA, N) 70*> The original (unfactored) matrix. 71*> \endverbatim 72*> 73*> \param[in] LDA 74*> \verbatim 75*> LDA is INTEGER 76*> The leading dimension of A. It must be at least 1 77*> and at least N. 78*> \endverbatim 79*> 80*> \param[in] B 81*> \verbatim 82*> B is REAL array, dimension (LDB, N) 83*> The factored matrix. 84*> \endverbatim 85*> 86*> \param[in] LDB 87*> \verbatim 88*> LDB is INTEGER 89*> The leading dimension of B. It must be at least 1 90*> and at least N. 91*> \endverbatim 92*> 93*> \param[in] U 94*> \verbatim 95*> U is REAL array, dimension (LDU, N) 96*> The orthogonal matrix on the left-hand side in the 97*> decomposition. 98*> Not referenced if ITYPE=2 99*> \endverbatim 100*> 101*> \param[in] LDU 102*> \verbatim 103*> LDU is INTEGER 104*> The leading dimension of U. LDU must be at least N and 105*> at least 1. 106*> \endverbatim 107*> 108*> \param[in] V 109*> \verbatim 110*> V is REAL array, dimension (LDV, N) 111*> The orthogonal matrix on the left-hand side in the 112*> decomposition. 113*> Not referenced if ITYPE=2 114*> \endverbatim 115*> 116*> \param[in] LDV 117*> \verbatim 118*> LDV is INTEGER 119*> The leading dimension of V. LDV must be at least N and 120*> at least 1. 121*> \endverbatim 122*> 123*> \param[out] WORK 124*> \verbatim 125*> WORK is REAL array, dimension (2*N**2) 126*> \endverbatim 127*> 128*> \param[out] RESULT 129*> \verbatim 130*> RESULT is REAL 131*> The values computed by the test specified by ITYPE. The 132*> value is currently limited to 1/ulp, to avoid overflow. 133*> Errors are flagged by RESULT=10/ulp. 134*> \endverbatim 135* 136* Authors: 137* ======== 138* 139*> \author Univ. of Tennessee 140*> \author Univ. of California Berkeley 141*> \author Univ. of Colorado Denver 142*> \author NAG Ltd. 143* 144*> \ingroup single_eig 145* 146* ===================================================================== 147 SUBROUTINE SGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK, 148 $ RESULT ) 149* 150* -- LAPACK test routine -- 151* -- LAPACK is a software package provided by Univ. of Tennessee, -- 152* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 153* 154* .. Scalar Arguments .. 155 INTEGER ITYPE, LDA, LDB, LDU, LDV, N 156 REAL RESULT 157* .. 158* .. Array Arguments .. 159 REAL A( LDA, * ), B( LDB, * ), U( LDU, * ), 160 $ V( LDV, * ), WORK( * ) 161* .. 162* 163* ===================================================================== 164* 165* .. Parameters .. 166 REAL ZERO, ONE, TEN 167 PARAMETER ( ZERO = 0.0, ONE = 1.0E0, TEN = 10.0E0 ) 168* .. 169* .. Local Scalars .. 170 INTEGER JCOL, JDIAG, JROW 171 REAL ANORM, ULP, UNFL, WNORM 172* .. 173* .. External Functions .. 174 REAL SLAMCH, SLANGE 175 EXTERNAL SLAMCH, SLANGE 176* .. 177* .. External Subroutines .. 178 EXTERNAL SGEMM, SLACPY 179* .. 180* .. Intrinsic Functions .. 181 INTRINSIC MAX, MIN, REAL 182* .. 183* .. Executable Statements .. 184* 185 RESULT = ZERO 186 IF( N.LE.0 ) 187 $ RETURN 188* 189* Constants 190* 191 UNFL = SLAMCH( 'Safe minimum' ) 192 ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) 193* 194* Some Error Checks 195* 196 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN 197 RESULT = TEN / ULP 198 RETURN 199 END IF 200* 201 IF( ITYPE.LE.2 ) THEN 202* 203* Tests scaled by the norm(A) 204* 205 ANORM = MAX( SLANGE( '1', N, N, A, LDA, WORK ), UNFL ) 206* 207 IF( ITYPE.EQ.1 ) THEN 208* 209* ITYPE=1: Compute W = A - UBV' 210* 211 CALL SLACPY( ' ', N, N, A, LDA, WORK, N ) 212 CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, B, LDB, ZERO, 213 $ WORK( N**2+1 ), N ) 214* 215 CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( N**2+1 ), N, V, 216 $ LDV, ONE, WORK, N ) 217* 218 ELSE 219* 220* ITYPE=2: Compute W = A - B 221* 222 CALL SLACPY( ' ', N, N, B, LDB, WORK, N ) 223* 224 DO 20 JCOL = 1, N 225 DO 10 JROW = 1, N 226 WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) ) 227 $ - A( JROW, JCOL ) 228 10 CONTINUE 229 20 CONTINUE 230 END IF 231* 232* Compute norm(W)/ ( ulp*norm(A) ) 233* 234 WNORM = SLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ) 235* 236 IF( ANORM.GT.WNORM ) THEN 237 RESULT = ( WNORM / ANORM ) / ( N*ULP ) 238 ELSE 239 IF( ANORM.LT.ONE ) THEN 240 RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) 241 ELSE 242 RESULT = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) 243 END IF 244 END IF 245* 246 ELSE 247* 248* Tests not scaled by norm(A) 249* 250* ITYPE=3: Compute UU' - I 251* 252 CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK, 253 $ N ) 254* 255 DO 30 JDIAG = 1, N 256 WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+ 257 $ 1 ) - ONE 258 30 CONTINUE 259* 260 RESULT = MIN( SLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ), 261 $ REAL( N ) ) / ( N*ULP ) 262 END IF 263* 264 RETURN 265* 266* End of SGET51 267* 268 END 269