1*> \brief \b CGBT01
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE CGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
12*                          RESID )
13*
14*       .. Scalar Arguments ..
15*       INTEGER            KL, KU, LDA, LDAFAC, M, N
16*       REAL               RESID
17*       ..
18*       .. Array Arguments ..
19*       INTEGER            IPIV( * )
20*       COMPLEX            A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
21*       ..
22*
23*
24*> \par Purpose:
25*  =============
26*>
27*> \verbatim
28*>
29*> CGBT01 reconstructs a band matrix A from its L*U factorization and
30*> computes the residual:
31*>    norm(L*U - A) / ( N * norm(A) * EPS ),
32*> where EPS is the machine epsilon.
33*>
34*> The expression L*U - A is computed one column at a time, so A and
35*> AFAC are not modified.
36*> \endverbatim
37*
38*  Arguments:
39*  ==========
40*
41*> \param[in] M
42*> \verbatim
43*>          M is INTEGER
44*>          The number of rows of the matrix A.  M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*>          N is INTEGER
50*>          The number of columns of the matrix A.  N >= 0.
51*> \endverbatim
52*>
53*> \param[in] KL
54*> \verbatim
55*>          KL is INTEGER
56*>          The number of subdiagonals within the band of A.  KL >= 0.
57*> \endverbatim
58*>
59*> \param[in] KU
60*> \verbatim
61*>          KU is INTEGER
62*>          The number of superdiagonals within the band of A.  KU >= 0.
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*>          A is COMPLEX array, dimension (LDA,N)
68*>          The original matrix A in band storage, stored in rows 1 to
69*>          KL+KU+1.
70*> \endverbatim
71*>
72*> \param[in] LDA
73*> \verbatim
74*>          LDA is INTEGER.
75*>          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
76*> \endverbatim
77*>
78*> \param[in] AFAC
79*> \verbatim
80*>          AFAC is COMPLEX array, dimension (LDAFAC,N)
81*>          The factored form of the matrix A.  AFAC contains the banded
82*>          factors L and U from the L*U factorization, as computed by
83*>          CGBTRF.  U is stored as an upper triangular band matrix with
84*>          KL+KU superdiagonals in rows 1 to KL+KU+1, and the
85*>          multipliers used during the factorization are stored in rows
86*>          KL+KU+2 to 2*KL+KU+1.  See CGBTRF for further details.
87*> \endverbatim
88*>
89*> \param[in] LDAFAC
90*> \verbatim
91*>          LDAFAC is INTEGER
92*>          The leading dimension of the array AFAC.
93*>          LDAFAC >= max(1,2*KL*KU+1).
94*> \endverbatim
95*>
96*> \param[in] IPIV
97*> \verbatim
98*>          IPIV is INTEGER array, dimension (min(M,N))
99*>          The pivot indices from CGBTRF.
100*> \endverbatim
101*>
102*> \param[out] WORK
103*> \verbatim
104*>          WORK is COMPLEX array, dimension (2*KL+KU+1)
105*> \endverbatim
106*>
107*> \param[out] RESID
108*> \verbatim
109*>          RESID is REAL
110*>          norm(L*U - A) / ( N * norm(A) * EPS )
111*> \endverbatim
112*
113*  Authors:
114*  ========
115*
116*> \author Univ. of Tennessee
117*> \author Univ. of California Berkeley
118*> \author Univ. of Colorado Denver
119*> \author NAG Ltd.
120*
121*> \ingroup complex_lin
122*
123*  =====================================================================
124      SUBROUTINE CGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
125     $                   RESID )
126*
127*  -- LAPACK test routine --
128*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
129*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130*
131*     .. Scalar Arguments ..
132      INTEGER            KL, KU, LDA, LDAFAC, M, N
133      REAL               RESID
134*     ..
135*     .. Array Arguments ..
136      INTEGER            IPIV( * )
137      COMPLEX            A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
138*     ..
139*
140*  =====================================================================
141*
142*     .. Parameters ..
143      REAL               ZERO, ONE
144      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
145*     ..
146*     .. Local Scalars ..
147      INTEGER            I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
148      REAL               ANORM, EPS
149      COMPLEX            T
150*     ..
151*     .. External Functions ..
152      REAL               SCASUM, SLAMCH
153      EXTERNAL           SCASUM, SLAMCH
154*     ..
155*     .. External Subroutines ..
156      EXTERNAL           CAXPY, CCOPY
157*     ..
158*     .. Intrinsic Functions ..
159      INTRINSIC          CMPLX, MAX, MIN, REAL
160*     ..
161*     .. Executable Statements ..
162*
163*     Quick exit if M = 0 or N = 0.
164*
165      RESID = ZERO
166      IF( M.LE.0 .OR. N.LE.0 )
167     $   RETURN
168*
169*     Determine EPS and the norm of A.
170*
171      EPS = SLAMCH( 'Epsilon' )
172      KD = KU + 1
173      ANORM = ZERO
174      DO 10 J = 1, N
175         I1 = MAX( KD+1-J, 1 )
176         I2 = MIN( KD+M-J, KL+KD )
177         IF( I2.GE.I1 )
178     $      ANORM = MAX( ANORM, SCASUM( I2-I1+1, A( I1, J ), 1 ) )
179   10 CONTINUE
180*
181*     Compute one column at a time of L*U - A.
182*
183      KD = KL + KU + 1
184      DO 40 J = 1, N
185*
186*        Copy the J-th column of U to WORK.
187*
188         JU = MIN( KL+KU, J-1 )
189         JL = MIN( KL, M-J )
190         LENJ = MIN( M, J ) - J + JU + 1
191         IF( LENJ.GT.0 ) THEN
192            CALL CCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
193            DO 20 I = LENJ + 1, JU + JL + 1
194               WORK( I ) = ZERO
195   20       CONTINUE
196*
197*           Multiply by the unit lower triangular matrix L.  Note that L
198*           is stored as a product of transformations and permutations.
199*
200            DO 30 I = MIN( M-1, J ), J - JU, -1
201               IL = MIN( KL, M-I )
202               IF( IL.GT.0 ) THEN
203                  IW = I - J + JU + 1
204                  T = WORK( IW )
205                  CALL CAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
206     $                        1 )
207                  IP = IPIV( I )
208                  IF( I.NE.IP ) THEN
209                     IP = IP - J + JU + 1
210                     WORK( IW ) = WORK( IP )
211                     WORK( IP ) = T
212                  END IF
213               END IF
214   30       CONTINUE
215*
216*           Subtract the corresponding column of A.
217*
218            JUA = MIN( JU, KU )
219            IF( JUA+JL+1.GT.0 )
220     $         CALL CAXPY( JUA+JL+1, -CMPLX( ONE ), A( KU+1-JUA, J ), 1,
221     $                     WORK( JU+1-JUA ), 1 )
222*
223*           Compute the 1-norm of the column.
224*
225            RESID = MAX( RESID, SCASUM( JU+JL+1, WORK, 1 ) )
226         END IF
227   40 CONTINUE
228*
229*     Compute norm(L*U - A) / ( N * norm(A) * EPS )
230*
231      IF( ANORM.LE.ZERO ) THEN
232         IF( RESID.NE.ZERO )
233     $      RESID = ONE / EPS
234      ELSE
235         RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
236      END IF
237*
238      RETURN
239*
240*     End of CGBT01
241*
242      END
243